
Ignorance is Bliss: A Complexity Perspective on
Adapting Reactive Architectures

Todd Wareham
Department of Computer Science

Memorial University of Newfoundland
St. John’s, NL Canada A1B 3X5

Email: harold@mun.ca

Johan Kwisthout
Institute for Computing and

Information Sciences,
Radboud University

Nijmegen, the Netherlands
Email: j.kwisthout@science.ru.nl

Pim Haselager and Iris van Rooij
Donders Institute for

Brain Cognition and Behaviour,
Radboud University

Nijmegen, the Netherlands
Email: w.haselager@donders.ru.nl,

i.vanrooij@donders.ru.nl

Abstract—We study the computational complexity of adapting
a reactive architecture to meet task constraints. This compu-
tational problem has application in a wide variety of fields,
including cognitive and evolutionary robotics and cognitive
neuroscience. We show that—even for a rather simple world
and a simple task—adapting a reactive architecture to perform
a given task in the given world is NP -hard. This result
implies that adapting reactive architectures is computationally
intractable regardless the nature of the adaptation process (e.g.,
engineering, development, evolution, learning, etc.) unless very
special conditions apply. In order to find such special conditions
for tractability, we have performed parameterized complexity
analyses. One of our main findings is that architectures with
limited sensory and perceptual abilities are efficiently adaptable.

I. INTRODUCTION

A popular class of control architectures in behavior-based
robotics are the hybrid deliberative/reactive architectures [1]–
[3]. These architectures combine the flexibility of a high-level
deliberative system incorporating planning, world-knowledge,
and memory with the speed and robustness of a low-level
reactive system [4], [5]. A key issue for such architectures is
the linking of these two components. One approach to this is
for the deliberative component to adapt the reactive component
in response to changing conditions, either by reconfiguring
the interactions of existing reactive behaviors or augmenting
existing behaviors with newly-designed ones [4, p. 214].

There are a number of robotic implementations which show
that reactive adaptation is possible, e.g., Autonomous Robot
Architecture (AuRA) (see [4, Section 6.6.1] and references),
Planner-Reactor [6], SSS [7]. These implementations show
that one can efficiently adapt reactive architectures to meet
certain task constraints in certain situations. An open question
is to what extent such implementations can generalize to, and
scale for, other types of tasks and situations.

Computational complexity theory provides techniques for
addressing this question, and some preliminary results are
known. For instance, Selman [8] found that devising a reactive
plan for solving a given planning task is NP -hard (see also
[9]), and Dunne, Laurence, and Wooldridge [10] proved that
designing reactive agents that can perform a given achievement
or maintenance task is NP -hard (see also [11]–[13]). Yet,

the formalisms adopted by these researchers to model the
reactive architectures and their life worlds were of such a
high degree of generality that the intractability results may be
due more to the formalisms used than the complexity inherent
in adaptation. As our interest here is primarily in the latter,
we study specifically the complexity of adapting subsumption
reactive architectures [14] relative to simple static worlds.

Using techniques from classical complexity theory [15], we
show that adapting a subsumption-based reactive architecture
so that it can navigate a given world is NP -hard. This holds
true, regardless whether the adaptation occurs by reconfiguring
reactive-behavior layers in the architecture or by designing
reactive-behavior layers anew and adding them to the architec-
ture. These results indicate that adapting reactive architectures
is computationally intractable unless very special conditions
apply. This raises the question of which conditions characterize
those situations in which adapting reactive architectures is
tractable. An answer to this question may be relevant for vari-
ous approaches to robotics. For instance, it can inform roboti-
cists about the conditions that make adaptation of reactive
architectures—e.g., as done by deliberative modules in hybrid
architectures or by evolutionary computation approaches to
adapting a reactive robot to a task environment—feasible.1

Moreover, it is of interest to cognitive neuroscience as it
can inspire hypotheses about evolutionary or developmental
explanations of animal and human brain structure.

In order to find conditions for tractability, we performed
parameterized complexity analyses [20] of the problem of
adapting reactive architectures. Our analyses reveal that only
certain restrictions on either the internal structure of the
architecture or the perceptual complexity of its sensory inputs
render adaptation tractable. Though these results are derived
in the context of a specific navigation task, we also show that
they apply to any task for which a candidate architecture can
be verified efficiently in a given world.

1Regarding evolutionary computation, our work has the additional advan-
tage of providing a more robust understanding of why specific approaches
(e.g. genetic algorithms and programming [16], ’try-out and see’ evolutionary
simulations aimed at extending reactive architectures with additional control
mechanisms (see, e.g., [17]–[19])) work or fail under certain circumstances.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357604103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The remainder of this paper is organized as follows. In
Section II, we formalize reactive adaptation in terms of a
simplified subsumption architecture for a basic navigation
task, distinguishing between two forms of adaptation: recon-
figuration and design. Section III demonstrates the general
intractability of both of these problems. Section IV describes a
methodology for identifying conditions for tractability, which
is then applied in Section V to identify such conditions for
the reconfiguration and design variants of adapting reactive
architectures. Due to space limitations, all proofs of results
are given in an online supplement.2 Finally, our conclusions
and directions for future work are given in Section VI.

II. FORMALIZING REACTIVE ADAPTATION

A. Adaptation for a Task

An adaptation mechanism for a particular robot architecture
A that will enable A to perform some task T relative to a
world W can be construed as a mechanism that adapts A in
some limited fashion so that it can perform T in W . The
computation performed by this mechanism is modeled by the
following informal computational problem:

T -ADAPTATION BY M (TA-M)
Input: World W , an architecture that can only partially perform
task T in W , and an integer d.
Output: An architecture A′ derived from A by at most d
modifications of type M that can fully perform T in W , if
such an A′ exists, and special symbol ⊥ otherwise.

Analyses of the computational complexity of this problem can
show both (1) whether any adaptation mechanism suffices,
i.e., can operate in a reasonable amount of time and space,
relative to the particular choices of world, task, architecture,
and architecture-modifications, and if not, (2) under which
restrictions on these choices such adaptation might be possible.

B. Adaptation for Basic Navigation

In this section, we will consider a particular formalization
of problem TA-M relative to the task of basic navigation for
a simplified subsumption-based reactive architecture.

Our worlds will be finite square-based maps in which
compass movement is possible between adjacent squares, i.e.,
north, south, east, and west, and each square is either a
freespace (which a robot can occupy or travel through) or an
obstacle. Each square has an associated type; let this set of
types be denoted by E.

Within such a world, the navigation task will be to, starting
from an arbitrary initial freespace, move to eventually occupy
another arbitrary final freespace denoted by a specially-marked
square-type. A robot that can do this relative to any two initial
and final freespaces in W is said to be fully navigable for W ;
otherwise, the robot is partially navigable for W . Note there
are no optimality restrictions on navigation, e.g., the paths
travelled need not be the shortest possible between the initial
and final freespaces.

2http://www.cs.mun.ca/∼harold/Papers/ICDL11supp.pdf

Our robot will be a simplified subsumption-based reactive
architecture consisting of sensors, a set of layers, a total
ordering on these layers, and a set of subsumption connections
between layers. The sensors can see outwards in a radius r
around the robot in every direction up to the closest obstacle in
that direction, and can only verify, for each square-type e ∈ E,
the presence of e within that perceptual radius, i.e., exists(e).
Each layer has a trigger-condition that is a Boolean formula
of length f over the available sensory exists-predicates and
an action a ∈ {N, S, E, W}. If a layer’s formula evaluates to
True, the layer produces output a; otherwise, it produces the
special output null. Given a set of layers L, we will assume that
the formula in each layer contains at least one exists-predicate
and no two layers encode formulas that both compute the same
Boolean function and produce the same output. Relative to the
total order on the layers, a layer i can have subsumption-
links to any layer j that is lower than i in the ordering;
between any two layers, there can exist an output-inhibition
or output-override link (but not both). The output of any layer
that subsumes at least one lower-level layer is not available
directly for output; otherwise, that layer’s output is available.
The output of a set of ordered layers with subsumption links
will be that of the highest layer relative to the order that is
both available and non-null.

Relative to such a reactive architecture, we will consider
two types of architecture modifications for adaptation:

1) Adding a selection of layers from a specified layer-
library, along with some number of subsumption-link
additions and deletions; and

2) Adding a selection of possible layers, along with some
number of subsumption-link additions and deletions.

These modifications correspond to those considered in [4], [6],
[7]. The above yields the following formalizations of problem
TA-M relative to the navigation task and subsumption-based
reactive architectures:

NAVIGATION ADAPTATION BY RECONFIGURATION
Input: A world W , a subsumption architecture A that is only
partially navigable for W , a library M of layers, and integers
s and l.
Output: A subsumption architecture A′ derived from A by
the addition of at most l layers from M and the addition or
deletion of at most s subsumption-links that is fully navigable
for W , if such an A′ exists, and special symbol ⊥ otherwise.

NAVIGATION ADAPTATION BY DESIGN
Input: A world W , a subsumption architecture A that is only
partially navigable for W , and integers s and l.
Output: A subsumption architecture A′ derived from A by the
addition of at most l layers and the addition or deletion of
at most s subsumption-links that is fully navigable for W , if
such an A′ exists, and special symbol ⊥ otherwise.

These problems will be denoted below by NA-REC and NA-
DES, respectively. Note that layers may be added in any order
relative to the layers in A in both problems, and that all layers
have trigger-formulas of length ≤ f .

III. REACTIVE ADAPTATION IS INTRACTABLE

In this section, we address whether or not reactive adaption
for the navigation task can be done efficiently relative to
the subsumption architecture and architecture modifications
described in Section II. Following general practice in Com-
puter [15] and Cognitive (see [21] and references) Science,
we define efficient solvability as being solvable in the worst
case in time polynomially bounded in the input size, and show
that a problem is not polynomial-time solvable by proving it to
be at least as difficult as the hardest problems in problem-class
NP , i.e., NP -hard (see [15] for details).

Result 1: NA-REC and NA-DES are NP -hard.

Modulo the conjecture P 6= NP which is widely believed to
be true [22], the above shows that neither NA-REC nor NA-
DES are polynomial-time solvable. Moreover, as |M | = l = 0
in the proofs of these results, this holds even if no new layers
are added to the architecture, i.e., the only modifications are
to the subsumption-links between existing layers.

IV. A METHOD FOR IDENTIFYING TRACTABILITY
CONDITIONS

A computational problem that is intractable for unrestricted
inputs may yet be tractable for non-trivial restrictions on the
input. This insight is based on the observation that some
NP -hard problems can be solved by algorithms whose run-
ning time is polynomial in the overall input size and non-
polynomial only in some aspects of the input called param-
eters. In other words, the main part of the input contributes
to the overall complexity in a “good” way, whereas only the
parameters contribute to the overall complexity in a “bad” way.
In such cases, the problem Π is said to be fixed-parameter
tractable for that respective set of parameters. The following
definition states this idea more formally.

Definition 1: Let Π be a problem with parameters k1, k2,
. . .. Then Π is said to be fixed-parameter (fp-) tractable for
parameter-set K = {k1, k2, ...} if there exists at least one
algorithm that solves Π for any input of size n in time
f(k1, k2, ...)nc, where f(·) is an arbitrary function and c is
a constant. If no such algorithm exists then Π is said to be
fixed-parameter (fp-) intractable for parameter-set K.

In other words, a problem Π is fp-tractable for a parameter-set
K if all superpolynomial-time complexity inherent in solving
Π can be confined to the parameters in K. In this sense the
“unbounded” nature of the parameters in K can be seen as a
reason for the intractability of the unconstrained version of Π.

There are many techniques for designing fp-tractable al-
gorithms [23], [24], and fp-intractability is established in a
manner analogous to classical polynomial-time intractability
by proving a parameterized problem is at least as difficult as
the hardest problems in one of the problem-classes in the W -
hierarchy {W [1], W [2], ...} (see [20] for details). Additional
results are typically implied by any given result courtesy of
the following lemmas:

Lemma 1: [25, Lemma 2.1.30] If problem Π is fp-tractable
relative to parameter-set K then Π is fp-tractable for any
parameter-set K ′ such that K ⊂ K ′.

Lemma 2: [25, Lemma 2.1.31] If problem Π is fp-
intractable relative to parameter-set K then Π is fp-intractable
for any parameter-set K ′ such that K ′ ⊂ K.

Observe that it follows from the definition of fp-tractability
that if an intractable problem Π is fp-tractable for parameter-
set K, then Π can be efficiently solved even for large inputs,
provided only that all the parameters in K are relatively small.
This strategy for rendering (otherwise intractable) problems
tractable has been successfully applied in a variety of areas
(see [20], [26] and references). In the next section we report on
our investigation of whether or not the same strategy may be
used to render the problems NA-REC and NA-DES tractable.

V. WHAT MAKES REACTIVE ADAPTATION TRACTABLE?
The problems NA-REC and NA-DES have several pa-

rameters whose restriction could conceivably render reactive
adaptation tractable. An overview of the parameters that we
considered in our fp-tractability analyses is given in Table I.
These parameters can be divided into three groups:

1) Restrictions on the (perceived) world (|E|);
2) Restrictions on subsumption architectures (|L|, f); and
3) Restrictions on architecture-modification (s, |M |, l).
The meaning and relevance of parameters |L|, s, |M |, and

l in the context of cognitive robotics is, we believe, rather
straightforward. However, a more intuitive characterization of
the parameters |E| and |f | may help in appreciating the import
and relevance of our findings later on. Intuitively, one can
think of |E| as the number of distinct features of the world
that are relevant for the agent to decide how to act. Besides
the possibility of viewing |E| as a property of the world, it can
also be viewed as a property of the system, viz. its sensory
sensitivity or discriminability. This is so because we are here
working under the assumption that sensation is error-free.3

Further, parameter f can be thought of as a characterization of
the complexity of the perceptual patterns that the architecture
distinguishes and uses to select its actions. Namely, the larger
the value of f , the longer the possible logical formulas that
can trigger action layers, and thus the larger the allowable
complexity of the patterns of perceived features in the world
that determine the selection of actions.

In the remainder of this section, we will assess the fp-
tractability of NA-REC and NA-DES relative to all parameters
in Table I (Section V-A), note how these results apply in more
general settings (Section V-B), and discuss the implications of
these results (Section V-C).

A. Results

Result 2: NA-REC is fp-intractable for {s, f, l, |M |} and
{s, f, l, |L|}.

3Admittedly this is an idealization, but its consequence is only that our
computational complexity results lower bound the complexity of adaptation
for reactive architectures with noisy sensory systems (see Section V-B).

TABLE I
PARAMETERS CONSIDERED IN ANALYSES OF NA-REC AND NA-DES.

Param. Definition Appl.
|E| Number of distinguishable square-types in world All
|L| Number of layers in derived architecture A′ All
f Maximum length of layer trigger-formula All
s Maximum number of subsumption-link changes All
l Number of layers added to A All
|M | Number of layers in provided library NA-REC

Result 3: NA-REC is fp-tractable for {|L|, |M |} and {|E|}.

Note that these results, combined with those implied by
Lemmas 1 and 2, completely characterize the parameterized
complexity of NA-REC relative to each subset of parameters
in the set {|E|, |L|, |M |, f, s, l}.

Result 4: NA-DES is fp-intractable for {s, f, l, |L|}.

Result 5: NA-DES is fp-tractable for {|E|, f}.

Note that these results, combined with those implied by
Lemmas 1 and 2, characterize the parameterized complexity
of NA-DES relative to each subset of parameters in the set
{|E|, |L|, f, s, l} except those subsets consisting of the union
of {|E|} and a subset of {|L|, s, l}.

B. Generality of Results

Our intractability results, though defined relative to admit-
tedly unrealistic types of worlds, tasks, and architectures, have
remarkable generality. Observe that the worlds, tasks, and
architectures for which these results hold are in fact restricted
versions of more realistic alternatives, e.g.,
• static deterministic worlds are special cases of dynamic

non-deterministic or probabilistic worlds (restrict motion
and you have stasis; restrict choices of motion and you
have determinism);

• fully-observable worlds are special cases of partially-
observable worlds (restrict unobservability and you have
full observability);

• the point-to-point navigation task (which is the actual task
for which we show all of our intractability results above)
is a special case of many other tasks; and

• the simplified reactive architecture defined in Section II-B
is a special case of architectures that allow more complex
types of layers or action-sets.

Intractability results for these more realistic alternatives then
follow from the well-known observation in computational
complexity theory that intractability results for a problem Π
also hold for any problem Π′ that has Π as a special case and
can hence solve Π (suppose Π is intractable; if Π′ is tractable,
then it can be used to solve Π efficiently, which contradicts
the intractability of Π – hence, Π′ must also be intractable).

Our fp-tractability results are more fragile, as innocuous
changes to worlds, tasks, or architectures may in fact violate

assumptions critical to the operation of the algorithms underly-
ing these results. For now, we can say that as our fp-tractability
results depend only on the combinatorics of reconfiguring
and designing reactive architectures and require only that a
candidate architecture can be verified to perform a particular
task in a given world in time polynomial in the size of that
world, these results apply relative to these architectures for all
choices of world and task that are polynomial-type verifiable
relative to these architectures.

C. Discussion

We have found that adapting reactive architectures, whether
by recruiting pre-existing layers or by designing layers anew,
is NP -hard (Result 1). This NP -hardness holds even for a
basic navigation task in a simple 2D static world. Moreover,
adapting reactive architectures remains NP -hard even if the
adaptation is restricted to rewiring the given subsumption
architecture, i.e., without adding any new layers to it. These
intractability results underscore the computational difficulty
of adapting reactive architecture, be it by a human designer,
a deliberative component in a hybrid robot, or by evolution,
development or learning in a (human) brain.

To our knowledge, no explicit conjectures about the sources
of computational difficulty in reactive adaptation have been
made in the literature, but on the basis of successful reactive
system design done by humans (consisting of small (≤ 10)
numbers of layers developed in an incremental add-and-test
manner ([27], [28]; see also [4, pp. 74–77])), it seems reason-
able to conjecture that restrictions on the subsumption archi-
tectures (|L|, f) and degree of allowed modification (s, l, |M |)
should render reactive adaptation tractable. However, it does
not (Results 2 and 4). What does result in tractability is
when the total number of layers that can be used to configure
a reactive architecture is small (i.e., both |L| and |M | are
small) (Result 3). Though useful to know, we can imagine
this condition may be of limited interest or applicability for
roboticists, as such reactive architectures will—by definition—
have quite restricted behavioral repertoires.

Of greater interest, perhaps, is the second class of conditions
for tractability that we have identified; viz., restrictions pertain-
ing to the sensory and perceptual abilities of the architectures.
For instance, we found that reconfiguring a reactive architec-
ture to perform a task can be done efficiently provided only
that the sensory sensitivity of the architecture (i.e., the number
of environmental features it can distinguish, |E|) is not too
large (Result 3). In the more general case, where also newly
designed layers can be added to the architecture, a simulta-
neous restriction of this sensory complexity and perceptual
complexity—in the sense of the ability of layers to encode
patterns in detected features (|E|, f)—renders adaptation of a
reactive architecture tractable (Result 5).

Of course, these tractability results are modulo the assump-
tion that for the task, world and architecture under considera-
tion there exists a reactive architecture that can be constructed
through adaptation and perform the task in the given world.
One possible reading of our finding, then, is that adapting

reactive control is feasible in environments that are structured
such that the features and patterns that are relevant for suc-
cessful behavior can be succinctly represented by a small set
of features and percepts of low complexity (cf. what [29]
called “being ignorantly successful”). Although it is plausible
that low perceptual complexity may characterize perception
for humans [30], [31], probably only simpler organisms are
characterized by low sensory sensitivity. It is expected then
that if such simple organisms—or more generally, agents—
enter an environment to which they can in principle adapt that
they can do so quickly. Quick adaptation of more sensory-
complex agents may still be possible, e.g., by exploiting
restriction on the classes of sensory information that can be
detected (cf. the sensory modalities) or by exploiting a limited
sensory radius (r), but if and how this could be done is an open
question for future research.

VI. CONCLUSIONS

We have presented two formal characterizations of the prob-
lem of adapting a reactive architecture, one for reconfiguring
such an architecture and one for designing parts of it anew.
Our complexity analyses reveal that, while these problems
are computationally intractable in general, there are conditions
that render them tractable. Knowledge of these conditions can
be exploited in both robotics and cognitive neuroscience to
understand which properties a reactive architecture needs to
have to be efficiently adaptable.

In future research, we will explore the precise extent to
which our results hold for more complex worlds, tasks, and
architectures. In particular, we will aim to identify more
conditions for tractability by exploring alternative ways of
characterizing an agent’s sensory and perceptual complexity.

ACKNOWLEDGMENTS

The authors would like to thank five anonymous reviewers
for comments that improved the presentation of this paper. TW
was supported by NSERC Discovery Grant 228104. JK was
supported by the OCTOPUS project under the responsibility
of the Embedded Systems Institute.

REFERENCES

[1] J. Togelius, “Evolution of a subsumption architecture neurocontroller,”
Journal of Intelligent and Fuzzy Systems, vol. 15, no. 1, pp. 15–20,
2004.

[2] E. Yoshida, K. Yokoi, and P. Gergondet, “Online replanning for reactive
robot motion: Practical aspects,” in Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2010, pp. 5927–
5933.

[3] S. Yue, R. Santer, Y. Yamawaki, and F. Rind, “Reactive direction control
for a mobile robot: a locust-like control of escape direction emerges
when a bilateral pair of model locust visual neurons are integrated,”
Autonomous Robotics, vol. 28, no. 2, pp. 151–167, 2010.

[4] R. C. Arkin, Behavior-Based Robotics. Cambridge, MA: The MIT
Press, 1998.

[5] H. Hexmoor and D. Kortenkamp, “Issues on building software for
hardware agents,” Knowledge Engineering Review, vol. 10, no. 3, pp.
301–304, 1995.

[6] D. Lyons and A. Hendricks, “Planning as incremental adaptation of a
reactive system,” Robotics and Autonomous Systems, vol. 14, no. 4, pp.
255–288, 1995.

[7] J. Connell, “SSS: A hybrid architecture applied to robot navigation,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, Nice, France, 1992, pp. 2719–2724.

[8] B. Selman, “Near-optimal plans, tractability, and reactivity,” in Proceed-
ings of the Fourth International Conference on Knowledge Representa-
tion and Reasoning, Bonn, Germany, 1994, pp. 521–529.

[9] P. Jonsson, P. Haslum, and C. Bäckström, “Towards efficient universal
planning: A randomized approach,” Artificial Intelligence, vol. 117, pp.
1–29, 2000.

[10] P. E. Dunne, M. Laurence, and M. Wooldridge, “Complexity results for
agent design,” Annals of Mathematics, Computing & Teleinformatics,
vol. 1, no. 1, pp. 19–36, 2003.

[11] M. Wooldridge, “The computational complexity of agent design prob-
lems,” in Proceedings of the Fourth International Conference on Multi-
Agent Systems, Boston, MA, 2000, pp. 341–348.

[12] I. A. Stewart, “The complexity of achievement and maintenance prob-
lems in agent-based systems,” Artificial Intelligence, vol. 146, pp. 175–
191, 2003.

[13] M. Wooldridge and P. E. Dunne, “The complexity of agent design
problems; determinism and history dependence,” Annals of Mathematics
and Artificial Intelligence, vol. 45, pp. 343–371, 2005.

[14] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. RA-2, no. 1, pp. 14–23,
1986.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP -Completeness. San Francisco, CA: W.H. Freeman,
1979.

[16] A. Eiben and J. Smith, Introduction to Evolutionary Computing. Berlin:
Springer-Verlag, 2007.

[17] S. Lagarde, I. Sprinkhuizen-Kuyper, G. de Croon, and W. Haselager,
“An intermediate form of behavioral control in reactive’ robots,”
in Proceedings of the 22nd Benelux Conference on Artificial
Intelligence, 2010. [Online]. Available: http://bnaic2010.uni.lu/Papers/
Category%20A/Lagarde.pdf

[18] L. Bax, Cognitive Control in Reactive Agents: Surviving Predators
through the Evolution of a Circadian Rhythm. Bachelor
thesis, Department of Artificial Intelligence, Radboud University
Nijmegen, 2009. [Online]. Available: http://www.nici.ru.nl/∼idak/
teaching/batheses/bax l bathesis.pdf

[19] Y. Fang, Evolving Minimalistic Control for Complex Be-
haviour. Bachelor thesis, Department of Artificial Intelligence,
Radboud University Nijmegen, 2009. [Online]. Available:
http://www.nici.ru.nl/∼idak/teaching/batheses/fang y bathesis10.pdf

[20] R. Downey and M. Fellows, Parameterized Complexity. Berlin:
Springer, 1999.

[21] I. van Rooij, “The Tractable Cognition Thesis,” Cognitive Science,
no. 32, pp. 939–984, 2008.

[22] L. Fortnow, “The Status of the P Versus NP Problem,” Communications
of the ACM, vol. 52, no. 9, pp. 78–86, 2009.

[23] R. Niedermeier, Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006.

[24] C. Sloper and J. A. Telle, “An overview of techniques for designing
parameterized algorithms,” Computer Journal, vol. 51, no. 1, pp. 122–
136, 2008.

[25] T. Wareham, Systematic Parameterized Complexity Analysis in Compu-
tational Phonology. Ph.D. thesis, Department of Computer Science,
University of Victoria, 1999.

[26] M. Cesati. (2006) Compendium of Parameterized Prob-
lems. [Online]. Available: http://bravo.ce.uniroma2.it/home/cesati/
research/compendium/

[27] R. A. Brooks, “A robot that walks: Emergent behavior from a carefully
evolved network,” Neural Computation, vol. 1, no. 2, pp. 253–262, 1989.

[28] ——, “Intelligence without representation,” Artificial Intelligence Re-
view, vol. 47, pp. 139–160, 1991.

[29] W. Haselager, J. van Dijk, and I. van Rooij, “A lazy brain? Embodied
embedded cognition and cognitive neuroscience,” in Handbook of Cog-
nitive Science: An Embodied Approach, P. Calvo and T. Gomila, Eds.
Elsevier, 2008, pp. 273–290.

[30] K. Koffka, Principles of Gestalt Psychology. New York: Harcourt
Brace, 1935.

[31] P. van der Helm, “Dynamics of Gestalt psychology (Invited review of
perceptual dynamics: theoretical foundations and philosophical implica-
tions of gestalt psychology by F. Sundqvist),” Philosophical Psychology,
vol. 19, no. 1, pp. 274–279, 2006.

