
Appl. Math. Inf. Sci.7, No. 4, 1297-1306 (2013) 1297

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070404

Forecasting meteorological time series using soft
computing methods: an empirical study
Elena Bautu∗ and Alina Barbulescu

Department of Mathematics and Computer Science, Ovidius University, Constanta, Romania

Received: 29 Nov. 2012, Revised: 19 Jan. 2013, Accepted: 11 Feb. 2013
Published online: 1 Jul. 2013

Abstract: The interest of researchers in different fields of science towards modern soft computing data driven methods for time series
forecasting has grown in recent years. Modeling and forecasting hydrometeorological variables is an important step in understanding
climate change. The application of modern methods instead of traditional statistical techniques has lead to great improvement
in past studies on meteorological time series. In this paper, we employ Support Vector Regression (SVR) and automatic model
induction by means of Adaptive Gene Expression Programming (AdaGEP) for modeling and short term forecasting of real world
hydrometeorological time series. The investigated time series datasets cover annual, respectively monthly data, on temperature and
precipitation, measured at several meteorological stations in the Black Sea region. Two performance measures were used to assess the
efficiency of the models obtained for forecasting, alongside statistical testing of the goodness of fit via the Kolmogorov-Smirnov test.
Based on the results of rigourous experiments, we conclude that the models obtained by the AdaGEP algorithm are more competent in
forecasting the time series considered in this paper than the models produced with the SVR algorithm.
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1 Introduction

Real world processes are very hard to summarize and
predict. Hydrometeorological series are not an exception,
since they are influenced by a diversity of phenomena and
factors from the environment. The processes that drive
their behavior are almost never very well described using
a single mathematical equation.

Traditional methods for modeling time series come
from the statistics literature and address the issue of
deriving linear models. Although the resulting models are
easy to interpret, these modeling methods impose strong
limitations, such as the stationarity of the time series, the
independence and normality of the residuals (see, for
example [1]). Also, they lack the ability to detect
non-linear traits in data.

Non-linear modeling techniques make little
assumptions on the data distribution; a review of state of
the art is provided by [2]. Among them, modern heuristic
approaches based on Artificial Neural Networks [3] or
Evolutionary Computation (EC) techniques, such as
Genetic Programming (GP) [4,5,6], have been shown to
obtain very good results in modeling geophysical series.
Gene Expression Programming (GEP) is a technique

based on classical GP, that uses a simpler, yet more
powerful, representation. In our study, we used the
improved adaptive GEP algorithm (AdaGEP), which is a
hybrid between GEP and a classical bit-string Genetic
Algorithm, rendering a powerful modeling tool. AdaGEP
was used previously to model the dynamic behaviour of a
process that generates a time series with very good results
[7].

Support Vector Regression (SVR) is a nonlinear
regression method based on Support Vector Machines
(SVM). SVMs are very succesfull in the field of data
minig for solving classification problems. The SVM
algorithm is built based on thestructural risk
minimization principle, which means that it tries to
minimize an upper bound of the generalization error. This
is an important advantage over most neural networks,
which implement the empirical risk minimization
principle, thus minimizing the misclasification rate on the
training data. SVR is a technical adaptation of the SVM
algorithm built for tackling regression problems.
Although the use of SVR is less spread, succesfull
applications in various domains can be found in the
literature [8].
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This paper presents a comparative empirical study on
hydrometeorological series modeling and forecasting
with AdaGEP and SVR. The series used in this study
represent annual, respectively monthly, temperature and
precipitation data, gathered at several meteorological
stations in the Black Sea region. There exist four seasons
in this region, which endows the datasets used in this
paper with challenging characteristics from a modeling
point of view. The significant seasonal changes in both
temperature and precipitation lead to an increased
difficulty of their modeling and prediction using these
data-driven methods.

We perform a systematic evaluation of the
performances of the investigated methods, employing
extensive datasets. The obtained models are validated
against unseen test data and their predictions are
compared to assess their generalization power. The paper
does not propose a novel modeling method. We
emphasize on the methodology used for GEP and SVR
for forecasting and offer hints about which is the most
appropriate choice of method based on the series
characteristics.

The paper is structured as follows. The time series
prediction problem is presented in section2, stating the
basic principles of state space reconstruction. A brief
presentation of the GEP algorithm is contained in section
3, with an emphasis on the particular adaptive variant of
GEP used in this paper in subsection3.1. A brief account
of SVR is presented next (section4), in order to make this
paper as self-contained as possible. Section5 presents the
methodology for the experimental study. A detailed
discussion of the results is presented in section6. The
conclusion section ends the paper.

2 Time series prediction

We approach time series prediction in a symbolic
regression fashion. The task is to identify the
mathematical formulas which best describe the
underlying mechanisms that produced the data.

Consider{x(t)} a time series that was generated by
a dynamical system, e.g. recording the temporal variation
of temperature [16]. In practice, we deal with a sample of
data from the time series, as a dataset containg an ordered
set of observations (i.e. real valued numbers) of a variable
{x1,x2,x3,. . . ,xn}, wheren is the size of the dataset. The
problem is to find a model that approximates the observed
values of the variable as well as possible.

We take on the state space approach of embedding the
series into a low dimensional Euclidean space [16]. A state
vector is represented as

Xt = (xt ,x(t−τ), . . . ,x(t−(d−1)τ)), (1)

where τ is the time delay andd is the embedding
dimension. Takens [19] proved that if the embedding

dimension is big enough, then there exists an equation of
the form

x(t+p) = f ∗(Xt),

where f ∗ is a function that predicts future values of the
series{xT} using past values andp is the prediction
horizon. We use AdaGEP and SVR to find the appropriate
function that uses as input a time lagged vector of values
from the series.

3 Gene Expression Programming

Evolutionary Computation (EC) techniques are governed
by the principle of natural selection: the best adapted
individual has the most chances to survive and reproduce
in the next generations. A population of candidate models
are randomly initialized and evolved, through repeated
loops of recombination, mutation, reproduction, until a
termination condition is fulfiled.

Gene Expression Programming (GEP) is an automatic
model induction technique that pertains to the field of EC;
it was proposed by Ferreira in [9], as an improvement of
the standard Genetic Programming technique. The
individuals represent complex models expressed as
hierarchical mathematical expressions. They are encoded
in linear strings of functional symbols, variables and
constants. GEP individuals are free from any constraints
regarding the form of the expression they encode. Due to
the linear encoding, GEP benefits from the
phenotype-genotype separation [10].

The GEP individual is a linear string of symbols –
functional symbols, variables (representing inputs to the
model) and constants. An example of such an individual,
in the context of forecasting time series, is presented in
Figure 1. It is composed of three genes. Each gene
encodes a different expression tree, represented circled in
Figure1(a). This encoding is obtained by a breadth first
traversal of the expression tree. As it can be noted, each
tree decodes to a valid mathematical expression. For
example, the second gene has the first symbol “-”. It is a
binary operation, which means that on the second level in
the sub-tree we will find the operands of the “-”
operation. These operands are the next symbols from the
gene, respectivelyx3 andx1. Since both of these symbols
are constants, it means that the decodification of the gene
ends here. The resulting mathematical expression
encoded by the gene is thusx3 − x1. The rest of the
symbols in the gene are inactive for the moment. In the
chromosome presented in Figure1, the three expressions
encoded by the genes are finally linked by means of the
linking operator (addition in this case), resulting the
mathematical model encoded by the GEP individual.

The general structure of the GEP algorithm is
depicted in Figure 1(b). In our experiments, the
termination criterion is the maximum number of
generations and the solution is the best individual
throughout alll generations.
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For more in depth information on GEP and its
applications, we refer the reader to Ferreira’s excellent
monograph [10].

(a) GEP individual: the mathematical model can be expressed
as an hierarchical expression tree and is encoded as three linear
genes in the algorithm.

(b) The general structure of the GEP algorithm.
t← 0

1.Generate the initial population of candidate solutionsP0.
2.while (termination criterion is not met) do

(a)t← t +1
(b)SelectPt from Pt−1 using a selection scheme
(c)Evolve the individuals inPt using genetic operators

(mutation, recombination, transposition)
(d)Evaluate individuals inPt and assign them fitness values

3.designate solution

Fig. 1: The Gene Expression Algorithm.

3.1 Adaptive GEP

In this paper we use an adaptive variant of the GEP
algorithm, referred as AdaGEP in the following.

An important step in the design of a GEP-based
algorithm is to choose the chromosomal architecture. The
number of genes in the chromosome dictates the
complexity of the encoded solutions. We proposed in [11]

a hybridization of the GEP algorithm with a bit string
Genetic Algorithm that solves the problem of finding the
appropriate number of active genes to be used by the
algorithm during a run. The adaptive mechanism
implemented in AdaGEP allows the algorithm to change
the number of active genes during evolution. The
adaptation takes place at the chromosome level, hence
different chromosomes may have different numbers of
active genes. This is particularly useful for the problem of
time series forecasting, when no information is available
with respect to the expected model type and/or
complexity. Comparative studies of AdaGEP and GEP
models for time series forecasting proved the better
performance of AdaGEP [11,12].

We implemented AdaGEP as an extension of the gep
package for ECJ1.

4 Support Vector Regression

The SVM algorithm is built upon the foundation offered
by the theory of statistical learning. It was initially
designed to solve classification problems. In basic two
class classification the goal is to determine an optimal
hyperplane that separates the two classes. The SVM
algorithm approaches this problem by mapping the
training data into a higher dimensional feature space
using a functionΦ and then constructing, in the new
feature space, a maximum margin separating hyperplane
of the two classes. The support vectors are the points on
the boundary of the classes that are closest to the
separating hyperplane. The idea is to transform the input
data into a new feature space where the data is linearly
separable. The SVM algorithm takes advantage of the
“kernel trick” by using a kernel function to compute the
hyperplane without explicitly computing the mapping
into the feature space [16].

In the following, we briefly present the SVR algorithm,
following the presentation in [13,16].

The basic idea behind Support Vector Regression is to
map the datax into a higher dimensional feature spaceF

using a nonlinear mappingΦ , and then to solve a linear
regression problem in the new space [14,15,16]:

f (x) = (ω ·Φ(x))+b, with Φ : Rn→F , ω ∈F , (2)

whereb is a threshold. Inε-SVR we want to find a function
f that has at mostε deviation from the actual observed
values for each training datum in the dataset.

In the case of linear functions, we have to solve the
following optimization problem:

minimize 1
2 ‖ω‖

2

subject to: yi−ωxi−b≤ ε ,
ωxi +b− y≤ ε .

1 ECJ is an open-source evolutionary computation research
system developed in Java at George Mason University’s
Evolutionary Computation Laboratory and available at
http://cs.gmu.edu/ eclab/projects/ecj/
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In case of infeasible constraints, slack variablesξ ,ξ ∗ are
introduced [13]. The constrained optimization problem
becomes:

minimize 1
2 ‖w‖

2+C ∑m
i=1(ξ +ξ ∗)

subject to: yi−ωxi−b≤ ε +ξ ∗,
ωxi +b− y < ε +ξ ,

ξ ,ξ ∗ ≥ 0,

for all i = 1, . . . ,m. Parameterε controls the number of
support vectors and errors that exceed a given threshold.
The constantC > 0 determines the trade-off between the
flatness of f (x) and the amount up to which deviations
larger thanε are tolerated [13].

To make the algorithm nonlinear, the training patterns
are processed by the mappingΦ as described in equation
2 and then the standard SVR algorithm is applied. In
practice, the dual formulation of problem3 is often more
easily solved [17]:

min
α ,α∗

1
2(α−α∗)T Q(α−α∗)+

ε ∑m
i=1(αi +α∗i )+

∑m
i=1 zi(αi−α∗i )

subject to: eT (α−α∗) = 0,

0≤ αi,α∗i ≤C,∀i = 1, . . . ,m,

where
Qi j = K(xi,x j) = Φ(xi)

T Φ(x j)

andK is a kernel function. The approximate solution is

f (x) =
m

∑
i=1

(α∗i −αi)K(xi,x)+b.

The types of kernel functions that are most used are: linear,
polynomial, radial basis function (RBF) and sigmoid [18].
The kernel function used in this paper is the RBF kernel:

K(xi,x j) = exp−γ
∥

∥xi− x j
∥

∥

2
, (3)

whereγ is a parameter that needs to be set prior to running
the SVM algorithm.

In this work, we used the SVM implementation
provided by the software library LibSVM2 [17]. For a
detailed description of SVR, we refer the reader to [13].

5 Methodology

Each series is preprocessed and turned into a set of
w-dimensional data(xt−w, . . . ,xt−1,xt). Using AdaGEP
and SVR, we search the prediction function that uses
(xt−w, . . . , xt−1), w+1≤ t ≤ n as input variables in order
to approximatext . The appropriate window sizew is
searched using additional information we have on the

2 Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

time series, while at the same time trying out numerous
combinations.

We report in the following the results obtained with
our selection of window size. For the annual time series,
w = 5 was found to offer most satisfactory results. Hence,
the temperature in a particular year is predicted using the
mean temperature in the previous 5 years. For the
monthly temperature series, we used as input for the
model the value in the previous month and the value in
the same month, recorded last year, hence
xt = f (xt−1,xt−12), (τ = 1, d = 13 in equation1).

The original datasets are divided into separate training
and test sets. The training set is used in the learning phase.
The test set is used to verify the generalization capability
of the model; it is not used during trainig. For the monthly
data, the test set contains the last 24 items, meaning that
the models obtained have to predict the behaviour of the
variable over the next 24 months. For the annual data, the
test set contains the last 10 items, which means that the
models are used to predict mean annual temperatures for
the next 10 years.

For AdaGEP, the raw data is used to train the
algorithm and then to test the model. The fitness function
is based on the MSE, meaning that better individuals have
smaller MSEs. The operator rates are used at standard
values proposed in the literature [6,9,10]. We note that
the total number of genes in a chromosome is 5, but the
algorithm searched for the optimal number of active
genes during evolution. The number of independent runs
is 50. We report the best solution model identified over all
runs.

For the application of the SVR algorithm, we follow
the guidelines proposed in [17]. First the original data are
scaled into the range of[−1,1] in order to independently
normalize each feature component to the specied range.
The procedure is performed for both training and test data.
The purpose is to ensure that larger values of the input
attributes do not overwhelm small value inputs.

For theε-SVR employed in our study, we need to find
the appropriate parametersC andγ. We use a grid search
procedure to identify the best(C,γ) combination of
parameters, in a 10-fold cross-validation scheme. This
way, the SVR algorithm is supposed to avoid overfitting
the training data [18]. The best(C,γ) pair is then used to
train the SVR algorithm on the training dataset. The
resulting model is afterwords used to predict the unseen
values in the test set.

5.1 Performance measures

The efficiency of the models obtained with AdaGEP and
SVR is assessed using as performance indicators the
Mean Absolute Prediction Error (MAPE) and Mean
Squared Error (MSE):

MSE =
∑noo

i=1(xi− x∗i )
2

n
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MAPE =
∑n

i=1

∣

∣

∣

xi−x∗i
xi

∣

∣

∣

n
wherexi is thei-th value in the original time series andx∗i
is the value predicted by the model. Note that theMSE is
a scale-dependent accuracy measure, while theMAPE is
scale independent, hence it can be used to compare
forecast performance across different data sets [20].

AdaGEP is a probabilistic algorithm, so for
consistency purposes, besides the MSE of the best model,
we report the mean MSE and the standard deviation of the
MSE of the solutions obtained in all independent runs for
a given dataset. The comparisons between the models
with respect to MSE and MAPE are statistically validated
using standard t-tests to check for significant differences
in means (at significance level 0.05).

The Kolmogorov-Smirnov test is used to decide
whether a sample of data comes from a population with a
specific distribution. In our case, we use it to decide
whether two independent samples come from the same
unknown distribution. For example, we have a sample that
contains monthly temperatures recorded for 24
consecutive months and a sample of data generated by the
AdaGEP model, and we want to test if the these samples
come from the same population. If the test rejects the null
hypothesis (that theydo belong to the same population), it
means that the model did not fit the proper distribution of
the original data, hence its forecasts are questionable.

5.2 Datasets

The experiments carried out in the present study used
series of temperature and precipitations, collected at
several stations in the Black Sea region. The data series
are described in Table1.

Series Station Type Variable Period
CMP Constanta Mon. Precip. 01.1965 – 12.2005
SMP Sulina Mon. Precip. 01.1965 – 12.2005
CMT Constanta Mon. Temp. 01.1961 – 12.2008
SMT Sulina Mon. Temp. 01.1961 – 12.2008
CAT Constanta Ann. Temp. 1965 – 2005
JAT Jurilovca Ann. Temp. 1965 – 2005
SAT Sulina Ann. Temp. 1965 – 2005
TAT Tulcea Ann. Temp. 1965 – 2005

Table 1: Description of the datasets. Note: precip is short for
precipitation, temp. is short for temperature, mon. is short for
monthly, ann. is short for annual

6 Results and discussion

The experiments reported in this paper were composed of
a training phase and a testing phase for both AdaGEP and
SVR, for each dataset. The models produced were

evaluated with respect to MSE and MAPE. The main
objective was to produce forecasts, hence the
performance comparison on the test data set is of most
importance. Nevertheless, we also report the performance
indicators values obtained in the training phase, in order
to give a complete account on how well the methods
performed. The summary of results is contained in tables
2, 3, 4 and5.

According to the MSE on the test set (Table2), it is
obvious that the models obtained with AdaGEP offer
significantly better predictions than the models obtained
with SVR, since their MSEs are significantly smaller (by
several orders of magnitude, excepting the case of series
SMP).

Series AdaGEP model SVR model
MSE MSE

Test
CAT 0.98 18.9
TAT 0.93 7.61
SAT 1.51 6.29
JAT 0.75 3.33
CMT 5.80 54.28
SMT 6.67 60.55
CMP 42.70 3639.18
SMP 2202.71 2409.38

Table 2: MSE for the models on thetest dataset.

During the learning phase, for the datasets of annual
temperatures, the MSEs reported by the SVR models are
significantly smaller than those of the AdaGEP models
(Table3). This means that the SVR models learned better
the training data. For example, one can observe in Figure
2 that the SVR model overlaps perfectly the original
training data, while the GEP model does not. Given that
the SVR model predictions on the (previously unseen)
test dataset are worse with respect to MSE (Figure3), we
argue that the SVR models overfit the training data.

In the literature, overfitting is often reported as a result
of a poor choice of parameters. We remind the reader that
the choice of parametersC andγ in SVR was performed
doing a grid search in a 10-fold cross-validation
procedure. This procedure was used with success to avoid
overfitting [17,18]. Hence, although we do not exclude
the parameter choices as main cause of overfitting, future
work will concentrate on dealing with this issue.

Regarding the AdaGEP algorithm, by analysing the
Mean MSE and the standard deviation of the MSE of all
50 solutions obtained in each experiment, we conclude
that AdaGEP is stable and produces consistent results.

The MAPE values are independent of the scale of the
data and are used to compare forecast accuracy across
many series [20].

For the annual series, we note that on the training
dataset, the MAPE values are almost identical. Since the
series contain mean annual temperature values from four
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Fig. 2: The plot of actual observed values versus the values
predicted by the AdaGEP and the SVR models, on thetraining
dataset of theJAT series.

Fig. 3: The plot of actual observed values versus the values
predicted by the AdaGEP and the SVR models, on thetest dataset
of theJAT series.

stations in the same region, it is clear that they have very
similar characteristics, which explains why the algorithms
learned them equally well. It is also to be noted that on
training, the MAPE of the SVR models was smaller than
those of the AdaGEP models, which reinforces the fact

Series AdaGEP model SVR model
MSE (Mean, Stdev) MSE

Training
CAT 0.31 (0.32, 0.02) 0.39
TAT 0.33 (0.41, 0.03) 0.01
SAT 0.28 (0.37, 0.01) 0.06
JAT 0.21 (0.31, 0.02) 0.009
CMT 5.82 (5.16, 0.13) 63.55
SMT 4.65 (4.84, 0.09) 66.55
CMP 1458.51 (1458.51,0) 629.60
SMP 814.77 (818.04, 1.47) 598.52

Table 3: MSE for the models on thetraining dataset. For the
AdaGEP models, we report in the parantheses statistics (Mean
MSE, standard deviation of the MSE) over all 50 solutions
designated in the independent runs of the algorithm.

Series AdaGEP model SVR model
MAPE (%) MAPE (%)

Test
CAT 0.06 0.26
TAT 0.06 0.20
SAT 0.07 0.17
JAT 0.06 0.12
CMT 0.17 0.71
SMT 0.05 0.97
CMP 2.88 1.67
SMP 1.15 1.36

Table 4: MAPE for the models on thetest dataset.

Series AdaGEP model SVR model
MAPE (%) MAPE (%)

Training
CAT 0.03 0.009
TAT 0.04 0.009
SAT 0.03 0.01
JAT 0.03 0.008
CMT 1.83 5.79
SMT 0.28 3.23
CMP 3.00 1.85
SMP 2.16 1.13

Table 5: MAPE for the models on thetraining dataset.

that the SVR models learned the training data better. But
the AdaGEP models dominate SVR models in predicting
mean annual temperatures with respect to MAPE, too,
and comes to support our hypothesis of the overfitting of
SVR models.

For the monthly temperature series (CMT and SMT),
the situation is somewhat similar, in the sense that the
AdaGEP models have significantly smaller MAPE than
the SVR models on test data. The same is not true for the
monthly precipitation series at Constanta. The MAPE on
the forecast (test) data of the SVR model for CMP is
significantly smaller than the MAPE of the AdaGEP
model (although the situation was reversed with respect to
MSE). Also, for the SMP, the MAPE on test data of the
SVR does not differ significantly from the MAPE of the
GEP.

By visual inspection of the graphs of the observed
values plotted against the values predicted by the models,
we gain more insight into the results. Due to space
limitations, we do not include in the paper the graphs of
the actual versus the predicted values for all the time
series employed in the study. We only include a selection
that we consider to be representative. For example, since
the annual series are very similar, we include, for
exemplification purposes, the chart of the forecasts by the
AdaGEP and SVR models for the test dataset for the
Jurilovca series (Figure3). The plot of the models
predictions against the training set reflect the fact that
both the AdaGEP model and the SVR model learned
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Fig. 4: The plot of actual observed values versus the values
predicted by the AdaGEP model, on thetest dataset of theCMT
series. As it can be noted, the predictions of the AdaGEP model
are almost perfect.

almost perfectly the training data (in the case of the
annual series).

Figure 4 represents the plot of the actual monthly
temperatures at Constanta station against the values
predicted by the GEP model, from the test dataset. The
same is true for the monthly temperature series at Sulina
(SMT), which resembles the monthly temperature series
from Constanta (CMT). Therefore the graphs for SMT are
not included.

We include the charts of the monthly precipitations at
Constanta, for both the training and the test datasets
(figures6 and5). We can easily observe that, although the
AdaGEP model is superior to the SVR model both in
terms of MSE and of MAPE, the forecasts on the test data
are not very satisfactory. Some observations are
mandatory: the CMP series is very long, covering a period
of 40 years. There may exist multiple change points,
where the process behaviour changed, meaning that the
derivation of a single model to characterize and predict
the series may be unappropriate. Further work on this
issue is needed. Also, we emphasize that we constructed
models using only the series data, without any
supplementary variables. The inclusion of such variables
in constructing the models may improve the forecasts.

Similar remarks can be made for the Sulina monthly
precipitation data. The complexity of the dataset is visible
in Figure 7, which depicts the models obtained on the
training data. Although the MSE and the MAPE of the
SVR model are slightly larger than those of the AdaGEP
model, indicating the AdaGEP model as a better
forecaster, from Figure8 we would be tempted to say that
the SVR model appears to follow more closely the trend
of the original data.

We used the Kolmogorov-Smirnov goodness of fit test
to check whether the data forecasted by each model
matched the statistical distribution of the original sample
data. For the monthly temperature data (SMT and CMT),
the KS test reveals that the AdaGEP model generates data

Fig. 5: The plot of actual observed values versus the values
predicted by the AdaGEP and the SVR models, on thetest dataset
of theCMP series.

Fig. 8: The plot of actual observed values versus the values
predicted by the AdaGEP and the SVR models, on thetest dataset
of theSMP series.

from the same distribution like the original data, both on
training and on test. For SMT and CMT, the distribution
of the SVR model predicted data differs significantly
from the observed data distribution. For the monthly
precipitation data CMP, the data forecasted by the
AdaGEP model and the data predicted by the SVR model
pertain to the same statistical distribution like the original
test data (the p-values obtained in the KS test were 0.675
for AdaGEP and 0.441 for SVR). For SMP, there are no
significant differences between the SVR model
predictions and the original data, but the distribution of
the original data differs significantly from that of the
AdaGEP model predictions. For all the annual
temperature series, there were no significant differences
in the distributions of the original observed data and the
data generated by the SVR models on the training data.
On the test data, the distributions were similar among the
AdaGEP models, but differed significantly for the SVR
models.
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Fig. 6: The plot of actual observed values versus the values predicted by the AdaGEP and the SVR models, on thetraining dataset of
theCMP series.

Fig. 7: The plot of actual observed values versus the values predicted by the AdaGEP and the SVR models, on thetraining dataset of
theSMP series.

7 Conclusion

We have examined how well AdaGEP and SVR work for
the prediction of future values in time series representing
records of temperature and precipitation, gathered at
several locations in the Black Sea region. We evaluated
the models using two performance measures – one that is
dependent on the scale of the input data (MSE) and one

that is independent of the scale (MAPE). We note that the
perfomances of the models obtained with the two
methods vary among the datasets. The size and the
structure of the training set affects the modeling and
forecasting in a significant manner.

Both SVR and AdaGEP show excellent learning of
the training dataset, for both annual and monthly series.
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The models produced learned almost perfectly the
training datasets. SVR scores for the training data were
better on the annual time series and on the monthly
temperature series. The same is not true for the prediction
test set. The results demonstrate that AdaGEP is more
competent, in terms of MSE, for forecasting in all
situations. Testing with KS of goodness of fit, the results
indicate that AdaGEP identified the distributions in more
cases than SVR. Overall, the comparison results indicate
that the AdaGEP models perform better than the SVM
models for forecasting the temperature and precipitation
based on the particular data sets used in this study.

Future work will concentrate on statistical analysis of
the time series as a preprocessing stage (e.g. change point
detection). Also, as far as SVR is concerned, we need to
revise the reasons behind the overfitting behaviour. Also,
since SVR relies on the expertise of the researcher for
setting its parameters, an interesting idea would be to
evolve the kernel function and the SVR parameters.
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