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Abstract. In this paper, I propose a neurophysiologically plausible ac-
count for the evolution of arbitrary, categorical mental relationships. To-
pographic, or structure-preserving, mappings are widespread within an-
imal brains. If they can be shown to generate behaviours in simulation,
it is plausible that they are responsible for them in vivo. One behaviour
has puzzled philosophers, psychologists and linguists alike: the categori-
cal nature of language and its arbitrary associations between categories
of form and meaning. I show here that arbitrary categorical relationships
can arise when a topographic mapping is developed between continuous,
but uncorrelated activation spaces. This is shown first by simulation,
then identified in humans with synaesthesia. The independence of form
and meaning as sensory or conceptual spaces automatically results in a
categorial structure being imposed on each, as our brains attempt to link
the spaces with topographic maps. This result suggests a neurophysio-
logically plausible explanation of categorisation in language.

1 Introduction

Solomonoff’s 1964 paper A Formal Theory of Inductive Inference [29] was a land-
mark in the study of learning. It brought together the philosophical problem of
induction, probability theory, information theory, computability and formal lan-
guage theory. It related shortness of coding length with goodness of fit, presaging
the well-known induction methods of MML/MDL [35, 24]. Of particular inter-
est to cognitive science and natural language processing was his exploration of
grammar induction, an analogue of which occurs in the development of every
speaker of every natural language. In the current paper, I explore an aspect of
language learning which complements the grammar induction task addressed by
Solomonoff, asking: how do our brains construct categorial symbols out of the
continous inputs they receive? Where the universal Turing machine was the ab-
stract computational notion at the basis of Solomonoff’s exploration of learning,
the topographic mapping is the basis of the current paper.

Topographic mappings are relations between two spaces which preserve sim-
ilarity: similar points in one space are related to similar points in the other.
As the name suggests, this is an ideal property for maps of territory: nearby
geographic locations should be nearby on the map, places far from each other
should appear distant on the map.
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Topographic maps in the brain were first noticed as a result of the work of
Penfield and Boldrey [20, 26]. Directly stimulating the brains of locally anaes-
thetised epilepsy patients allowed them to explore the qualia associated with
particular points on the brain. For the most part, they found that sensations
attributed to nearby points on the human surface or entrails resulted from stim-
ulating nearby parts of the brain.

Since this initial work, researchers have both found new topographic struc-
tures in the brain [28], and identified previously known structures as resulting
from constructing maximally topographic connections from complex inputs [7].
Section 2 discusses these natural topographic mappings in more detail, support-
ing the premiss that such mappings are widespread and a plausible neurophysi-
ological explanation for cognitive phenomena.

It is possible to define formally what constitutes a topographic map [8], and
to construct them algorithmically. Section 3 considers some general definitions
and implementations. The crux of the paper comes in section 3.5. When a to-
pographic map is constructed between two spaces on the basis of uncorrelated
pairs of inputs and outputs, it is found to exhibit a remarkable form. It shows
sectioning of the input into contiguous chunks that map onto a single value or a
small connected range of values.

This result is important, because it suggests a neurophysiological explanation
for categorisation in language. Language is inherently categorical. The word cat

consists of the same sequence of phonemes whether said by a small child with
a lisp, or sung by an operatic contralto. These variations do not matter for the
identity of the word, but there is a limit. Pronounced like cute, and the word cat

is no longer there at all, even though the sounds are similar.

Likewise the meanings of words are categorical. The class refered to by cat

does not blend, even in response to variations in pronunciation, into kite or coat.
Why is this the case? It is logically possible to imagine a language which was
directly iconic: a language of drawn pictures, or as Bickerton imagined, dolphins
refering to objects by mimicking their sonar profile [3].

In section 4, I discuss linguistic and cognitive categories and argue that these
can be driven by forcing topographic mappings between uncorrelated spaces, one
of which consequently becomes the space of representation, and the other, the
space of meaning. For example, the well-studied colour categories could arise by
mappings from the sensory colour space (along with other sensory and conceptual
spaces) onto a space of phonetic expressions.

In fact, we can find direct evidence for this type of categorisation in the ex-
perience of synaesthetes. Section 5 relates the categorical nature of synaesthetic
associations to a likely neurophysiological explanation: a topographic mapping
between cortical areas dealing with the associated qualia.

The final section 6 draws the argument together to support a neurophysio-
logically plausible account of the development of linguistic and other categorical
cognitive processes: topographic mappings created between spaces receiving un-
correlated inputs.
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2 Topographic Mappings in the Brain

Topographic mappings relate similar or nearby inputs to similar or nearby out-
puts. These kinds of mappings are found between the senses and the cortex,
between different parts of the cortex (and other parts of the brain), and between
the cortex and the motor system. They seem to be a ubiquitous part of neural
processing [32].

2.1 Easy to See Mappings

In animal sensory systems, the inputs are primary sensors arranged over a sense
field as retinas in the case of sight, the skin in the case of touch, the organs
of Corti in the case of hearing, and so on. The outputs are areas of the cortex
devoted to sythesising information from these inputs, such as the primary visual
cortex. The mapping of the sense of touch onto the cortex is relatively simple.

Penfield and Boldrey [20, 26] sought to express only the area of cortex as-
signed to particular somatosensory organs in their first homunculus. Conse-
quently, the mapping onto the cortical slice was not shown, but it was implied.
If an area of cortex could be mapped onto the hand, so that its appropriate size
could be determined, this implied that points within the hand were within a
single region in the cortex, and stimuli from outside the hand were processed
further away. A more direct mapping between body part and cortex is seen
in the homunculus of Penfield and Rasmussen [21]. The topographic nature is
clearly visible, for example, a point in the arm is mapped closer to nearer points
on the same appendage than to further points. (See [26] for a history of the
homunculus.)

Recent fine-grained studies such as [11] have used techniques such as magnetic
resonance imaging to create fine-grained maps of the motor and somatosensory
cortices. These studies show that while there some overlap of cortical areas re-
sponding to the actions of individual fingers, there are orderly somatotopies.

Topographic mappings are also found repeatedly in the visual cortex. The
next section deals with the relation between topographic mappings and ocular
dominance stripes. Suffice it to say for the moment that the primary visual
cortex maps inputs from the visual field according to their position in retina.
Recently, specialised topographic mappings of visual inputs that also integrate
infromation from other senses have been found [28, 25, 30]. In fact, some [9]
assume retinotopicity to determine boundaries for optical representations in the
cortex.

These kinds of mapping also occur with auditory stimuli. [15] finds topo-
graphic mappings of modulation density by frequency in the cortex.

2.2 Continuous and Discrete - Ocular Dominance Stripes

Some topographic mappings into cortical structure are easy to see. A two-
dimensional sensory field is mapped into a two-dimensional cortical area, with
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geometry preserved. Other kinds of topographic mapping are not so transparent,
as they appear to display rampant discontinuity.

Ocular dominance stripes (or columns) were first named such by Hubel and
Wiesel [13], although they had noted the phenomenon earlier [12]. They identified
columns of cells in the cortex which responded to input from one eye only. These
columns were arranged into contiguous striping patterns over the visual cortex.

In work for which they were awarded the Nobel prize, they showed that these
stripes were developmentally conditioned and affected by environmental stimuli.
When young kittens lost stimuli from one eye, the other took over the cortical
areas normally used for signals from the occluded eye. Similar effects have been
shown in primates [16].

Ocular dominance stripes have been found in non-mammals such as owls [22]
and (in extraordinary circumstances) frogs [14].

Despite our considerable understanding of forces that can cause or disrupt
the development of ocular dominance columns, there is no consensus as to their
function [1]. There is a model of their development, however, that sees them as
a natural (but not necessarily inevitable) consequence of constructing a topo-
graphic mapping from two positively correlated planar sources of information
onto the cortex.

Goodhill [7] introduced a model for the mapping from eye to brain which
is capable of developing both the topographic structure of the mapping as well
as the ocular dominance striping. The striping occurs because the inputs to the
two eyes are positively correlated in binocular vision. The model predicts that
increasing correlation leads to narrower stripes. More to the point, it suggests
that when correlations of this kind are present we should not be surprised to
find dominance striping along with it.

This prediction seems to have been born out in two results in different species.
In one study of frogs [14], the authors implanted a node which developed into
a third eye in the growing frog, on the same side as one of the existing eyes,
creating binocular vision on that side. The two eyes developed, with some of
the visual input from one eye sharing cortical projection with the other. In the
shared cortex, ocular dominance stripes resulted.

The two eyes on this side had highly correlated inputs, having overlapping
visual fields. The fact that striping occurred in just this case supports Good-
hill’s analysis of striping as a side-effect of constructing a topographic map from
multiple correlated inputs.

Further evidence for this analysis comes from studies of platypus bill sensing
reported by Pettigrew [22]. The platypus has electrosensors and mechanosensors
intermingled in its bill, and despite these sensors having separate pathways to
the brain, they map cortically with striping similar to ocular dominance striping.
This is no surprise to the topographic explanation: if the animal is integrating
information from two highly correlated topographic arrays (two eyes looking
in the same direction or electro- and mechano-sensors spread out on the same
surface), then dominance striping is a likely way to bring relevant information
together in the brain.
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So ocular dominance stripes despite, or even because of, their discontinuities
can be regarded as optimal topographic mappings from one space, made up
of two disjointed but correlated parts, to contiguous space. As we shall see in
section 3.5, this is not the only way to get chunking and discontinuities from
topographic mappings.

In summary then, topographic mappings arise frequently in the brain; the
more we look for them, the more we find them. They integrate knowledge from
different receptive fields, and even different sense types. Furthermore, they can
give rise to complex discontinuous structures.

3 The Topographic Extrapolation

This section presents a measure of topographicity, and extends it to finding the
most topographic extensions of given data, in a manner similar to that described
by Ellison [6].

3.1 Measuring Topographicity

Goodhill and Sejnowski [8] offered the general evaluation measure for the to-
pographicity of functions shown in (1) (symbols have been changed to avoid
confusion).

C(f) =
∑

i∈I

∑

j∈I

sI(i, j)sO(f(i), f(j)) (1)

Here sI and sO are similarity measures on the input and output spaces respec-
tively. C(f) is the measure of how topographic the space is, with larger values
for more topographic mappings. Both the sI and sO are assumed to be every-
where non-zero. Consequently C(f) (if finite) is maximised for f which match
small values of sI with small values of sO and large with large. See Goodhill and
Sejnowski’s discussion for more details.

The definition can be extended to apply to any finite collection D of input-
output data points (2).

C(D) =
∑

(i,o)∈D

∑

(j,p)∈D

sI(i, j)sO(o, p) (2)

3.2 Extrapolation

Solomonoff [29], following Carnap [5], couched learning problems as sequence
extrapolation coding problems. He started by defining a cost for a sequence as
the length of the shortest program for a given universal Turing machine which
would generate that sequence. From this was constructed an answer to the ex-
trapolation problem: the best extrapolation of a sequence is the one which gives
the smallest increment in the cost function.
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The same approach can determine the most topographic extrapolation from
a given set of input-output pairs D. Since sI and sO are similarity measures,
rather than cost functions or distances, larger C(D) is better. Consequently, we
seek to maximise the change in C(D) resulting from the addition of the new pair
(x, y), as expressed in (3).

C(D ∪ {(x, y)})− C(D) = 2 ∗
∑

(i,o)∈D

sI(i, x)sO(o, y) + sI(x, x)sO(y, y) (3)

We assume that the self-similarity of each point in the input space and the
output space are constant: sI(x, x) does not depend on x, nor sO(y, y) on y. This
means that the whole equation is maximised when the summation is maximised,
allowing us the concise form shown in (4) for the best extrapolation.

In what follows, we will write S(x, y|D) for the term
∑

(i,o)∈D sI(i, x)sO(o, y).

E(D) = (x, y)|x ∈ I, y ∈ O that minimise S(x, y|D) (4)

The extrapolation can be limited to selecting the best output for a given
input x. If this is done for all values of x ∈ I, we exrapolate a most topographic
function fitting the data (5).

F (D) = {(x, y)|x ∈ I, y ∈ O where y uniquely minimises S(x, y|D)} (5)

Frequently, F (D) is only a partial function. If there are multiple maxima for
S(x, y) for some x, then no y uniquely minimises this function. For these values
of x, the function remains undefined.

3.3 A Normal Similarity Measure

In the simulations which follow, I use a probability-based similarity measure.
This measure parallels the notion of confusion probabilities as discussed by the
author in an earlier paper on induction [6]. It is defined, for an arbitrary space in
equation (6). One parameter to the measure is scale constant σ assumed constant
over the whole space.

s(x, y) = N(x− y;σ) (6)

The measure has not been normalised over either x or y to retain its com-
mutativity, so will not act here as a probability distribution. It can be proven
that given this similarity measure, for any finite data set D, the extrapolated
function F (D) is continuous wherever it is defined.
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3.4 Extrapolation from Highly Topographic Functions

At this point, it is worth looking at the extrapolation from data which is
highly topographic. For simplicity, take the one-dimensional unit interval [0, 1]
as both input and output space.
A program, dubbed OPTOPO, was devel-
oped in PYTHON to extrapolate pointwise
the most topographic function matching a
given input data set, based on the optimisa-
tion derived in section 3.2.
Data was generated by mapping each of 20
points equally spaced along the unit inter-
val to itself. These were then used to ex-
trapolate values covering the same interval
at 0.001 spacing. A graph of the resulting
extrapolations appears in figure 1. The simi-
larity measures are normal density functions
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Fig. 1: Topographic extrapolation
from 20 points of io = i on the unit
interval to the 1000 points.

as described in section 3.3, with scale constants σ set for input and output spaces
to 0.04.
In general, we can expect strongly topographic data, in the sense of equation
(2), to give rise to extrapolations matching those functions.

3.5 Independently Varying Spaces

In the last example, a thousand points were extrapolated from 20 belong-
ing to the already topographic identity function. This function was recovered,
apart from small curvature at the extremes ends of the interval. Now we ex-
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Fig. 2: Input data to the topo-
graphic mapping between uncorre-
lated spaces: 500 points in [0, 1] ×
[0, 1].

plore the other extreme: what happens when
the training data is random and uncorre-
lated?
Training data was generated, consisting of
500 points with random input and output
values drawn from a flat distribution over
the unit interval. A scatter plot of this data
is shown in figure 2.
Applied to this training data, OPTOPO re-
turned the function shown in figure 3 as
the most topographic that could be deduced
from the data. The most remarkable fea-
ture of this graph is that it shows a largely

smooth, continuous function with only a handful of discontinuities.
Between the discontinuities, we have continuous maps from input to output. Al-
though the mapping output is usually fairly level, there is sometimes variation.
In these cases the variation is smooth. An input point between two close neigh-
bours maps onto an output point between the projections of those neighbours.

The explanation of this combination of smooth mapping plus discontinuity
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lies in the fact that we are looking for the most topographic output value o for
each input i. The smooth similarity measures turn the scattered host of input
data points into a continuously contoured
scalar field over the input-output plane. Con-
structing the most topographic extrapola-
tion function is a process of maximising the
evaluation for each input value. The scalar
field over the plane has ridges of higher val-
ues, and these are what we see defining the
contiguous categories in the input. Transi-
tions from one ridge to another happen when
a falling ridge of values is overtaken by a ris-
ing ridge, as the focus moves along input val-
ues. This transitional discontinuity is of the
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Fig. 3: The most topographic (i.e.
the most probable) function account-
ing for the uncorrelated input data.

kind made famous in the Catastrophe Theory of Rene Thom [33].
Functions with this kind of discontinuity define a categorisation of the input. In-
puts within a connected region belong to one category. Inputs from regions sep-
arated by discontinuities come from different categories. Topographic mappings
offer an easy route from continous spaces to categorisation, and this suggests
elegant new explanations for the origin and nature of language.

4 Explaining the Categorical Nature of Language

Language is both symbolic and categorical. It is symbolic because there is
no intrinsic, or to use Peirce’s [19] terms, no indexical and no iconic, relation
between the space of meanings, and the space of linguistic representations. No in-

Fig. 4: Iconic
representation
of fire.

dexical relationship means that there is no physical association
of our units of meanings with what they represent: our word
fire does not share the same relationship with actual fire that
actual smoke does. No iconic relationship means that there is
no structure-preserving mapping which relates the word fire to
what it represents. In contrast, the sign for fire shown in figure 4,
is an iconic representation: while this image has no physical con-
nection to fire, the qualia of looking at the image share structural
similarities to a view of a fire. But not being iconic or indexical

does not account for the categorical nature of natural language symbols.
So language is a connection between uncorrelated spaces of meaning and repre-
sentation. Could language be a topographic mapping between these spaces? If
so, it would explain the categorical nature of both meanings (eg. colour classes,
genders, emotions, etc.) and forms in language (eg. the phonological forms of
words). If this were the case, we would expect two features of language: arbi-
trary categorisation, with categories varying from language to language, and a
globally non-topographic function from form to meaning.

Language categories are arbitrary, and they certainly vary from language
to language, although there may be functional pressures which limit variation.
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Variation in the number and phonetic realisation of phonemes is one example.
Language-specificity is more hotly debated, however, with regard to semantic
categories. Nevertheless researchers report tracking shifts in categorisation as
children adapt to the language they are acquiring [4, 17, 18].

Vocabulary also shows no strong large scale topographic relation between
meaning and form. Shillcock et al [27] and Tamariz [31] looked for large-scale
systematicity in the meanings of monomorphemic words in English and Spanish
respectively. Effects were found, but primarily for localised domains such as
pause fillers, and for limited phonetic features.

So the evidence agrees with a model in which word forms are related to their
meanings by a topographic mapping linking uncorrelated spaces.

5 Synaesthesia

Synaesthesia is the leakage of qualia from one sensory input to another. For
example, someone might see – in their mind’s eye – the colour red when they
hear the word hurry, or smell olives when seeing square objects. For an overview
of synaesthesia, see [10].

De Thornley Head [34] finds that pitch-colour synaesthetes have reliable
mappings from pitches onto colours (unlike non-synaesthetes), and takes this
as evidence that synaesthesia is a perceptual phenomenon apart from memory,
metaphor or imagery. He interprets the mapping itself in the following way.
Pitches and colours are broken into regions by some unclear mechanism. These
regions are then associated in an arbitrary fashion. There can be smooth topo-
graphic mappings within the regions so associated, but no such connections hold
when region boundaries are crossed.

These findings agree with a model in which synaesthesia is the result of
additional connectivity, a topographic map, linking an auditory representation
with a representation of colour. That synaesthesia results from structural brain
differences is supported experimentally [2, 23]. For the most part, auditory and
colour stimulus arrive from the senses uncorrelated. Consequently, the topo-
graphic map developed has the form of figure 3: discontinuous regions of input
mapped smoothly onto arbitrary and disconnected regions of output.

6 Conclusion

The purpose of this paper was to propose a neurophysiologically plausible ex-
planation for the formation of arbitrary categorisations. The core of this ex-
planation is that, as seen in section 2, topographic mappings are commonplace
in the brain, turning up even when their nature is less than obvious, as in the
case of ocular dominance striping. To make the explanation concrete, a formal
description of topographic mappings was presented in section 3. This section
finished with the core result of this paper: the most topographic linkage between
two uncorrelated spaces can be a categorical mapping with, at most, in-category
smooth mapping. Section 4 and section 5 explored some of the phenomena which
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might be explained using this result. Monomorphemic vocabulary shows little
large-scale correlation of similarity of phonetic form and similarity of meaning,
instead linking somewhat arbitrary categories of meaning to arbitrary (though
systematic) categories of form. Similarly, pitch-colour synaesthetics show only
local smoothness in their mapping of one modality to the other; the mapping
consists of connections between somewhat arbitrary chunks of the pitch and
colour spaces. Topographic mappings between uncorrelated spaces explain both
these phenomena.
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