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Abstract

This paper considers the quantization problem on the Grassmann manifold with dimension n and p. The unique
contribution is the derivation of a closed-form formula for the volume of a metric ball in the Grassmann manifold
when the radius is sufficiently small. This volume formula holds for Grassmann manifolds with arbitrary dimension
n and p, while previous results are only valid for either p = 1 or a fixed p with asymptotically large n. Based on
the volume formula, the Gilbert-Varshamov and Hamming bounds for sphere packings are obtained. Assuming a
uniformly distributed source and a distortion metric based on the squared chordal distance, tight lower and upper
bounds are established for the distortion rate tradeoff. Simulation results match the derived results. As an application
of the derived quantization bounds, the information rate of a Multiple-Input Multiple-Output (MIMO) system with
finite-rate channel-state feedback is accurately quantified for arbitrary finite number of antennas, while previous
results are only valid for either Multiple-Input Single-Output (MISO) systems or those with asymptotically large
number of transmit antennas but fixed number of receive antennas.

Index Terms

the Grassmann manifold, distortion rate tradeoff, MIMO communications

I. INTRODUCTION

The Grassmann manifold Gn,p (L) is the set of all p-dimensional planes (through the origin) of the n-
dimensional Euclidean space Ln, where L is either R or C. It forms a compact Riemann manifold of real
dimension βp (n− p), where β = 1/2 when L = R/C respectively. The Grassmann manifold provides
a useful analysis tool for multi-antenna communications (also known as multiple-input multiple-output
(MIMO) communication systems). For non-coherent MIMO systems, sphere packings on the Gn,p (L)
can be viewed as a generalization of spherical codes [1]–[3]. For MIMO systems with partial channel
state information at the transmitter (CSIT), which is obtained by finite-rate channel-state feedback, the
quantization of beamforming matrices is related to the quantization on the Grassmann manifold [4]–[6].

The basic quantization problems addressed in this paper are the sphere packing bounds and distortion
rate tradeoff. Roughly speaking, a quantization is a representation of a source in the Gn,p (L). In particular,
it maps an element in the Gn,p (L) into a subset of the Gn,p (L), known as the code C. Define the minimum
distance of a code δ , δ (C) as the minimum distance between any two codewords in a code C. The
sphere packing bound relates the size of a code and a given minimum distance δ. The rate distortion
tradeoff is another important property of quantizations. A distortion metric is a mapping from the set of
element pairs in the Gn,p (L) into the set of non-negative real numbers. Given a source distribution and a
distortion metric, the rate distortion tradeoff is described by the minimum expected distortion achievable
for a given code size or the minimum code size required to achieve a particular expected distortion.

There are several papers addressing the quantization problem in the Grassmann manifold. In [7], an
isometric embedding of the Gn,p (R) into a sphere in Euclidean space R 1

2
(m−1)(m+2) is given. Then using

the Rankin bound in Euclidean space, the Rankin bound on the Gn,p (R) is obtained. However, this bound
is not tight when the code size is large. Instead of resorting to some isometric embedding, sphere packing
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bounds can also be derived from analysis in the Grassmann manifold directly. Let B (δ) denote a metric
ball of radius δ in the Gn,p (L). The sphere packing bounds can be derived from the volume of a B (δ)
[3]. The exact volume formula for a B (δ) in the Gn,p (C) where p = 1 is derived in [4]. An asymptotic
volume formula for a B (δ) in the Gn,p (L), where p ≥ 1 is fixed and n approaches infinity, is derived in
[3]. Based on those volume formulas, the corresponding sphere packing bounds are developed in [3], [5].
Besides the sphere packing bounds, the rate distortion tradeoff is also treated in [8], where approximations
to the distortion rate function are derived by the sphere packing bounds on the Gn,p (L). However, the
derived approximations are based on the volume formulas in [3], [4] which are only valid for some special
choices of n and p: either p = 1 or fixed p ≥ 1 with asymptotic large n.

This paper derives quantization bounds for the Grassmann manifold with arbitrary n and p when the
code size is large. An explicit volume formula for a metric ball in the Gn,p (L) is derived when the radius
is sufficiently small. It holds for Grassmann manifolds with arbitrary dimensions while previous results
are only valid for either p = 1 or a fixed p with asymptotically large n. Based on the derived volume
formula, the Gilbert-Varshamov and Hamming bounds for sphere packings are obtained. For the rate
distortion tradeoff, this paper starts from a new method employing optimization argument and extreme
order statistics. Tight lower and upper bounds are established. Simulation results match the derived bounds.
As an application of the derived quantization bounds, the information rate of a MIMO system with finite-
rate channel-state feedback and power on/off strategy is accurately quantified for the first time. Since
the corresponding Grassmann manifold for most practical MIMO systems has p > 1 and small n, the
quantization bounds derived in this paper are necessary.

The paper is organized as the follows. Section II provides some preliminaries on the Grassmann
manifold. Section III derives the explicit volume formula for a metric ball in the Grassmann manifold. The
corresponding sphere packing bounds and rate distortion tradeoff is accurately approximated in Section
IV. An application of the quantization bounds to MIMO systems with finite-rate channel-state feedback
is detailed in Section V. Section VI contains the conclusions.

II. PRELIMINARIES

This section presents a brief introduction to the Grassmann manifold. A metric and a measure on the
Grassmann manifold are defined, and the problems relevant to quantization on the Grassmann manifold
are formulated.

For the sake of applications [4]–[6], the projection Frobenius metric (chordal distance) is employed
throughout the paper although the corresponding analysis is also applicable to the geodesic metric [3].
For any two planes P, Q ∈ Gn,p (L), we define the principle angles and the chordal distance between P

and Q as follows. Let u1 ∈ P and v1 ∈ Q be the unit vectors such that
∣∣∣u†1v1

∣∣∣ is maximal. Inductively,

let ui ∈ P and vi ∈ Q be the unit vectors such that u†iuj = 0 and v†ivj = 0 for all 1 ≤ j < i and
∣∣∣u†ivi

∣∣∣
is maximal. The principle angles are defined as θi = arccos

∣∣∣u†ivi

∣∣∣ for i = 1, · · · , n [7], [9]. The chordal
distance between P and Q is given by

dc (P, Q) ,

√√√√ p∑
i=1

sin2 θi.

The invariant measure on the Gn,p (L) is defined as follows. Let O (n) /U (n) be the groups of n× n
orthogonal/unitary matrices respectively. Let A ∈ O (n) /U (n) and B ∈ O (p) /U (n) when L = R/C
respectively. An invariant measure µ on the Gn,p (L) satisfies, for any measurable set M ⊂ Gn,p (L) and
arbitrarily chosen A and B,

µ (AM) = µ (M) = µ (MB) .

The invariant measure defines the uniform distribution on the Gn,p (L) [9].
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With a metric and a measure defined on the Gn,p (L), there are several bounds well known for sphere
packings. Let a code C be a discrete subset of the Gn,p (L), δ be the minimum distance between any two
codewords of a code C and B (δ) be the metric ball of radius δ in the Gn,p (L). If K is any positive
integer such that Kµ (B (δ)) < 1, then there exists a code C of size K + 1 with minimum distance δ.
This principle is called as the Gilbert-Varshamov lower bound [3], i.e.,

|C| > 1

µ (B (δ))
. (1)

On the other hand, |C|µ (B (δ/2)) ≤ 1 for any code C. The Hamming upper bound captures this fact as
[3]

|C| ≤ 1

µ (B (δ/2))
. (2)

These two bounds relate the size of a code and a given minimum distance δ.
Distortion rate tradeoff gives another important property of quantization. A quantization is a mapping

from the Gn,p (L) to a code C, i.e.
q : Gn,p (L) → C.

A distortion metric is a mapping
d : Gn,p (L)× C → [0, +∞)

from the set of the element pairs in the Gn,p (L) and C into the set of non-negative real numbers. Assume
that a source Q is randomly distributed in the Gn,p (L). The distortion associated with a quantization q is
defined as

D , E [d (Q, q (Q))] .

The rate distortion tradeoff can be described by the infimum achievable distortion given a code size, which
is called distortion rate function, or the infimum code size required to achieve a particular distortion, which
is called rate distortion function. In this paper, the source Q is assumed to be uniformly distributed in the
Gn,p (L). Define the distortion metric as the square of the chordal distance. For a given code C ⊂ Gn,p (L),
the optimal quantization to minimize the distortion is given by1

q (Q) = arg min
P∈C

dc (P, Q) .

The distortion associated with this quantization is

D (C) = E

[
min
P∈C

d2
c (P, Q)

]
.

For a given code size K where K is a positive integer, the distortion rate function is then given by2

D∗ (K) = inf
C:|C|=K

D (C) .

The rate distortion function is given by

K∗ (D) = inf
D(C)≤D

|C| .

1The ties, i.e. the case that ∃P1, P2 ∈ C such that dc (P1, Q) = min
P∈C

dc (P, Q) = dc (P2, Q), are broken arbitrarily because the probability
of ties is zero.

2The standard definition of the distortion rate function is a function of the code rate defined by log2 K. The definition in this paper is
equivalent to the standard one.
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III. METRIC BALLS IN THE GRASSMANN MANIFOLD

In this section, an explicit volume formula for a metric ball B (δ) in the Gn,p (L) is derived. The volume
formula is essential for the quantization bounds in Section IV.

The volume calculation depends on the relationship between the measure and the metric defined on the
Grassmann manifold. For the invariant measure µ and the chordal distance dc, the volume of a metric
ball B (δ) can be calculated by

µ (B (δ)) =

∫
· · ·
∫

√Pp
i=1 sin2 θi≤δ

π
2≥θ1≥···≥θp≥0

dµθ, (3)

where θ1, · · · , θp are the principle angles and the differential form dµθ is given in [9]–[11] and Appendix
A below.

The following theorem expresses the volume formula as an exponentiation of the radius δ.
Theorem 1: Let B (δ) be a ball of radius δ in the Gn,p (L). When δ ≤ 1,

µ (B (δ)) =

{
cn,p,βδβp(n−p) (1 + o (δ)) if L = R
cn,p,βδβp(n−p) if L = C , (4)

where β = 1/2 when L = R/C respectively and cn,p,β is a constant depending on n, p and β. When
L = C, cn,p,2 can be explicitly calculated

cn,p,2 =

{
1

(np−p2)!

∏p
i=1

(n−i)!
(p−i)!

if 0 < p ≤ n
2

1
(np−p2)!

∏n−p
i=1

(n−i)!
(n−p−i)!

if n
2
≤ p ≤ n

. (5)

When L = R, cn,p,1 is given by

cn,p,1 =



Vn,p,1

2p

∫
· · ·
∫

Pp
i=1 xi≤1

x1≥···≥xp≥0

[∣∣∣∏p
i<j (xi − xj)

∣∣∣
∏p

i=1

(
x

1
2
(n−2p+1)−1

i dxi

)]
if 0 < p ≤ n

2

Vn,n−p,1

2n−p

∫
· · ·
∫

Pn−p
i=1 xi≤1

x1≥···≥xn−p≥0

[∣∣∣∏p
i<j (xi − xj)

∣∣∣
∏n−p

i=1

(
x

1
2
(2p−n+1)−1

i dxi

)]
if n

2
≤ p ≤ n

, (6)

where

Vn,p,1 =

p∏
i=1

A2 (p− i + 1) A (n− p− i + 1)

2A (n− i + 1)

and

A (p) =
2πp/2

Γ
(

p
2

) .
Proof: See Appendix A.

Theorem 1 provides an explicit volume approximation for real Grassmann manifolds and an exact
volume formula for complex Grassmann manifolds when δ ≤ 1. Although (4) is derived for δ ≤ 1,
simulations show that this approximation remains good for relatively large δ (Fig. 1).

Theorem 1 is of course consistent with the previous results of [4] and [3], which pertain to special
choices of n and p and are stated as follows.

Example 1: Consider the volume formula for a B (δ) in the Gn,p (C) where p = 1. Without normal-
ization, the total volume of Gn,1 (C) is 2πn/ (n− 1)! and the volume of the B (δ) is 2πnδ2(n−1)/ (n− 1)!
[4]. Therefore,

µ (B (δ)) = δ2(n−1),
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agreeing with Theorem 1 where β = 2 and cn,1,2 = 1.
Example 2: For the Gn,p (L) where p is fixed and n → +∞, an asymptotic volume formula for a B (δ)

is derived in [3], which reads

µ (B (δ)) =

(
δ
√

p

)βnp+o(n)

. (7)

On the other hand, Theorem 1 contains an asymptotic formula for L = C, δ ≤ 1, fixed p and asymptotically
large n in the form

µ (B (δ)) =

(
δ
√

p

)2p(n−p)+ 1
2(p2−1) ln n/ ln(δ/

√
p)+ln cp/ ln(δ/

√
p)

,

where cp is a constant depending on p. This follows from (4) and Stirling approximation.
Importantly though, Theorem 1 is distinct from the previous results of [4] and [3] in that it holds for

arbitrary n and p, 1 ≤ p ≤ n. For the Grassmann manifold whose n is not asymptotically large or n and
p are comparable, it is not appropriate to use (7) to estimate the volume of a B (δ). A trivial example
is that the n = p case. If n = p, the exact volume of B (δ) for ∀δ > 0 is the constant 1. The volume
formula in this paper (4) gives cn,n,βδ0 = 1 because cn,n,β = 1. However, the approximation (δ/

√
n)

βn2

(from Barg’s formula in (7)) will give a small number much less than 1 when δ is small.
Theorem 1 does not provide a simple formula to calculate cn,p,β with β = 1(L = R) for general n and

p. Although it contains

cn,p,1 =

 1
n−1

π1/2Γ(n
2 )

Γ( 1
2)

2
Γ(n−1

2 )
if p = 1 or p = n− 1

1 if p = n
,

the calculation of cn,p,1 involves a complicate integral (6) for general n and p. As a supplement of
Theorem 1, the following proposition considers fixed p and asymptotically large n. This proposition is
an improvement of Barg’s approximation in that it gives a more detailed exponential term. Moreover, the
proof is also fundamental different.

Proposition 1: Let B (δ) be a ball of radius δ in the Gn,p (L). Let p > 0 be fixed and n approach
infinity. Then

µ (B (δ)) ≈
Γ
(

β
2
np
)

Γ
(

β
2
p (n− p)

)
Γ
(

β
2
p2
) (δ2

p

)β
2
p(n−p)(

1− δ2

p

)β
2
p2−1

,

where β = 1/2 when L = R/C respectively.
Proof: See Appendix B.

Fig. 1 compares the exact volume of a metric ball (3) and the volume approximated by (4). To calculate
the exact volume of a metric ball, Monte Carlo simulations are employed to evaluate the complicate
integrals in (3). Since

µ (B (δ)) = Pr {Q : dc (P, Q) ≤ δ}

where P ∈ Gn,p (L) is chosen arbitrarily and Q is uniformly distributed in the Gn,p (L), simulation for the
probability of the event {Q : dc (P, Q) ≤ δ} gives µ (B (δ)). For the volume approximation cn,p,βδβp(n−p),
the constant cn,p,β is calculated either by (5) if L = C or by Monte Carlo numerical integral of (6) if
L = R. The simulation results for the real and complex Grassmann manifolds are presented in Fig. 1(a)
and 1(b) respectively. Simulations show that the volume approximation (solid lines) is close to the exact
volume (circles) when the radius of the metric ball is not large. We also compare our approximation with
Barg’s approximation

(
δ/
√

p
)βnp for the case n = 10 and p = 2. Simulations show that the exact volume

and Barg’s approximation (dash-dot lines) may not be of the same order while the approximation in this
paper is more accurate.
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IV. QUANTIZATION BOUNDS

Based on the volume formula given in Theorem 1, the sphere packing bounds are derived and the rate
distortion tradeoff is characterized by establishing tight lower and upper bounds on the distortion rate
function. The results developed in this section hold for Grassmann manifolds with arbitrary n and p.

A. Sphere Packing Bounds
The Gilbert-Varshamov and Hamming bounds on the Gn,p (L) are given in the following corollary.
Corollary 1: When δ is sufficiently small, there exists a code in the Gn,p (L) with size K and the

minimum distance δ such that
c−1
n,p,βδ−βp(n−p) . K.

For any code with the minimum distance δ,

K . c−1
n,p,β

(
δ

2

)−βp(n−p)

.

Here and throughout, the symbol . indicates that the inequality holds up to (1 + o (1)) error.
Proof: The corollary is proved by substituting the volume approximation (4) into (1) and (2).

B. Rate Distortion Tradeoff
Assume that the source is uniformly distributed in the Grassmann manifold and the distortion metric is

defined as the square of the chordal distance. The distortion rate tradeoff is characterized in this section.
The following theorem gives a lower bound on the distortion rate function.
Theorem 2: Let t = βp (n− p) be the number of the real dimensions of the Grassmann manifold

Gn,p (L). When K is sufficient large, the distortion rate function is lower bounded by

t

t + 2
(cn,p,βK)−

2
t . D∗ (K) .

Proof: See Appendix C.
The proof of this theorem is given by an optimization argument. The key is to construct an ideal

quantizer, which may not exist, to minimize the distortion. Suppose that there exists K metric balls of the
same radius x0 covering the whole Gn,p (L) completely without any overlap. Then the quantizer which
maps each of those balls into its center gives the minimum distortion among all quantizers. Of course
such a covering may not exist, providing a lower bound on the distortion rate function.

An upper bound on the distortion rate function is given in the following theorem.
Theorem 3: Let t = βp (n− p) be the number of the real dimensions of the Grassmann manifold

Gn,p (L). Define a random code with size K as Crand = {P1, · · · , PK} where Pi’s are independently
drawn from the uniform distribution on the Gn,p (L). Then

lim
K→+∞

E
[
K

t
2 ·D (Crand)

]
=

2Γ
(

2
t

)
t

c
− 2

t
n,p,β,

where the expectation is on the ensemble of random codes. Thus when K is sufficiently large, the distortion
rate function can be upper bounded by

D∗ (K) ≤ E [D (Crand)] ≈
2Γ
(

2
t

)
t

(cn,p,βK)−
2
t .

Proof: See Appendix D.
The basic idea behind this theorem is that the distortion of any particular code is an upper bound of the

distortion rate function and so is the average distortion of an ensemble of codes. Towards the proof, the
ensemble of random codes Crand = {P1, · · · , PK} are employed. For any given plane Q ∈ Gn,p (L), define
Xi = d2

c (Pi,Q) and WK , min (X1, · · · , XK) = min
Pi∈Crand

d2
c (Pi, Q). Since the codewords Pi’s 1 ≤ i ≤ K
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are independently drawn from the uniform distribution on the Gn,p (L), Xi’s 1 ≤ i ≤ K are independent
and identically distributed (i.i.d.) random variables with the cumulative distribution function (CDF) given
by Theorem 1. According to Xi’s CDF, the CDF of WK can be calculated by extreme order statistics.
In appendix D, we prove that for any given Q ∈ Gn,p (L), K

t
2 · EWK

[WK ] converges to a constant as K
approaches infinity. Thus, K

t
2 · EQ [EWK

[WK ]] = K
t
2 · ECrand

[D (Crand)] converges to the same constant.
In this way, an upper bound of the distortion rate function is obtained for asymptotically large K.

The difference between the lower bound and the upper bound is studied as follows. Since both bounds
have the same exponential term, we focus on the coefficients before the exponential terms. The difference
between the two bounds is depending on the number of real dimensions t = βp (n− p) of the underlying
Grassmann manifold. There are three cases needed to consider.

Case 1: t = 0. This case happens if and only if n = p. For this case, the whole Gn,n (L) contains only
one element and no quantization is needed essentially.

Case 2: t = 1. This case happens if and only if L = R, n = 2 and p = 1. In this case, it can be verified
that the principle angle θ between a uniformly distributed Q ∈ G2,1 (R) and any fixed P ∈ G2,1 (R) is
uniformly distributed in

[
0, π

2

]
. The optimal quantization can be explicitly constructed. Since there exists

K metric balls with radius sin π
4K

such that those balls not only pack but also cover the whole G2,1 (R),
the quantizer mapping those balls into its center is optimal. The distortion rate function can be explicitly
calculated as

D∗ (K) =
1

2K
− 1

π
sin

π

2K
.

Case 3: t ≥ 2. For this general case, an elementary calculation shows that

1

2
≤ t

t + 2
≤ 2

t
Γ (2/t) ≤ 1,

and
lim

t→+∞

t

t + 2
= 1 = lim

t→+∞

2

t
Γ (2/t) .

That is, the difference between the upper and lower bounds is uniformly bounded and converges to zero
as t → +∞. This phenomenon is also observed from the simulation results in Fig. 2. Since the upper
bound and the lower bound are close, combining these two bounds accurately quantifies the distortion
rate function, as stated in the following corollary.

Corollary 2: Let t = βp (n− p) be the number of the real dimensions of the Grassmann manifold
Gn,p (L). When K is sufficiently large, the distortion rate function is bounded by

t

t + 2
(cn,p,βK)−

2
t . D∗ (K) .

2Γ
(

2
t

)
t

(cn,p,βK)−
2
t . (8)

The following corollary bounds the rate distortion function.
Corollary 3: Let t = βp (n− p) be the number of the real dimensions of the Grassmann manifold

Gn,p (L). When the required distortion is sufficiently small, the rate distortion function is bounded by

1

cn,p,β

(
t

2Γ
(

2
t

)D) t
2

. K∗ (D) .
1

cn,p,β

(
t + 2

t
D

) t
2

.

As a comparison, we cite the distortion rate function approximation derived in [8]. For Gn,p (C) with
p = 1, an approximation for the distortion rate function is given as

D∗ (K) ≈
(

n− 1

n

)
K− 1

n−1 (9)

by asymptotic arguments [8]. According to our results in Theorem 2, the approximation (9) is indeed a
lower bound for the distortion rate function and valid for all possible n’s. For Gn,p (C) with p fixed and
n � p, a lower bound of an upper bound on the distortion rate function is given in [8] based on an
estimation of the minimum distance of a code. It is less robust than the result in Theorem 2 in that it is
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neither a lower bound nor an upper bound and that it holds only for the case n � p (see Fig. 2 for an
empirical comparison).

Besides characterizing the rate distortion tradeoff, we are also interested in designing a code to minimize
distortion for a given code size K. Generally speaking, it is computational complex to design a code
to minimize distortion directly. In [5] and [12], a suboptimal design criterion, i.e. maximization the
minimum distance between codeword pairs, is proposed to reduce the computational complexity. Refer
this suboptimal criterion as max-min criterion. According to our volume formula (4), the same criterion
can be verified. Let the minimum distance of a code C be δ. Note that the metric balls of radius δ

2
and

centered at Pi ∈ C are disjoint. Then the corresponding distortion is upper bounded by

D (C) ≤ δ2

4
Kµ (B (δ/2)) + p (1−Kµ (B (δ/2))) . (10)

Apply the volume formula (4). An elementary calculation shows that the first derivative of the upper
bound is negative when

δ <

√
4βp2 (n− p)

2 + βp (n− p)
.

This property implies the upper bound (10) is a decreasing function of δ when δ is small enough. Thus,
max-min criterion is an appropriate design criterion to obtain codes with small distortion. Since this
criterion only requires to calculate the distance between codeword pairs, the computational complexity is
less than that of designing a code to minimize the distortion directly.

Fig. 2 compares the simulated distortion rate function (the plus markers) with its lower bound (the
dashed lines) and upper bound (the solid lines) in (8). To simulate the distortion rate function, we use the
max-min criterion to design codes and use the minimum distortion of the designed codes as the distortion
rate function. Simulation results show that the bounds in (8) hold for large K. When K is relatively small,
the formula (8) can serve as good approximations to the distortion rate function as well. Simulations also
verify the previous discussion on the difference between the two bounds. The difference between the
bounds is small and it becomes smaller as the number of the real dimensions of the Grassmann manifold
increases. In addition, we compare our bounds with the approximation (the “x” markers) derived in [8].
Simulations show that the approximation in [8] is neither an upper bound nor a lower bound. It works for
the case that n = 10 and p = 2 but doesn’t work when n ≤ 8 and p = 2. As a comparison, the bounds
(8) derived in this paper hold for arbitrary n and p.

V. AN APPLICATION TO MIMO SYSTEMS WITH FINITE RATE CHANNEL STATE FEEDBACK

As an application of the derived quantization bounds on the Grassmann manifold, this section discusses
the information theoretical benefit of finite-rate channel-state feedback for MIMO systems using power
on/off strategy. We will show that the benefit of the channel state feedback can be accurately characterized
by the distortion of a quantization on the Grassmann manifold.

The effect of finite-rate feedback on MIMO systems using power on/off strategy has been widely studied.
MIMO systems with only one on-beam are discussed in [4] and [5], where the beamforming codebook
design criterion and performance analysis are derived by geometric arguments in the Grassmann manifold
Gn,1 (C). MIMO systems with multiple on-beams are considered in [8], [13]–[16]. Criteria to select the
beamforming matrix are developed in [13] and [14]. The signal-to-noise ratio (SNR) loss due to quantized
beamforming is discussed in [8]. The corresponding analysis is based on Barg’s formula (7) and only valid
for MIMO systems with asymptotically large number of transmit antennas. The effect of beamforming
quantization on information rate is investigated in [15] and [16]. The loss in information rate is quantified
for high SNR region in [15]. The analysis is based on an approximation to the logdet function in the high
SNR region and a metric in the Grassmann manifold other than the chordal distance. In [16], a formula to
calculate the information rate for all SNR regimes is proposed by letting the numbers of transmit antennas,
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receive antennas and feedback rate approach infinity simultaneously. But this formula overestimates the
performance in general.

The system model of a wireless communication system with LT transmit antennas, LR receive antennas
and finite-rate channel state feedback is given in Fig. 3. The information bit stream is encoded into the
Gaussian signal vector X ∈ Cs×1 and then multiplied by the beamforming matrix P ∈ CLT×s to generate
the transmitted signal T = PX, where s is the dimension of the signal X satisfying 1 ≤ s ≤ LT and
the beamforming matrix P satisfies P†P = Is. In power on/off strategy, E

[
XX†] = PonIs where Pon is

a positive constant to denote the on-power. Assume that the channel H is Rayleigh flat fading, i.e., the
entries of H are independent and identically distributed (i.i.d.) circularly symmetric complex Gaussian
variables with zero mean and unit variance (CN (0, 1)) and H is i.i.d. for each channel use. Let Y ∈ CLR×1

be the received signal and W ∈ CLR×1 be the Gaussian noise, then

Y = HPX + W,

where E
[
WW†] = ILR

. We also assume that there is a beamforming codebook B =
{
Pi ∈ CLT×s :

P†
iPi = Is

}
declared to both the transmitter and the receiver before the transmission. At the beginning

of each channel use, the channel state H is perfectly estimated at the receiver. A message, which
is a function of the channel state, is sent back to the transmitter through a feedback channel. The
feedback is error-free and rate limited. According to the channel state feedback, the transmitter chooses
an appropriate beamforming matrix Pi ∈ B. Let the feedback rate be Rfbbits/channel use. Then the size
of the beamforming codebook |B| ≤ 2Rfb . The feedback function is a mapping from the set of channel
state into the beamforming matrix index set, ϕ : {H} → {i : 1 ≤ i ≤ |B|}. This section will quantify
the corresponding information rate

I = max
B:|B|≤2Rfb

max
ϕ

E
[
log
∣∣∣ILR

+ PonHPϕ(H)P
†
ϕ(H)H

∣∣∣] ,

where Pon = ρ/s and ρ is the average received SNR.
Before discussing the finite-rate feedback case, we consider the case that the transmitter has full

knowledge of the channel state H. In this setting, the optimal beamforming matrix is given by Popt = Vs

where Vs ∈ CLT×s is the matrix composed by the right singular vectors of H corresponding to the largest
s singular values [6]. The corresponding information rate is

Iopt = EH

[
s∑

i=1

ln (1 + Ponλi)

]
, (11)

where λi is the ith largest eigenvalue of HH†. In [6, Section III], we derive an asymptotic formula to
approximate a quantity of the form EH [

∑s
i=1 ln (1 + cλi)] where c > 0 is a constant. Apply the asymptotic

formula in [6]. Iopt can be well approximated.
The effect of finite-rate feedback can be characterized by the quantization bounds in the Grassmann

manifold. For finite-rate feedback, we define a suboptimal feedback function

i = ϕ (H) , arg min
1≤i≤|B|

d2
c (P (Pi) ,P (Vs)) , (12)

where P (Pi) and P (Vs) are the planes in the GLT ,s (C) generated by Pi and Vs respectively. In [6],
we show that this feedback function is asymptotically optimal as Rfb → +∞ and near optimal when
Rfb < +∞. With this feedback function and assuming that the feedback rate Rfb is large, it has been
shown in [6] that

I ≈ EH

[
s∑

i=1

ln (1 + ηsupPonλi)

]
, (13)
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where

ηsup , 1− 1

s
inf

B:|B|≤2Rfb

EVs

[
min

1≤i≤|B|
d2

c (P (Pi) ,P (Vs))

]
= 1− 1

s
D∗ (2Rfb

)
. (14)

Thus, the difference between perfect beamforming case (11) and finite-rate feedback case (13) is quantified
by ηsup, which depends on the distortion rate function on the GLT ,s (C). Substitute quantization bounds
(8) into (14) and apply the asymptotic formula in [6] for EH [

∑s
i=1 ln (1 + cλi)]. Approximations to the

information rate I are derived as functions of the feedback rate Rfb.
Simulations verify the above approximations. Let m = min (LT , LR). Fig. 4 compares the simulated

information rate (circles) and approximations as functions of Rfb/m
2. The information rate approximated

by the lower bound (solid lines) and the upper bound (dotted lines) in (8) are presented. The simulation
results show that the performances approximated by the bounds (8) match the actual performance almost
perfectly. As a comparison, the approximation proposed in [16], [17], which is based on asymptotic
analysis and Gaussian approximation, overestimates the information rate. Furthermore, we compare the
simulated information rate and the approximations for a large range of SNRs in Fig. 5. Without loss of
generality, we only present the lower bound in (8) because it corresponds to the random codes and can
be achieved by appropriate code design. Fig. 5(a) shows that the difference between the simulated and
approximated information rate is almost unnoticeable. To make the performance difference clearer, Fig.
5(b) gives the relative performance as the ratio of the considered performance and the capacity of a 4× 2
MIMO achieved by water filling power control. The difference in relative performance is also small for
all SNR regimes.

VI. CONCLUSION

This paper considers the quantization problem on the Grassmann manifold. Based on the explicit volume
formula for a metric ball in the Gn,p (L), the sphere packing bounds are obtained and the distortion rate
tradeoff is accurately characterized by establishing bounds on the distortion function. Simulations verify
the developed results. As an application of the derived quantization bounds, the information rate of a
MIMO system with finite-rate channel-state feedback and power on/off strategy is accurately quantified
for the first time.

APPENDIX

A. Proof of Theorem 1
The proof is divided into two parts. In the first part, we show that when δ ≤ 1,

µ (B (δ)) =

{
cn,p,βδβp(n−p) (1 + o (δ)) if L = R
cn,p,βδβp(n−p) if L = C ,

and give the general formula to calculate cn,p,β . In the second part, we simplify the formula to calculate
cn,p,2.

1) General Volume Formula: First, we derive the general formula for the volume of a metric ball in
the Grassmann manifold.

Since it holds
µ (B (δ)) =

∫
· · ·
∫

√Pp
i=1 sin2 θi≤δ

π
2≥θ1≥···≥θp≥0

dµθ,

we wish to calculate the above integral.
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We introduce the following notations. Define ri , cos θi and order ri’s such that ri ≤ rj (θi ≥ θj) if
i < j. Define r = [r1, · · · , rp] and ∣∣∆p

(
r2
)∣∣ =

p∏
i<j

(
r2
j − r2

i

)
.

Let β = 1 for L = R and β = 2 when L = C. Define

Vn,p,β =

{ ∏p
i=1

A2(p−i+1)A(n−p−i+1)
2A(n−i+1)

if β = 1∏p
i=1

2(n−i)!

((p−i)!)2(n−p−i)!
if β = 2

where

A (p) =
2πp/2

Γ
(

p
2

) .
When 1 ≤ p ≤ n

2
, the distribution of the principle angles θ1, θ2, · · · , θp can be expressed as the following

differential form [11],

dµθ =
1

2p
Vn,p,β

∣∣∆p

(
r2
)∣∣β

p∏
i=1

((
r2
i

)β
2
−1 (

1− r2
i

)β
2
(n−2p+1)−1

dr2
i

)
Thus

µ (B (δ))

=
1

2p

∫
· · ·
∫

Pp
i=1(1−r2

i )≤δ2

0≤r2
1≤···≤r2

p≤1

[
Vn,p,β

p∏
i<j

(
r2
j − r2

i

)β
p∏

i=1

((
r2
i

)β
2
−1 (

1− r2
i

)β
2
(n−2p+1)−1

dr2
i

)]
(a)
=

1

2p

∫
· · ·
∫

Pp
i=1 xi≤1

1/δ2≥x1≥···≥xp≥0

[
Vn,p,β

p∏
i<j

(xi − xj)
β δ2β

p(p−1)
2

p∏
i=1

((
1− δ2xi

)β
2
−1 (

δ2xi

)β
2
(n−2p+1)−1 (−δ2dxi

))]
(b)
=

{
cn,p,βδβp(n−p) (1 + o (δ)) if β = 1
cn,p,βδβp(n−p) if β = 2

,

where (a) follows the variable change δ2xi = 1− r2
i and (b) follows from the definition

cn,p,β ,
1

2p
Vn,p,β

∫
· · ·
∫

Pp
i=1 xi≤1

1≥x1≥···≥xp≥0

[
|∆p (x)|β

p∏
i=1

(
x

β
2
(n−2p+1)−1

i dxi

)]
(15)

and the fact that (
1− δ2xi

)β
2
−1

=

{
1 + o (δ) if β = 1
1 if β = 2



12

for small δ. Note that when δ ≤ 1, the integral domain
∑p

i=1 xi ≤ 1 and 1/δ2 ≥ x1 ≥ · · · ≥ xp ≥ 0 can
be simplified as

∑p
i=1 xi ≤ 1 and 1 ≥ x1 ≥ · · · ≥ xp ≥ 0, which is independent of δ.

If instead, n
2
≤ p ≤ n, there are 2p−n principle angles always identical to zero and n−p principle angles,

say θ1, θ2, · · · , θn−p, different from zero. The distribution of the non-zero principle angles, expressed by
the differential form, is [11]

dµθ =
1

2n−p
Vn,p,β

∣∣∆n−p

(
r2
)∣∣β

n−p∏
i=1

((
r2
i

)β
2
−1 (

1− r2
i

)β
2
(2p−n+1)−1

dr2
i

)
.

By calculation similar to the 0 < p ≤ n
2

case, the volume formula can be shown as

µ (B (δ)) =

{
cn,p,βδβp(n−p) (1 + o (δ)) if β = 1
cn,p,βδβp(n−p) if β = 2

,

where

cn,p,β =
1

2n−p
Vn,n−p,β

∫
· · ·
∫

Pn−p
i=1 xi≤1

1≥x1≥···≥xn−p≥0

[
|∆n−p (x)|β

n−p∏
i=1

(
x

β
2
(2p−n+1)−1

i dxi

)]
.

2) Calculation of cn,p,2: To calculate cn,p,2, the key step is the following theorem.
Theorem 4: For unordered x1, x2, · · · , xp, define

Ωp =

{
(x1, · · · , xp) :

p∑
i=1

xi ≤ 1, xi ≥ 0 1 ≤ i ≤ p

}
.

Then, for any t > 0,

I∆ (t, p) ,
∫
· · ·
∫

Ωp

|∆ (x)|2
p∏

i=1

(
xt

idxi

)
=

∏p
i=1 Γ (i + 1)

∏p
i=1 Γ (t + i)

Γ (pt + p2 + 1)
.

Once this theorem is proved, substituting this theorem into the general formula for cn,p,2 (15) gives the
formula for cn,p,2 by elementary calculation.

It is noteworthy that the although integral I∆ (t, p) is similar to the Selberg’s integral [18], they are
different in that the integration of I∆ (t, p) is a truncation of that of Selberg’s integral. The calculation of
I∆ (t, p) involves new techniques.

To prove Theorem 4, we first express the integral as the determinant of a particular matrix and then
evaluate the determinant of that matrix.

Lemma 1 expresses I∆ (t, p) as the determinant of a matrix. Note that
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I∆ (t, p)

=

∫
· · ·
∫

Ωp

det


1 1 · · · 1
x1 x2 · · · xp
...

... . . . ...
xp−1

1 xp−1
2 · · · xp−1

p

 p∏
i=1

x
t/2
i



·

det


1 x1 · · · xp−1

1

1 x2 · · · xp−1
2

...
... . . . ...

1 xp · · · xp−1
p


p∏

i=1

x
t/2
i


p∏

i=1

dxi

=

∫
· · ·
∫

Ωp

det


x

t
2
1 x

t
2
2 · · · x

t
2
p

x
t
2
+1

1 x
t
2
+1

2 · · · x
t
2
+1

p

...
... . . . ...

x
t
2
+p−1

1 x
t
2
+p−1

2 · · · x
t
2
+p−1

p



· det


x

t
2
1 x

t
2
+1

1 · · · x
t
2
+p−1

1

x
t
2
2 x

t
2
+1

2 · · · x
t
2
+p−1

2
...

... . . . ...

x
t
2
p x

t
2
+1

p · · · x
t
2
+p−1

p


p∏

i=1

dxi

=

∫
· · ·
∫

Ωp

det


∑

xt
i

∑
xt+1

i · · ·
∑

xt+p−1
i∑

xt+1
i

∑
xt+2

i · · ·
∑

xt+p
i

...
... . . . ...∑

xt+p−1
i

∑
xt+p

i · · ·
∑

xt+2p−2
i


p∏

i=1

dxi

Define

Gx (t, p) , |∆ (x)|2
p∏

i=1

xt
i

= det


∑

xt
i

∑
xt+1

i · · ·
∑

xt+p−1
i∑

xt+1
i

∑
xt+2

i · · ·
∑

xt+p
i

...
... . . . ...∑

xt+p−1
i

∑
xt+p

i · · ·
∑

xt+2p−2
i


and

G (t, p) , det


Γ (t + 1) Γ (t + 2) · · · Γ (t + p)
Γ (t + 2) Γ (t + 3) · · · Γ (t + p + 1)

...
... . . . ...

Γ (t + p) Γ (t + 1) · · · Γ (t + 2p− 1)

 .

We have the following lemma.
Lemma 1:

I∆ (t, p) =

∫
· · ·
∫

Ωp

Gx (t, p)

p∏
i=1

dxi

=
Γ (p + 1)

Γ (pt + p2 + 1)
G (t, p) .
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Proof: The polynomial Gx (t, p) = |∆ (x)|2
∏p

i=1 xt
i is a homogeneous polynomial of degree pt +

p (p− 1). For every non-zero product term, i.e., at1,··· ,tpx
t1
1 · · ·x

tp
p where at1,··· ,tp 6= 0, we also define the

order of that term as
O
(
at1,··· ,tpx

t1
1 · · ·xtp

p

)
= min

1≤i≤p
ti.

Then the minimum order of all the terms of the polynomial Gx (t, p) is greater than or equals to t. Let’s
call the terms with order greater than or equivalent to t as terms with appropriate order, and the terms
with order less than t as terms with inappropriate order. When we expand

Gx (t, p) = det


∑

xt
i

∑
xt+1

i · · ·
∑

xt+p−1
i∑

xt+1
i

∑
xt+2

i · · ·
∑

xt+p
i

...
... . . . ...∑

xt+p−1
i

∑
xt+p

i · · ·
∑

xt+2p−2
i

 ,

the terms with inappropriate order will be cancelled out finally. Therefore, in the following, we ignore
those terms even when they appear in some intermediate steps. This will simplify the analysis.

For any homogeneous polynomial of x1, · · · , xp that can be expressed in the form3

Ḡx (t, p) = det


∑

x
t+a1,1

i

∑
x

t+a1,2

i · · ·
∑

x
t+a1,p

i∑
x

t+a2,1

i

∑
x

t+a2,2

i · · ·
∑

x
t+a2,p

i
...

... . . . ...∑
x

t+ap,1

i

∑
x

t+ap,2

i · · ·
∑

x
t+ap,p

i


where ak,l’s 1 ≤ k ≤ p, 1 ≤ l ≤ p are positive constants, we claim that∫

· · ·
∫

Ωp

Ḡx (t, p)

p∏
i=1

dxi =
Γ (p + 1)

Γ (pt + a + p + 1)
Ḡ (t, p) (16)

where a =
∑p

i=1 ai,i and

Ḡ (t, p) = det


Γ (t + a1,1 + 1) Γ (t + a1,2 + 1) · · · Γ (t + a1,p + 1)
Γ (t + a2,1 + 1) Γ (t + a2,2 + 1) · · · Γ (t + a2,p + 1)

...
... . . . ...

Γ (t + ap,1 + 1) Γ (t + ap,2 + 1) · · · Γ (t + ap,p + 1)

 .

It is easy to verify this claim for p = 1 case. Suppose that this claim is true for all homogeneous
polynomial Ḡx (t, p− 1). Then

Ḡx (t, p) =

p∑
l=1

(∑
x

t+a1,l

i

)
(−1)1+l M1,l,

where M1,l is the minor formed by eliminating row 1 and column l. It can be verified that M1,l is also a
homogeneous polynomial of degree pt + a− t− a1,l (ignoring the terms with inappropriate order). Note
that ∫

· · ·
∫

Ωp

p∏
i=1

xti
i dxi =

∏p
i=1 Γ (ti + 1)

Γ (
∑p

i=1 ti + p + 1)

3In this expression, all the terms in the determinant expansion with inappropriate order are ignored.
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where the final result is only dependent on the value of ti’s but independent of the order of those ti’s.
According to determinant expansion by minors, we have∫

· · ·
∫

Ωp

Ḡx (t, p)

p∏
i=1

dxi

=

∫
· · ·
∫

Ωp

(
p∑

l=1

(∑
x

t+a1,l

i

)
(−1)1+l M1,l

)
p∏

i=1

dxi

(a)
=

p∑
l=1

(−1)1+l

∫
· · ·
∫

Ωp

p · xt+a1,l

1 M1,l

p∏
i=1

dxi

(b)
=

p∑
l=1

(−1)1+l

∫
· · ·
∫

Ωp

p · xt+a1,l

1 M
′

1,l

p∏
i=1

dxi,

where M
′

1,l is the minor formed by eliminating row 1 and column l of the matrix
∑p

i=2 x
t+a1,1

i

∑p
i=2 x

t+a1,2

i · · ·
∑p

i=2 x
t+a1,p

i∑p
i=2 x

t+a2,1

i

∑p
i=2 x

t+a2,2

i · · ·
∑p

i=2 x
t+a2,p

i
...

... . . . ...∑p
i=2 x

t+ap,1

i

∑p
i=2 x

t+ap,2

i · · ·
∑p

i=2 x
t+ap,p

i

 ,

(a) is because of the symmetry that∫
· · ·
∫

Ωp

x
t+a1,l

1 M1,l

p∏
i=1

dxi =

∫
· · ·
∫

Ωp

x
t+a1,l

2 M1,l

p∏
i=1

dxi

(ignoring the terms with inappropriate order), and
(b) is followed the observation that x

t+a1,l

1 ·x
t+a

k,l
′

1 will result in a term with inappropriate order.
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Therefore, ∫
· · ·
∫

Ωp

Ḡx (t, p)

p∏
i=1

dxi

=

p∑
l=1

(−1)1+l

∫
· · ·
∫

Ωp

p · xt+a1,l

1 M
′

1,l

p∏
i=1

dxi

= p

p∑
l=1

(−1)1+l

∫ 1

0

x
t+a1,l

1


∫
· · ·
∫

Pp
i=2 xi≤1−x1

0≤x2,··· ,0≤xp

M
′

1,l

p∏
i=2

dxi

 dx1

(a)
= p

p∑
l=1

(−1)1+l

∫ 1

0

x
t+a1,l

1 (1− x1)
pt+a−t−a1,l+p−1 dx1

·

∫ · · ·
∫

Ωp−1

M
′

1,l

p∏
i=2

dxi


(b)
= p

p∑
l=1

(−1)1+l Γ (t + a1,l) Γ (pt + a− t− a1,l + p)

Γ (pt + a + p + 1)

Γ (p)

Γ (pt + a− t− a1,l + p)
Ḡ1,l (t, p− 1)

=
Γ (p + 1)

Γ (pt + a + p + 1)

p∑
l=1

(−1)1+l Γ (t + a1,l) Ḡ1,l (t, p− 1)

(c)
=

Γ (p + 1)

Γ (pt + a + p + 1)
Ḡ (t, p) ,

where
(a) follows the variable changes that x

′
i = xi

1−x1
and the fact that M

′

1,l is a homogeneous
polynomial with degree pt + a− t− a1,l,
(b) is derived by calculating the integral with respect to x1 and the assumption that∫ · · ·

∫
Ωp−1

M
′

1,l

p∏
i=2

dxi

 =
Γ (p)

Γ (pt + a− t− a1,l + p)
Ḡ1,l (t, p− 1) ,

and
(c) follows the determinant expansion by minors of Ḡ (t, p).

Thus the claim (16) is proved. Lemma 1 immediately follows from this claim.
Therefore, the original integral I∆ (t, p) is just a scaling determinant of a particular matrix, denoted as

G (t, p). The explicit formula to calculate G (t, p) is given in the following lemma.
Lemma 2: G (t, p) =

∏p
i=1 Γ (i)

∏p
i=1 Γ (t + i).
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Proof: Since G (t, 1) = Γ (t + 1) for any nonnegative number t, it is sufficient to prove G (t, p) =
Γ (t + 1) Γ (p) G (t + 1, p− 1). Note that

G (t, p)

= det


Γ (t + 1) Γ (t + 2) · · · Γ (t + p)

...
... . . . ...

Γ (t + p− 1) Γ (t + p)! · · · Γ (t + 2p− 2)
Γ (t + p) Γ (t + p + 1) · · · Γ (t + 2p− 1)



= (p− 1)!Γ (t + 1) det


Γ (t + 2) Γ (t + 3) · · · Γ (t + p)

...
... . . . ...

Γ (t + p− 1) Γ (t + p) · · · Γ (t + 2p− 3)
Γ (t + p) Γ (t + p + 1) · · · Γ (t + 2p− 2)


= Γ (p) Γ (t + 1) G (t + 1, p− 1) ,

which follows from elementary row operations. This Lemma is therefore proved.
Substituting Lemma 2 into Lemma 1, we have

I∆ (t, p) =

∏p
i=1 Γ (i + 1)

∏p
i=1 Γ (t + i)

Γ (pt + p2 + 1)
.

Theorem 4 is therefore proved. With elementary calculation,

cn,p,2 =

{
1

(np−p2)!

∏p
i=1

(n−i)!
(p−i)!

if 0 < p ≤ n
2

1
(np−p2)!

∏n−p
i=1

(n−i)!
(n−p−i)!

if n
2
≤ p ≤ n

.

B. Proof of Proposition 1
The volume of B (δ) is independent of the choice of the center. Let In,p be the n × p matrix formed

by truncating the first p columns from the n×n identity matrix. Let Q ∈ Gn,p (L) be the plane generated
by In,p and P ∈ Gn,p (L) be a uniformly distributed plane in the Gn,p (L). Then

µ (B (δ)) = Pr (dc (P, Q) ≤ δ) .

The probability Pr (dc (P, Q) ≤ δ) can be calculated as follows. Let H ∈ Ln×p be a random matrix
whose entries are i.i.d. Gaussian r.v. with unit variance per real dimension, i.e.,

Hi,j ∼
{
N (0, 1) if L = R
CN (0, 1) if L = C ,

where Hi,j is the element in the ith row and the jth column of H. Consider the singular value decomposition
HH† = UΛU† where U ∈ Ln×p, U†U = Ip, Λ ∈ Rp×p is diagonal. It is well known that Λ and U are
independent distributed, U is uniformly distributed in the Stiefel manifold Sn,p (L) [2] and P (U), the
plane generated by U, is uniformly distributed in the Gn,p (L). Thus,

Pr (dc (P, Q) ≤ δ)

= Pr
(
d2

c (P (U) , Q) ≤ δ2
)

= Pr
(
p− tr

(
U†In,pI

†
n,pU

)
≤ δ2

)
.

In order to calculate the distribution of d2
c (P (U) ,P (In,p)), we use the following manipulations. It is

easy to verify that

tr

(
1

β
H†In,pI

†
n,pH

)
=

1

β

p∑
i,j=1

|Hi,j|2 . (17)
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On the other hand,

tr

(
1

β
H†In,pI

†
n,pH

)
= tr

(
1

β
ΛU†In,pI

†
n,pU

)
= tr

(
1

β

[
1

p
tr (Λ) Ip +

(
Λ− 1

p
tr (Λ) Ip

)]
U†In,pI

†
n,pU

)
=

1

βp
tr (Λ) tr

(
U†In,pI

†
n,pU

)
+tr

(
1

β

(
Λ− 1

p
tr (Λ) Ip

)
U†In,pI

†
n,pU

)
=

1

βp
tr (Λ) tr

(
U†In,pI

†
n,pU

)
1 +

1
n
tr
((

Λ− 1
p
tr (Λ) Ip

)
U†In,pI

†
n,pU

)
1
np

tr (Λ) tr
(
U†In,pI

†
n,pU

)
 . (18)

Define A , 1
n

(
Λ− 1

p
tr (Λ) Ip

)
and B , U†In,pI

†
n,pU. Since B is positive define, it can be proved

that λA
mintr (B) ≤ tr (AB) ≤ λA

maxtr (B). Note that λA
max and λA

min converge to zero almost surely and
1
np

tr (Λ) converges to β almost surely as n → +∞. Then (18) converges to 1
βp

tr (Λ) tr
(
U†In,pI

†
n,pU

)
=

1
βp

tr (Λ) (p− d2
c) in distribution as n → +∞. Substituting this conclusion into (17),

1

β

p∑
i,j=1

|Hi,j|2 ≈
1

βp
tr (Λ)

(
p− d2

c

)
,

where the symbol ≈ denotes that the random variables on the two sides of the equality have the same
asymptotically distribution. Since tr (Λ) =

∑n
i=1

∑p
j=1 |Hi,j|2, we have

p− d2
c ≈

1
βn

∑p
i=1

∑p
j=1 |Hi,j|2

1
βnp

∑n
i=1

∑p
j=1 |Hi,j|2

.

After some manipulation,

d2
c

p
≈ 1− 1

1 +
Pn

i=p+1

Pp
j=1|Hi,j |2/βp(n−p)

Pp
i=1

Pp
j=1|Hi,j |2/βp2

βp(n−p)
βp2

.

For notational convenience, let

a =
β

2
p (n− p) ,

b =
β

2
p2,

and

X =

∑n
i=p+1

∑p
j=1 |Hi,j|2 /2a∑p

i=1

∑p
j=1 |Hi,j|2 /2b

.
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Then
d2

c

p
≈

a
b
X

1 + a
b
X

.

We can calculate the distribution of d2
c/p according to the distribution of X . Note that

∑n
i=p+1

∑p
j=1 |Hi,j|2 ∼

χ2
βp(n−p),

∑p
i=1

∑p
j=1 |Hi,j|2 ∼ χ2

βp2 and they are independent. The random variable X is F -distributed.
Therefore,

fd2
c/p (y) ≈ fX (x)

∣∣∣∣dx

dy

∣∣∣∣
= fX

(
b

a

y

1− y

)
b

a

1

(1− y)2

=
(2b)b (2a)a

(
b
a

y
1−y

)a−1

B (a, b)
(
2b + 2a b

a
y

1−y

)a+b

b

a

1

(1− y)2

=
1

B (a, b)
ya−1 (1− y)b−1 ,

where
B (a, b) =

Γ (a) Γ (b)

Γ (a + b)

is the beta function.
With the density function for d2

c/p, the volume of the metric ball B (δ) can be computed.

µ (B (δ)) = Fd2
c/p

(
δ2/p

)
≈ 1

B (a, b)

∫ δ2/p

0

ya−1 (1− y)b−1 dy

≈ Γ (a + b)

Γ (a + 1) Γ (b)

(
δ2

p

)a(
1− δ2

p

)b−1

.

C. Proof of Theorem 2
Assume a source Q is uniformly distributed in the Gn,p (L). For any codebook C, define the empirical

cumulative distribution function as

Fd2
c ,C (x) = Pr

{
Q :

(
min
P∈C

d2
c (P, Q)

)
≤ x

}
.

Then the distortion associated with the codebook C is given by

D (C) =

∫ p

0

x · dFd2
c ,C (x) . (19)

To prove the lower bound, we want to find the optimal empirical cumulative distribution function (CDF)
(corresponding to find the optimal code) to minimize the distortion. That is to find a Fd2

c ,C (x) to minimize

D (C) =

∫ d2
c,max

0

x · dFd2
c ,C (x) ,

with the constraint
Fd2

c ,C (x) ≤ min
(
1, K · µ

(
B
(√

x
)))

,



20

where µ (B (
√

x)) is the volume of a metric ball of radius
√

x. The constraint follows from the fact that

Fd2
c ,C (x) = Pr

{
Q :

(
min
P∈C

d2
c (P, Q)

)
≤ x

}
= Pr

(
∪K

i=1

{
Q : d2

c (Pi, Q) ≤ x
})

≤
K∑

i=1

Pr
{
Q : d2

c (Pi, Q) ≤ x
}

= K · µ
(
B
(√

x
))

,

and the fact that Fd2
c ,C (x) ≤ 1.

It can be proved that the optimal empirical CDF to minimize the distortion is given by

F ∗
d2

c ,C (x) =

 0 if x < 0
K · µ (

√
x) if 0 ≤ x ≤ x0

1 if x0 < x
,

where x0 satisfies K ·µ
(√

x0

)
= 1. To prove this claim, we calculate the difference between the distortions

corresponding to F ∗
d2

c ,C (x) and to any possible empirical CDF Fd2
c ,C (x). By an integration by parts,

D (C) =

∫ p

0

x · dFd2
c ,C (x)

= p−
∫ p

0

Fd2
c ,C (x) dx.

Then, with the same formula holding for F ∗
d2

c ,C (x),∫ p

0

x · dFd2
c ,C (x)−

∫ p

0

x · dF ∗
d2

c ,C (x)

=

∫ p

0

F ∗
d2

c ,C (x) dx−
∫ p

0

Fd2
c ,C (x) dx

=

∫ x0

0

(
K · µ

(
B
(√

x
))
− Fd2

c ,C (x)
)
dx +

∫ p

x0

(
1− Fd2

c ,C (x)
)
dx

≥ 0,

where the inequality in the last line follows from the constraint Fd2
c ,C (x) ≤ min (1, K · µ (B (

√
x))) .

Substitute the optimal F ∗
d2

c ,C (x) into (19), the corresponding distortion can be calculated. Suppose that
the code size K is sufficiently large so that

µ
(
B
(√

x
))
≈ cn,p,βx

βp(n−p)
2 for x ≤ x0,

where
x0 = (cn,p,βK)−

2
βp(n−p) .

Then

D∗ =

∫ p

0

x · dF ∗
d2

c ,C (x)

≈
∫ x0

0

x · d
(
cn,p,βx

βp(n−p)
2

)
≈ βp (n− p)

βp (n− p) + 2
(cn,p,βK)−

2
βp(n−p) .

D∗ is a lower bound of the distortion rate function. D∗ is the distortion corresponding to the optimal
CDF F ∗

d2
c ,C (x), which exists only when there exists K metric balls B

(√
x0

)
completely covers the whole

Gn,p (L) without any overlap. However, such a covering may or may not exist. Thus D∗ is a lower bound
of the actual distortion rate function.
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D. Proof of Theorem 3
Let Crand = {P1, · · · , PK} be a random code whose codewords Pi’s are independently drawn from

the uniform distribution on the Gn,p (L). For any given element Q ∈ Gn,p (L), define Xi = d2
c (Pi, Q),

1 ≤ i ≤ K. Then Xi’s are independent and identically distributed (i.i.d.) random variables with CDF
F (x) = µ (B (

√
x)). Define WK = min (X1, · · · , XK). Assume the source Q is uniformly distributed on

the Gn,p (L) and independent with Crand. Then

ECrand
[D (Crand)]

= ECrand

[
EQ

[
min

Pi∈Crand

d2
c (Q, Pi)

]]
= EQ

[
ECrand

[
min

Pi∈Crand

d2
c (Q, Pi)

]]
= EQ [EWK

[WK ]] .

To calculate EWK
[WK ], the following lemma about the CDF of WK is needed.

Lemma 3: Let Xi’s 1 ≤ i ≤ K be i.i.d. random variables with CDF F (x). Let WK = min (X1, · · · , XK).
Then

U (x)− 4KF 2 (x) [1− F (x)]K < Pr (WK ≥ x)

= (1− F (x))K < U (x) , (20)

where U (x) = exp (−KF (x)), the first inequality holds for x such that F (x) < 1
2
√

K
and the second

inequality holds for all x.
Proof: See [19, page 10].

According to Lemma 3, some bounds on the CDF of WK are derived. Define

t ,
βp (n− p)

2
.

Define y0,K such that yt
0,K = 1

2cn,p,β
K1/4. Then when y ≤ y0,K ,

U
( y

K1/t

)
> Pr

(
WK ≥ y

K1/t

)
> U

( y

K1/t

)
−K−1/2, (21)

and when y ≥ y0,N ,

Pr
(
WK ≥ y

K1/t

)
≤ exp

(
−1

2
K1/4

)
. (22)

To prove (21), note that when y ≤ y0,K ,

F
( y

K1/t

)
≤ F

( y0,N

K1/t

)
=

1

2
K−3/4 <

1

2
√

K
.

According to Lemma 3 and the fact
[
1− F

(
y/K1/t

)]K ≤ 1, when y ≤ y0,K ,

U
( y

K1/t

)
> Pr

(
WK ≥ y

K1/t

)
> U

( y

K1/t

)
− 4K

1

4K3/2
= U

( y

K1/t

)
−K−1/2.

For y ≥ y0,N ,

Pr
(
WK ≥ y

K1/t

)
≤ Pr

(
WK ≥ y0,K

K1/t

)
< exp

(
−K · cn,p,β

yt
0,K

K

)
= exp

(
−cn,p,βyt

0,K

)
= exp

(
−1

2
K1/4

)
.
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Furthermore, according to the bounds in (21), the limit of the CDF of WK as K approaches infinity can
be derived. Noting that U

(
y/K1/t

)
= exp (−cn,p,βyt) and lim

K→+∞
K−1/2 = 0,

lim
K→+∞

Pr
(
WK ≥ y

K1/t

)
= exp

(
−cn,p,βyt

)
, (23)

where the analysis holds for y ≤ y0,K → +∞ as K → +∞.
With the bounds on the CDF of WK , we calculate EWK

[WK ]. In the following, we use E [WK ] instead
of EWK

[WK ] to simplify the notations. Employing the variable change y = K1/tx,

E
[
K1/tWK

]
=

∫ pK1/t

0

yd Pr
(
WK <

y

K1/t

)
= −

∫ pK1/t

0

yd Pr
(
WK ≥ y

K1/t

)
= −y Pr

(
WK ≥ y

K1/t

)∣∣∣pK1/t

0
+

∫ pK1/t

0

Pr
(
WK ≥ y

K1/t

)
dy.

Since Pr
(
WK ≥ y

K1/t

)
= 0 when y = pK1/t, the first term vanishes. Thus,

E
[
K1/tWK

]
=

∫ pK1/t

0

Pr
(
WK ≥ y

K1/t

)
dy

=

∫ y0,K

0

Pr
(
WK ≥ y

K1/t

)
dy +

∫ pK1/t

y0,K

Pr
(
WK ≥ y

K1/t

)
dy,

where y0,K is taken such that yt
0,K = 1

2cn,p,β
K1/4.

We perform the limit of E
[
K1/tWK

]
as K → +∞ by splitting the limit into two parts

lim
K→+∞

E
[
K1/tWK

]
= lim

K→+∞

[∫ pK1/t

y0,K

Pr
(
WK ≥ y

K1/t

)
dy

]

+ lim
K→+∞

[∫ y0,K

0

Pr
(
WK ≥ y

K1/t

)
dy

]
. (24)

The splitting is validated by the facts that

0 ≤ lim
K→+∞

∫ pK1/t

y0,K

Pr
(
WK ≥ y

K1/t

)
dy

(a)

≤ lim
K→+∞

pK
1
t exp

(
−1

2
K1/4

)
= 0,
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where (a) follows from (22), and that

lim
K→+∞

[∫ y0,K

0

Pr
(
WK ≥ y

K1/t

)
dy

]
(b)
=

∫ +∞

0

lim
K→+∞

[
Pr
(
WK ≥ y

K1/t

)
1 (y < y0,K)

]
dy

(c)
=

∫ +∞

0

exp
(
−cn,p,βyt

)
dy

= c
−1/t
n,p,β ·

1

t
·
[

1

1/t

∫ +∞

0

exp
(
−cn,p,βyt

)
d
(
cn,p,βyt

)1/t
]

= c
−1/t
n,p,β

Γ (t)

t
,

where
1 (y < y0,K) =

{
1 if y < y0,K

0 otherwise
,

(b) follows from the Lebesgue’s Dominated Convergence Theorem and the facts that Pr
(
WK ≥ y/K1/t

)
<

exp (−cn,p,βyt) and that exp (−cn,p,βyt) is integrable, and
(c) follows from (23).

Therefore,

lim
K→+∞

ECrand
[D (Crand)]

= lim
K→+∞

EQ [EWK
[WK ]]

(d)
= lim

K→+∞
EWK

[WK ]

= c
−1/t
n,p,β

Γ (t)

t
,

where (d) holds because EWK
[WK ] is independent of the choice of Q.
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