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Sound radiation from a beam resting on a viscoelastic foundation is analytically studied when it is subjected to a moving load.
The topic could cover a range of applications such as submerged floating tunnels, buried pipelines, and railway tracks. Galerkin’s
method is employed to obtain the transverse vibration of the beam. Based on the Rayleigh integral approach, acoustic pressure
distribution around the beam is obtained in the time domain. In the second part of this paper, corresponding displacement and
acoustic pressure are obtained by the use of the Rayleigh-Ritz approach in conjunction with the Laplace transform method and by
the use of the Fourier transform, respectively. Durbin’s numerical Laplace transform inversion scheme is eventually employed to
obtain dynamic responses. A parametric study is then carried out and influences of the design parameters as well as the loading
conditions on the acoustic pressure field are investigated.

1. Introduction

The investigation of the dynamic response of beams resting
on viscoelastic foundation is a very interesting problem, with
applications in various fields of engineering and technology.
In particular, acoustic radiation can be found in a different
array of practical applications such as submerged floating
tunnels, railway tracks, and civil structures. Numerical,
analytical, and experimental studies have been performed
in the past decades to study the dynamic analysis of soil-
structure interaction problem. Beam on elastic foundation
has been studied by several authors [1–4]. Kenney [5] studied
the steady-state deformation when the point load is moving
with constant speed. Kargarnovin et al. [6–8] and Muscol-
ino and Palmeri [9] investigated the response of beam on
viscoelastic foundation under moving loads. Andersen et
al. [10], Weitsman [11], Choros and Adams [12], and Lin
and Adams [13] investigated the response of Euler-Bernoulli
beams on tensionless Winkler foundations. The response
of embedded railway track using the Winkler foundation
model was studied by Shamalta and Metrikine [14]. Steele
[15] and Chen and Huang [16, 17] investigated the response

of Timoshenko beam on Winkler foundation for a variety
of beam, foundation, and loading conditions. Yang and Ge
[18] and Senalp et al. [19] investigated the dynamic behavior
of Euler-Bernoulli beam resting on viscoelastic foundation
subjected to moving load by using the mode decompo-
sition method together with the precise time integration
method (MDPIM). Vlasov and Leont’ev [20] showed that the
mechanical behavior of an elastic continuum can be quite
accurately simulated using springs with shear interactions
between them. The tensile resistance is generated in the
ground due to shear strain of the soil. Basu and Kameswara
Rao [21] studied the steady-state response of an infinite
beam resting on a viscoelastic foundation, modeled using
springs with shear interactions and subjected to a concen-
trated moving load with a constant velocity. In this paper,
Galerkin’s method is proposed to investigate the dynamic
response of Euler-Bernoulli beam resting on viscoelastic
foundation and shear stiffness of soil is considered. Acoustic
radiation is examined by using appropriate 2D images of the
sound field for selected foundation parameters. This paper
is an invited article selected from the ISAV2012 conference
proceedings.
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Figure 1: Beam on foundation under moving load.

2. Formulation

2.1. AnalyticalMethod. Consider a simply supported uniform
beam of length 𝐿, mass per unit length 𝜌𝐴, and bending
rigidity 𝐸𝐼, resting on viscoelastic foundation, indicated by a
bending layer coefficient 𝑘𝑏, a shear layer coefficient 𝑘𝑠, and a
viscous coefficient 𝑐 subjected to amoving load with constant
speed V along the beam as shown in Figure 1. The equation of
motion for the transverse vibration of the beam is given by
[21]

𝐸𝐼
𝜕
4
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(1)

where𝑤 is transverse deflection of the beam and 𝐹0 is applied
moving concentrated load. The displacement of the beam is
expanded using the eigenfunction of the uniform beam as
[22]
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(2)

where 𝜔𝑛 is the natural frequency of the 𝑛th mode and𝑊𝑛(𝑥)
is the eigenfunction. The orthogonality condition is

∫

𝐿

0

𝜌𝐴𝑊𝑖 (𝑥)𝑊𝑗 (𝑥) 𝑑𝑥 = 𝛿𝑖𝑗, (3)

where 𝛿𝑖𝑗 is Kronecker’s delta. The transverse displacement
can be expanded as follows:

𝑤 (𝑥, 𝑡) =

∞

∑

𝑛=1

𝑞𝑛 (𝑡)𝑊𝑛 (𝑥) , (4)

where 𝑞𝑛(𝑡) is the modal coordinate that must be determined
by solving an ordinary differential equation. By direct substi-
tution of expansion (4) into (1) andmaking use of the general

orthogonality relation (3) between the distinct normalmodes
and the fact that the normal modes, 𝑊𝑛(𝑥), must satisfy
the classical relation 𝐸𝐼(𝑑4𝑊𝑛(𝑥)/𝑑𝑥
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where 𝑄𝑛(𝑡) = − ∫
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solution of (5)with the zero initial condition can be expressed
as
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(6)

2.2. Rayleigh-Ritz Method. The Rayleigh-Ritz method is
based on an energy or variational principle, such as those
provided by the principles of virtual work or their variants,
which account for the natural boundary conditions as a part
of the principle. The total strain and kinetic energy and the
work done by the nonconservative forces are given by [22]
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Substituting for 𝑈, 𝑇, and 𝑉 from (7) in Hamilton’s
principle, we obtain

0 = 𝛿∫

𝑡

0

(𝑈 − 𝑇 − 𝑉) 𝑑𝑡

= ∫
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(8)

In the Ritz method, a dependent unknown (e.g., the
displacement) 𝑤(𝑥, 𝑡) is approximated by a finite linear
combination as the form [23]
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𝑐𝑛 (𝑡) 𝜑𝑛 (𝑥) + 𝜑0, (9)

where 𝑐𝑛(𝑡) are time-dependent parameters to be determined
for all times 𝑡 > 0 and 𝜑𝑛(𝑥) are called the approximation
functions. Since the specified geometric boundary condition
is homogeneous, we have 𝜑0 = 0. The approximation
functions 𝜑𝑛(𝑥) must satisfy the simple support’s condition.
Direct substituting of (9) into (8) and equating coefficients of
𝛿𝑐𝑚 to zero may advantageously be put in matrix form as
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where
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(11)

By taking Laplace transform of (10), one obtains

𝑅 (𝑠) 𝐶 (𝑠) = 𝑄 (𝑠) , (12)

where 𝐶(𝑠) is the unknown coefficients vector and𝑄(𝑠) is the
load vector which are given as

𝐶 (𝑠) = [𝑐1(𝑠), 𝑐2(𝑠), . . . , 𝑐𝑁(𝑠)]
𝑇
,
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𝑇
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(13)

And the coefficient matrix 𝑅(𝑠) is rewritten as

𝑅 (𝑠)

=
[
[

[

𝑠
2
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...
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]
]

]

.

(14)

The unknown coefficient can readily be determined from

𝐶 (𝑠) = 𝑅
−1
(𝑠) 𝑄 (𝑠) . (15)

In the current work, Durbin’s approach [24] for numerical
inversion of the Laplace transforms which involves the
discretized form of the complex Laplace inversion formula
Λ(𝑡) = (1/2𝜋𝑗) ∫

𝜎+𝑗∞

𝜎−𝑗∞
Λ(𝑠)𝑒
𝑠𝑡
𝑑𝑠, where 𝑗 = √−1 and 𝜎 is

an arbitrary real number greater than all the real parts of the
singularities of Λ(𝑠) and Λ(𝑠) can be 𝑤(𝑥, 𝑠) or 𝑝(𝑥, 𝑧, 𝑠) in
the interval [0, 2𝑇0], shall be adopted. Accordingly, one could
readily employ expansion [25]

Λ (𝑡) =
2 exp (𝜎𝑡)
𝑇0

× {
1

2
Re (Λ (𝜎))

+

𝑀

∑

𝑙=1

[Re(Λ(𝜎 + 𝑗2𝜋𝑙
𝑇0

)) cos(2𝜋𝑙
𝑇0

𝑡)

− Im(Λ(𝜎 + 𝑗2𝜋𝑙
𝑇0

)) sin(2𝜋𝑙
𝑇0

𝑡)]} ,

(16)

where𝑀 is the truncation constant and the suggested value
of “𝜎𝑇0” is between 5 and 10 for sufficient accuracy [24].

2.3. Acoustic Radiation. The acoustic pressure radiated from
a vibration beam in an infinite baffle can be obtained by
evaluating the Rayleigh surface integral where each elemental
area on the beam surface is regarded as a simple point source
of an outgoing wave and its contribution is added with an
appropriate time delay. Referring to Figure 1, the acoustic
pressure𝑃(𝑥0, 𝑧0, 𝑡) at the observation point 𝑝with Cartesian
coordinates (𝑥0, 𝑧0) at time 𝑡 caused by the vibration of the
beam is given by [26]

𝑃 (𝑥0, 𝑧0, 𝑡) =
𝜌0

2𝜋
∫

𝑏

0

∫

𝐿

0

..

𝑤 (𝑥, 𝑡 −
𝑟

𝑐0

)
1

𝑟
𝑑𝑥 𝑑𝑦, (17)

where 𝜌0 and 𝑐0 are the mass density and wave velocity of
the acoustic medium, respectively,

..

𝑤 (𝑥, 𝑡) is the acceleration
time history of the beam obtained previously, and 𝑟 =

√(𝑥 − 𝑥0)
2
+ 𝑧
2

0
is the distance between the observation point

𝑝 and the point at (𝑥, 0) on the beam surface.
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Table 1: Properties of the UIC60 rail, foundation, load, and acoustic
medium [8].

Item Notation Value
Young’s modulus (steel) E 210GPa
Mass density of beam 𝜌 7850 kg/m3

Cross-sectional area A 7.69 × 10−3 m2

Second moment of area I 30.55 × 10−6 m4

Bending stiffness 𝑘𝑏 202MN/m2

Viscous damping c 141 kN s/m2

Load 𝐹0 65 kN
Mass density of acoustic medium (air) 𝜌

0
1.2 kg/m3

Wave velocity 𝑐0 343m/s

In addition, the pressure distribution in the acoustic
fluid domain can be obtained from the solution of the wave
equation as follows:

(
𝜕
2

𝜕𝑥2
+
𝜕
2

𝜕𝑧2
)𝑝 (𝑥, 𝑧, 𝑡) =

1

𝑐
2

0

𝜕
2
𝑝

𝜕𝑡2
. (18)

In frequency domain, (18) reduces to ((𝜕2/𝜕𝑥2) + (𝜕2/𝜕𝑧2) +
(𝜔
2
/𝑐
2

0
))𝑝(𝑥, 𝑧, 𝜔) = 0, and referring to Figure 1, the Rayleigh

integral in the frequency domain [27] is 𝑃(𝑥0, 𝑧0, 𝜔) =

(𝜌0/2𝜋) ∫
𝑏

0
∫
𝐿

0

..

𝑤 (𝑥, 𝜔)(exp(𝑖𝑘𝑟)/𝑟)𝑑𝑥 𝑑𝑦, where 𝑘 = 𝜔/𝑐0

and
..

𝑤 (𝑥, 𝜔) is the acceleration of the beam in the frequency
domain. Taking Laplace transform of (18) leads to ((𝜕2/𝜕𝑥2)+
(𝜕
2
/𝜕𝑧
2
) + (−𝑠

2
/𝑐
2

0
))𝑝(𝑥, 𝑧, 𝑠) = 0, and then, the Rayleigh

integral in the Laplace domain is

𝑃 (𝑥0, 𝑧0, 𝑠) =
𝑠
2
𝜌0

2𝜋
∫

𝑏

0

∫

𝐿

0

𝑤 (𝑥, 𝑠)

exp (𝑖𝑘𝑟)
𝑟

𝑑𝑥 𝑑𝑦, (19)

where 𝑘 = 𝑗𝑠/𝑐0 and 𝑤(𝑥, 𝑠) = ∑
∞

𝑛=0
𝑞𝑛(𝑠)𝑊𝑛(𝑥) is the

displacement of the beam in the Laplace domainwhere𝑊𝑛(𝑥)
is given by (2) and 𝑞𝑛(𝑠) is obtained from (5). Finally, the
acoustic pressure can be calculated by (16). In the following
section, the comparison between these two methods is
considered.

3. Numerical Results

A parametric study is directed in this section to investigate
the effects of different parameters on the acoustic pressure
field radiated from the vibrating beam series of numerical
simulations that have been carried out and some of the
numerical results are presented as a few samples in this
section. The physical and geometrical properties of the beam
and acoustic medium are listed in Table 1 [8].

Figure 2 exhibits the midspan displacement of the beam
with respect to the time. Because of the foundation under
the beam, the vibration around the maximum deflection is
zero. The maximum deflection will occur at the location of
the load. Furthermore, excellent agreement of the present
result and [19] for load velocity V = 50m/s is obtained.
Figure 3 displays the comparison between the results of
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Figure 3: Comparison of analytical and Rayleigh-Ritz methods.

the analytical and Rayleigh-Ritz methods for selected load
velocity V = 55m/s and for a beam extended 15m in
longitudinal direction. The results show a good agreement
between these two methods. Taking shear layer coefficient
into consideration, the maximum deflection of the beam will
decrease when the shear layer coefficient is increased due to
increment of natural frequencies of the beam.

Figure 4 shows the acoustic pressure response at two
selected points and for 𝑘𝑠 = 0, 𝑘𝑠 = 0.8𝑘𝑏 when the load
passes through the beam. The acoustic pressure decreases as
the viscoelastic and bending stiffness and height of selected
points increase. Also for 𝑘𝑠 = 0.8𝑘𝑏, an interesting reduction
of the first radiated pressure wave from the vibrating beam is
seen at 𝑡0 = 𝑧0/𝑐0 = (0.014 & 0.058) sec.

Figure 5 displays the acoustic pressure response and
comparison between two methods for 𝑡 ≥ 𝑟/𝑐0. The results
show good agreement between two equations. Equation (17)
exhibits instabilities for time interval of 0 ≤ 𝑡 < 𝑟/𝑐0;
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Figure 6: Acoustic pressure field (Pa) along the beam (15m) at different positions of moving load.

therefore, it must be calculated by numerical techniques
such as standard trapezoidal rule [26]. On the other hand,
robustness of (19) was seen in both of the mentioned time
spans.

Figure 6 shows the series of time snapshots of acoustic
pressure distribution while the moving load is passing on the
beam for shear layer coefficient 𝑘𝑠 = 0.8 𝑘𝑏, length of the
beam 𝐿 = 15, bending layer coefficient 𝑘𝑏 = 202MN/m2,
viscous coefficient 𝑐 = 141 kN⋅sec/m2, and typical vehicle
load (65 kN). The acoustic pressure fields around the beam
show that maximum distribution pressure appears around
the location of themoving load which is a result of maximum
deflection of the beam.

4. Conclusion

In this paper, transient response of simply supported, Euler-
Bernoulli beam resting on viscoelastic foundation subjected
to a moving load is studied. Based on the Rayleigh integral
and dynamic response of the beam, the acoustic pressure
distribution around the beam was obtained for the first
time. The time responses of the beam with and without
shear stiffness effects of the soil are presented for various
foundations of moving load. The effects of 𝑘𝑠 = 0 and

𝑘𝑠 = 0.8 𝑘𝑏 can be easily observed from Figure 4. The most
important observations are summarized as follows:

(i) the beam structural vibration is observed to radiate
sound into acoustic medium. In particular, increasing
the magnitude of foundation is seen to decrease the
acoustic pressure;

(ii) increasing the height of selected points decreases the
acoustic pressure radiation, while the time response
keeps the same trend;

(iii) the delay of the first acoustic pressure wave radiated
from the beam is easily seen;

(iv) the contours of acoustic pressure fields around the
beam show that maximum distribution pressure
appears around the location of themoving loadwhich
is a result of maximum deflection of the beam.
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