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Flow in a Channel With 
Longitudinal Ribs 
The laminar, viscous flow between parallel plates with evenly spaced longitudinal 
ribs is solved by an eigenfunction expansion and point-match method. The ribs on 
both plates may be symmetrically placed or staggered. For a given pressure gradient, 
the mean velocity is plotted as a function of the geometric parameters. We find the 
wetted perimeter and the friction factor—Reynolds number product are unsuitable 
parameters for the flow through ducts of complex geometry. 

Introduction 
The flow in ducts is a basic topic in fluid mechanics. Steady, 

parallel, laminar, fully developed, constant property flow has 
been solved for a variety of cross sections (Blevins, 1984; Shah 
and Bhatti, 1987). This paper studies the flow between parallel 
plates which have longitudinal ribs. Such ribs may serve as 
strengtheners or may be conduits or heating elements. 

We shall use an eigenfunction expansion and point-match 
method. The earliest use of this method for parallel flow in a 
nonregular boundary was perhaps due to Sparrow and Loef f ler 
(1959) although for certain geometries such a method may not 
be suitable (Sparrow, 1966). See Shah and London (1978) for 
a review. 

On the other hand, complex regions may be decomposed 
into contiguous simpler sub-regions. The solutions to each sub-
region can then be matched along their common boundary. 
The idea, in one dimension, is similar to using cubic splines 
to determine the shape of a constrained elastic rod. The earliest 
use of patching solutions of two dimensional regions seems to 
be due to Weil (1951) who studied the Stokes flow into a gap. 
Other applications include the works of Zarling (1976), Chen 
(1980), Trogdon and Joseph (1982). The matching processes 
used, however, were somewhat complicated. 

The combination of using eigenfunction expansions for sep
arate sub-regions and using simple point-match along the 
boundary is well suited for the present problem. As we shall 
see later, the algorithm is simple and highly efficient. 

Formulation 
Figure \{a, b) shows the cross sections of channels with ribs 

on both plates. The ribs are evenly spaced either symmetrically 
or staggered. We normalize all lengths by the half period H. 
Due to symmetry only the L shaped regions in Fig. l(c, d) 
need to be considered. 

axial pressure gradient and /z is the viscosity. The governing 
equation for velocity w is the Poisson equation 

V w= - 1 (1) 
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The L shaped regions are further sub-divided into two rectan
gular pieces I and II. For the symmetric case (Fig. 1(c)) the 
boundary conditions are 

"2 wi\x,")=0, y - ' ( x , 0) = 0, J^(°>y)=0 (2) 

« , a 

w/(c, y)=0, - - b<y<~ (3) 

w„l*^-6J=o, ~f(*,o) = o, d-^d,y) = o (4) 
Also both wj and wH and their derivatives match on their 
common boundary at x = c. For the staggered case (Fig. 1 {d)) 
the boundary conditions are 

w,(x,a)=0, w,(x,0) = 0, w,(0,y) = w,(0,a-y) (5) 

wi[c--,y)=0, a-b<y<a (6) 

w„(x,a-b)=0, w„(x, 0) = 0, ^\\>y)=0 (7) 

In addition, velocities and its derivatives should match at 
x=c-\/2. 

Symmetric Case 
We construct the following solutions which satisfy Eqs. (1), 

(2), (4) 

^=\(^-y2) + I > „ c o s ( a , 1 y ) ( e a " ( * - c > + e-«»(Jf+c> (8) 

Let the velocity be normalized by H G/fx where G is the wn — ~. 

Y^BmCOs(l3„y)(e Pm(x-2 + c) + e "'" (x-c)\ 

Here A„, Bm are constant coefficients and 

•K {2m-\)ir 

a„ = (2n-l)-, A ^ - ^ f 

(9) 

(10) 

The other boundary conditions are Eq. (3) and 
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Fig. 2 Velocity along a mixed boundary (Fig. 3, at x = 0.5). left: W = 20, 
right: W = 40. 

w,(c,y) = wn{c,y), 0<y<--b 

dwj dwn a 
-T1(c,y)=—M(c,y), Q<y<--b 
ox ox 2 

We choose N points along the boundary at x = c 

yi=(i-\)a/{2N), i=\ N 

and truncate A„ to TV terms and Bm to M terms where 

M=lnt[N(l-lb/a)] + l 

Equations (3), (11), (12) become 

(11) 

(12) 

(13) 

(14) 

5>- .cos(« B y 1 - ) ( l+e- 2 "» c ) 

a 
2 V " 4 

M 

yf—r), i = M+ltoN (15) 

2^Bcos(a„y,)(l +e-2a«I) - 2 f i ' " c 0 s t f W > 
I 

x ( l + e - 2 / 3 ' " ( ' - c ) ) = - ( 6 2 - ^ ) / = l t o M (16) 

YiA„a„cos(aji)(l -e~2a"c) 
i 

M 

+ 2 5m/3„, cos (/3„^ ,•) (1 - e -2ft„(l-c) ) = 0 , ;=1 t o M (17) 

The linear system of M+N equations and M+N unknowns 
are solved for A„ and B,„. The accuracy of the solution depends 
on the number of points N. Figure 2 shows the velocity dis
tribution along the boundary &tx=c (a= 1, b = 0.25, c = 0.5). 
The error in w is less than 2 percent (as compared to the exact 
no-slip condition for 0 .5<^<1) for N=10 and decreases to 
1 percent for iV=40. Convergence is fairly fast. The corre-

Fig. 1 (a, b) symmetric and staggered fins, (c, d) the corresponding sponding constant velocity lines are shown in Fig. 3. 
computational regions. The mean velocity is integrated analytically: 

a 

A„ 
b 

B,„ 
c 

c„ 
D„ 

/•Re 

= normalized distance between 
plates 

= constant coefficients 
= normalized height of ribs 
= constant coefficients 
= 1 - normalized width of ribs 
= constant coefficients 
= hydraulic diameter 
= friction factor—Reynolds 

number product 

G = 
H = 

; = 
m = 
M = 
n = 
N = 
u = 
v = 

axial pressure gradient 
half period of ribs 
integer index 
integer index 
integer 
integer index 
integer 
normalized mean velocity 
normalized mean velocity 

v' = dimensional mean velocity 
w = normalized velocity 
x = Cartesian axis 
y = Cartesian axis 
z = y - a/1 

a„ = eigenvalue Eq. (10) 
Pm = eigenvalue Eq. (10) or Eq. (23) 
y„ = eigenvalue Eq. (23) 
li = viscosity 
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Fig. 3 Constant velocity lines fora=1, b = 0.25, c = 0.5 
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1 
^ / (^/ - a), / = M + 1 to 27V (26) 

/v 

2]/I „ cos «« y,- [l+e~"»<2c_1)] 

• 2 C" sir in yt 
[ l_ e -Tn(2c-D] 

-2B»'sin('3"i'''-)(1+e" 20.„<l-c) ) = - y J ' / , /'= 1 toAf 

(27) 

v = 
-b(l-c) 

c /ifl/2 p 1 r,a/2-b 

I wrdydx + \ I wIrdydx 
0^0 ^c ^0 

2 - W - c ) 
24 

[c«3 + ( l -c)(«-27>)3 ] 

LiSs(->r'(i-.--
5„ 

V (i8")' 
: (- l ) f f l + , [ l - e -20.,,(l-c)- (18) 

Staggered Case 

The staggered case is slightly more complicated. We note 
that the solution to Region I, Fig. 1(d), has polar symmetry 
such that 

w,(x, Z) = w,(-x, -z) (19) 

where 

z=y- (20) 

Guided by the boundary conditions, the following solutions 
are constructed 

+ J]C„sm(y„z)[e^x-c+U2)-e-y'>{x+c-U2)] (21) 

!>„«„ cos ot„\y, ' 2 

E c"^"si 
sin 

[l_e-«H<2c-0] 

[ l + e -7„ (2c- l ) ] 
yniyi 

+ £)B„A„s in( /3 ,^ , ) ( l -e -^ '» ( 1 - c ) )=0 , / = l t o M (28) 
I 

There are 2N+Mequations and 2N+Munknowns. The mean 
velocity is then 

c-|j«3 + (l-c)(«-6)3 1 

j-«i-c) 
(1 
[12 

N j( - iV'+'/d 
+ E .2 " [ l -e - " " ' 2 ^" ] 

I a» 

M 

+ £ J U 1 i in[l-e-2g»-('-c)]} (29) 

Results and Discussion 

The conventional parameter to quantify flow rate is the 
friction factor—Reynolds number product 

GD\ 2[a-2b(\-c)]2 

/ R e = 
2/xy' (\+b)2v 

(30) 

-0_,(jr-c+l/2)i + 2^s in( f t , l y)[e ' 3 ' «^ + c - 3 / 2 » + e 

Here A„, C„, Bm are to be determined and 

, S 7 T 7T W77T 
a« = ( 2 n - l ) - , 7„ = 2 « - , /3,„ = -

cr a ff-o 

Similarly, 27V points are chosen along x = c 

yi=ia/(2N+\) 

M=\rA[2N(\~b/a)} 

The algebraic equations to be solved are obtained from the 
conditions along the common boundary: 

(22) 

(23) 

(24) 

(25) 

Here Dh is the hydraulic diameter equal to 4 (area)/(wetted 
perimeter). Since the presence of ribs greatly affects both flow 
rate and wetted perimeter, we find / R e , as defined, is an 
unsuitable parameter since the results would be unwieldy. This 
fact was also noted by Sparrow and Chukaev (1980) who used 
finite differences to solve the flow between a ribbed plate and 
a flat plate. In our results we shall quantify flow rate by the 
mean velocity normalized by the distance between the plates 

M=ia/7FG7T? (31) 

Figure 4 shows the mean velocity u for the symmetric case. 
When the ribs are absent (6 = 0), « = 0.08333, from Eq. (30) 
/ R e = 24 for the flow between parallel flat plates. When b/ 
a = 0.5, opposite ribs touch and our results agree with published 
results of the flow through rectangular conduits. The mean 
velocity increases slightly when b is close to 0.5o is due to the 
elimination of the almost stagnant cross-sectional region be
tween opposite ribs. The total flow still decreases with increased 
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Fig. 4(c) 

Fig. 4 Mean velocity for the symmetric case (a) a = 0.5, (b) a = 1, 
(c)a = 2. 
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b. Of interest is the c= 1 case where the ribs become thin fins. 
The c = 0 (all fin) case is equivalent to a narrower channel 
without fins. 

Figure 5 shows the results for the staggered case where the 
ribs can reach the opposite plate (b = a) and thus c is limited 
to the range of 0.5 to 1. For the same values of a, b, c the 
staggered case yields lower flow than the symmetric case. The 
dependence of flow with phase shift (which changes neither 
cross sectional area nor wetted perimeter) was also noted by 
Wang (1976) for two plates with small wavy corrugations. 

Conclusions 
Our method used here is quite advantageous in comparison 

to direct numerical integration. The number of computations 
is less than the square root of that of finite differences. Also 
the double integral for flow can be evaluated analytically, 
eliminating another source of error. The method is simple 
enough such that other results, for values of the parameters 
not presented here, can be easily computed. 

We find the cross-sectional area and the wetted perimeter 
alone could not have defined the flow rate. The use of/Re as 
the dependent variable is also unsuitable (compare Fig. 3.42 
of Shah and Bhatti, 1987). We advocate using the normalized 
mean velocity to quantify the flow through a duct with complex 
geometry. 
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