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ABSTRACT 
A numerical bifurcation analysis is carried out in order to 

determine the solution structure of a fin subject to multi-boiling 
heat transfer mode. The thermal analysis can no longer 
performed independently of the working fluid since the heat 
transfer coefficient is temperature dependent and includes the 
nucleate, the transition and the film boiling regime where the 
boiling curve is obtained experimentally for a specific fluid. 
The heat transfer process is modeled using one-dimensional 
heat conduction with or without heat transfer from the fin tip. 
Furthermore, five fin profiles are considered: the constant 
thickness, the trapezoidal, the triangular, the convex parabolic 
and the parabolic. The multiplicity structure is obtained in 
order to determine the different types of bifurcation diagrams, 
which describe the dependence of a state variable of the system 
(for instance the fin temperature or the heat dissipation) on a 
design (CCP) or operation parameter (base TD). Specifically 
the effects of the base TD, of CCP and of the Biot number are 
analyzed and presented in several diagrams since it is important 
to know the behavioral features of the heat rejection 
mechanism such as the number of the possible steady states and 
the influence of a change in one or more operating variables to 
these states. Stability analysis is carried out using the 
“resonance integral” technique and the Sturm-liouville 
eigensystem analysis. 

 
INTRODUCTION 

The study of extended surfaces operating under multi-
boiling conditions has actually begun with the pioneer work of 
Westwater and co-workers [1-4]. The authors pointed out that 
the methods of fin design, so far developed, could not be used 
ttps://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Us
for the boiling case because the heat transfer coefficient was 
assumed uniform over the fin surface. Indeed if we assume for 
instance that the working fluid is water, the fin base TD is 
maintained at 100 CbT∆ =  and the fin tip TD is, say 

18.1 CeT∆ =  then the ratio of the tip to base heat transfer 
coefficients can be obtained from Figure 1 as: 

 (18.1 C) 30116 100
301(100 C)

e

b

h h
h h

= = ≈  

From the above argument it is evident the boiling heat transfer 
coefficient is highly non-uniform so that a different approach to 
the problem had to be taken. The authors therefore determined 
experimentally the heat transfer coefficient and used 
successfully a one-dimensional model including the effects of 
radiation for the prediction of the extended surfaces heat duty. 
Moreover, using the methodology of Wilkins [5], they obtained 
the optimum profile for longitudinal and pin fins under multi-
boiling conditions. Haley and Westwater [2] concluded that the 
TD at the base of fin is not limited to the TD corresponding to 
the peak of the boiling curve, as it would have been in the 
absence of the fin. Actually it can be safely extended well 
above the critical value. From the design point of view an 
important result was that both boiling modes namely nucleate 
and transition are stable on a fin and can be utilized as a very 
efficient mechanism of heat transfer augmentation. Similar 
theoretical as well as experimental investigations were carried 
out at the Institute for High Temperatures of the Russian 
Academy of Sciences by Petukhov, Kovalev and co-workers 
[6-11]. Of particular interest is the work of Kovalev and 
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Rybchinskaya [10] who examined the simultaneous effects of 
multi-boiling and internal heat generation on the performance 
of a cylindrical pin fin. Specifically when both the 
aforementioned heat transfer mechanisms are present, for a 
given base heat flux the existence of four different base TD 
values are possible (see Figure 1 in [10]). The stability analysis 
was performed with the help of Liapunov’s functional for two 
different types of boundary conditions. 

Since the prediction of the heat duty under multi-boiling 
conditions is attractive many analytical solutions for simple 
(constant thickness) profiles can be found in the literature. Lai 
and Hsu [12] proposed a simple model for the determination of 
the length of the nucleate boiling section on a longitudinal fin 
of rectangular profile and the base heat dissipation of the fin. 
The authors divided the fin in several sections and each section 
was subjected to a different boiling mode. A global temperature 
and heat flux distribution was obtained by requiring that the 
temperature and its derivative at the base of one segment to 
match the corresponding values at the tip of the next segment. 
The same approach was adopted by Unal, [13], [14] in order to 
obtain closed form solutions for simple profile configurations. 
Liaw and Yeh [15], [16] conducted, in part I of their work, both 
a theoretical and an experimental investigation for a constant 
thickness profile longitudinal and pin fin with a heat transfer 
coefficient of the form of Eq.(1) for negative and positive 
exponents. The analytical solution was expressed in terms of 
the hypergeometric function. Both cases with and without heat 
transfer from the tip were examined. In addition they carried 
out a linear stability analysis for the transition boiling mode 
and its unstable nature was revealed from the resulting negative 
eigenvalues. In part II the authors considered multi-boiling heat 
transfer conditions for the same fins and used the previous 
obtained analytical solution and the methodology of Lai and 
Hsu [12] in order to determine the temperature distribution 
through the fin, which compared well with the experimental 
data for water and isopropyl alcohol. Recently Lee and co-
workers [17-20], conducted a linear stability analysis for pin 
fins under two and three mode boiling using polynomial as well 
as trigonometric basis eigenfunctions. Their analysis was 
extended to include radial and longitudinal fins while the 
theoretical results were supported by experiments. 

Bifurcation phenomena are common in chemical reaction 
engineering and a multitude of mathematical tools has been 
used for its investigation Aris [21]. The singularity theory, 
Golubitsky and Schaeffer [22], provides an efficient tool for the 
bifurcation analysis of physical systems described by a single 
algebraic equation and has been successfully employed by 
Balakotaih and Luss [23], [24] in the investigation of the 
multiplicity of a number of lumped-parameter systems and by 
Witmer et al. [25] in the investigation of a distributed diffusion 
and reaction problem. The two-point BVP of conduction-
convection in a fin under multi-boiling conditions is similar to 
the reaction-diffusion BVP encountered in chemical 
engineering and the solution methodologies proposed by 
Michelsen and Villadsen, [26], Kubíček and Hlaváček [27], 
[28], Hsuen and Sotirchos [29], are generally applicable to the 
problem at hand. A complete picture of the bifurcation structure 
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of the conduction-convection multi mode boiling system is still 
lacking, although many investigators have considered the 
fundamental mechanisms. This is because knowledge of the 
singular points of a system of equations provides local 
information about its multiplicity, but, by constructing the 
complete loci of the limit and hysteresis points of the solution 
diagram, global information may be obtained as well. 

NOMENCLATURE 
 ja  = boiling constants, Eq.(1) 
 A = surface area, [m2/m] 
 jA  = dimensional constants, Eqs.(1), [W/(m2K)] 
 Bi = ref( )h w k  Biot number 
 LB  = dimensionless parameter, Eq.(17) 
 D = function defined by Eq.(23) 
 H = fin length, [m] 
 k = fin thermal conductivity, [W/(mK)] 
 L = fin height, [m] 
 rN  = removal number 
 O = order of magnitude 
 P = perimetry, [m/m] 
 fq  = fin heat loss per unit length, [W/m] 
 Q = dimensionless fin heat dissipation 
 rQ  = reduced fin heat flux 
 S = arc length, [m] 
 T = temperature, [K] 
 X = distance along fin, [m] 
 x = ( )X L  dimensionless distance along fin 
 Y = fin semi-thickness, [m] 
 u = conduction-convection coefficient 
 w = fin semi-thickness, [m] 

Greek Symbols 
 T∆  = ( )T T∞−  temperature difference, [K] 
 Θ = ref[( ) ( )]T T T T∞ ∞− −  dimensionless fin temperature 
 λ = ( )e bw w  tip to base fin semi-thickness ratio 
 µ = eigenvalue 

Subscripts 
 b = fin base 
 e = fin tip 
 f = fin, film boiling regime 
 n = nucleate boiling regime 
 r = reduced value (i.e. refrh h h= ) 
 ref = reference value 
 t = transition boiling regime 
 TP = turning point 
 ∞ = ambient boiling liquid 

Superscripts 
 ( )′  = derivative with respect to x 
 l = lower steady state 
 u = upper steady state 
2 Copyright © 2002 by ASME 
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Abbreviations 
BVP = Boundary Value Problem 
CCP = Conduction-Convection Parameter 
CP = Cusp Point 
LAI = Length of Arc Idealization 
ODE = Ordinary Differential Equation 
TD = Temperature Difference 
TP = Turning Point(s) 

THE HEAT TRANSFER COEFFICIENT 
A power-law function is usually used to express the heat 

transfer coefficient for the three boiling regimes , [2], [14]: 

 ( ) , 1,2,3ja
j jh A T T j∞= − =  (1) 

The TD at the knots for the nucleate-transition and for the 
transition-film section are calculated respectively as: 

 1
1

1

ln( )
ln , 1, 2j j

j j
j j

A A
T j

a a
+

+ −
+

∆ = =
−

. (2) 

The boiling heat transfer coefficient for water together with the 
knot TD is depicted in Figure 1. 
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Figure 1. The boiling heat transfer coefficient of water. 

The Chebychev Rational Model 
Many algorithms for the numerical solution of ODE are 

based on the Taylor expansion and require continuity of the 
derivatives up to a high order. The previous equations have 
discontinuous derivatives at the knot TD and may produce 
unreliable results in the neighborhood close to the knot TD. In 
addition the sharp transition from one boiling section to the 
other is not experimentally observed, Haley and Westwater [2], 
Dhir and Liaw [33], an alternative relation has been developed 
for the representation of the boiling heat transfer coefficient of 
the following rational form: 

 
1

1
1

1

log , log
P

Q

N i
ii

N i
ii

P z
h z T

Q z

−
=

−
=

= = ∆∑
∑

 (3) 

The resulting curve maintains the accurate representation of the 
experimental data and at the same time the sharp knot edges are 
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smoothed. The required coefficients can be found in Tables 1 to 
3. 

P  i  Q  
2.42204803823 1 1.00000000000 
-1.56587017961 2 -1.32345998422 
-1.37983071652 3 0.455402044288 
1.26899698789 4  

-0.218079478341 5  

Table 1. Coefficients for the boiling heat transfer coefficient of 
water in Eq.(3). 

P  i  Q  
6.81696183207 1 1.00000000000 
-19.1195164015 2 -1.04657133790 
24.9191387614 3 0.363573429884 
-15.6856514881 4  
4.67525093909 5  

-0.519507897020 6  

Table 2. Coefficients for the boiling heat transfer coefficient of 
isopropyl alcohol in Eq.(3). 

P  i  Q  
0.231661790336 1 1.00000000000 
4.46761924528 2 -1.28376857095 
-8.33566908328 3 0.418691192095 
5.40219806954 4  
-1.49291322113 5  
0.159068566872 6  

Table 3. Coefficients for the boiling heat transfer coefficient of 
R-113 in Eq.(3). 

STATEMENT OF THE PROBLEM 
Consider a uniform density longitudinal fin depicted 

schematically in Figure 2 with symmetric profile ( )Y Y X=  
and thermal conductivity k. The fin has length H base thickness 
2w, tip thickness 2 ew  and height L. The base of the fin is 
maintained at constant temperature bT  with the surrounding 
liquid at boiling temperature T∞ . The analysis is based on the 
following modified Murray [34] and Gardner [35] assumptions: 
1. One-dimensional heat conduction. 
2. The temperature at the fin base is uniform. 
3. There are no heat sources or sinks in the fin. 
4. The length of the fin H is much larger than either w or L. 
5. The temperature of the boiling liquid is uniform. 
6. The heat transfer coefficient h depends upon the local 

temperature difference T∆  (‘local assumption’), Haley and 
Westwater [1]. 
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Figure 2. Longitudinal fin geometry. 

On the basis of the above assumptions the conservation of 
energy yields the following differential equation that must be 
satisfied by the fin temperature: 

 d d T dSkA P h T
dX dX dX

∆  = ∆ 
 

 (4) 

subject to the boundary conditions 

 ( ) bT L T∆ = ∆  (5) 

 
0

( ) e eX
k d T dX h T

=
∆ = ∆  (6) 

at the fin base and fin tip respectively. In Eq.(4), T T T∞∆ = − , 
2 ( )A Y X H=  is the area perpendicular to the heat flow and 
2P H≈  is the fin perimeter. The perimetry factor P dS dX is 

equal to 

 
1 222 1 ( )P dS dX H dY dX = +   (7) 

Note that according to the earlier stated assumptions regarding 
the length of the fin, we can take 1H = m without loss of 
generality and all quantities will be per unit length. All the 
above equations are nondimensionalized with the aid of the 
following dimensionless variables: 

 ref, , ( ) ( )x X L y Y w T T T T∞ ∞= = Θ = − −  (8a,b,c) 

Furthermore, the dimensionless parameters that describe the 
problem is the Conduction- Convection Parameter (CCP), 

 2 2 2 2
ref ( ) Biu h L kw L w= =  (9) 

and the Biot number, 
 refBi h w k=  (10) 

where ref ref( )h h T= ∆  denotes the heat transfer coefficient at a 
reference temperature difference refT∆ . With the aid of Eq.(8b) 
the perimetry factor Eq.(7) may be written as: 

 
1 222

22 1dS w dyP
dX dxL

  = +  
   

 (11) 

Using now the earlier defined Biot number and the CCP yields: 
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1 22

2

Bi2 1dS dyP
dX dxu

  = +  
   

 (12) 

On the basis of the previously stated assumption regarding the 
one dimensional heat conduction into the fin, the order of 
magnitude of the CCP is one and 1 2Bi 1, Razelos and 
Georgiou [36]. Taking this into consideration Eq.(12) reduces 
to 2P dS dX ≈ . Substituting Eq.(8) into Eqs.(4) to (6) we 
obtain the following expression: 

 2 2 2( ) , 0 1rd dx u h y y x′ ′Θ = Θ− Θ ≤ ≤  (13) 

where 
 ref ref( )rh h T h= Θ∆  (14) 

is the reduced heat transfer coefficient while ′′Θ  and ′Θ  
represent the second and the first derivatives with respect to x. 
The corresponding boundary conditions are 

 (1) bΘ = Θ  (15) 

 (0) (0)L L eB B′Θ = Θ = Θ  (16) 

where LB  is a dimensionless parameter: 

 1 2
ref( ) BiL e eB h L k h h u= =  (17) 

Using the same arguments as before Eq.(16) reduces to 

 (0) 0′Θ ≈ . (18) 

since 1LB . This is because u is of O(1), (0)Θ  is of O(1) and 
1 2Bi 1. The equation that describes the profile of the fin is 

 ( ) (1 ) ny x Y w xλ λ= = + −  (19) 

where 1λ =  and 0n =  corresponds to the rectangular profile.  
Profile λ  n  

Rectangular 1.00 0 
Trapezoidal 0.50 1 
Triangular 0.05 1 

convex 
parabolic 

0.05 3/2 

Parabolic 0.05 2 

Table 4. Taper ratio and exponents for the profiles considered. 

The values of the taper ratio λ and the profile exponent n 
considered in the present study are summarized in Table 4. It 
can be seen from Eq.(13) that the dimensionless temperature Θ 
and its derivative ′Θ  have the form: 
 ( ; , Bi, ), ( ; , Bi, )b bx u x u′ ′Θ = Θ Θ Θ = Θ Θ  (20a,b) 

The heat dissipated by the fin, 

 f
X L

dTq kA
dX =

=  (21) 

after introducing dimensionless variables becomes 
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1 2

1 2

ref

Bi (1)(1) Bi
2

fq wQ D
k T L u

′Θ′= = Θ = =
∆

 (22) 

where the heat flux parameter D is defined as: 

 (1)D u′= Θ  (23) 

It has been pointed out, Razelos and Georgiou [36], that the 
condition that will economically justify the use of fins is: “the 
ratio of heat dissipated by the fin to be much larger in 
comparison with the heat that would have been dissipated from 
the surface 2wH, in the absence of the fin”. This ratio is the 
removal number and it is equal to 

 ref ref
1 2

2
(2 ) Bi

f b
r

b b b b

q k T Q h hDN
q w h T

 ∆
= = =  ∆ Θ 

 (24) 

Of particular interest is the fin reduced heat flux in terms of the 
critical heat flux as a measure of the fin performance: 

 1 2ref

CHF CHF CHF

(2 )
Bif b f

r

q A q w q
Q D

q q q
− 

= = =  
 

 (25) 

where ref ref refq h T= ∆ . 

RESULTS AND DISCUSSION 
The mathematical model presented in the previous sections 

is used here to study the multiplicity characteristics of a 
longitudinal fin under multi-boiling heat transfer mode. 
Because of the dependency of the boiling heat transfer 
coefficient on the TD, Eq.(13) is non-linear and multiple steady 
states exist at certain operating conditions. With multiple steady 
states we mean more than one temperature distributions for the 
fin that satisfy Eq.(13). This is clearly demonstrated in Figure 3 
where for a given base TD bT∆  there exist three different tip 
TD eT∆  for 0.2u >  for example. In Figure 3 the tip TD is 
plotted against the base TD with water as the boiling liquid for 
a rectangular profile fin with an insulated tip. At each axes the 
corresponding knot TD n tT −∆  and t fT −∆  are also plotted and 
the corresponding boiling regimes (that is nucleate, transition 
and film) are also indicated. In this way a grid is generated 
which defines the boiling modes on the ( , )e bT T∆ ∆  plane. Thus 
for a given base TD we can immediately identify the operating 
regime(s) of the base and the tip of the fin. From Eqs.(20) it is 
evident that the temperature distribution of the fin depends on 
the following parameters: the CCP, the Biot number and the 
dimensionless base TD bΘ . For the construction of the 

e bT T∆ −∆  diagram a working fluid, a fin profile and a 
reference TD are being selected while the CCP is kept constant 
and the BVP described by Eq.(13) is solved repeatedly for each 
value of the CCP. Hence a family of curves similar to those 
depicted in Figure 3 is obtained where u is the free parameter. 
A closer examination of Figure 3 reveals the following boiling 
modes: 

• Single-mode boiling when b n tT T −∆ < ∆ . 
 

ded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of U
• Two-mode boiling when n t b t fT T T− −∆ < ∆ < ∆  and 

e n tT T −∆ < ∆  that is transition and nucleate (TN) or 
when t f bT T−∆ < ∆  and n t e t fT T T− −∆ < ∆ < ∆  that is film 
and transition (FT). 

• Three-mode boiling (FTN) when t f bT T−∆ < ∆  and eT∆  
takes values in the three boiling regimes. 
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Figure 3. Loci of the turning points on the ( , )e bT T∆ ∆  plane 
with the CCP as a parameter. 
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Figure 4. Hysteresis curves for the rectangular profile with 
insulated tip. 

Another expected result is that as Bi 0→ , 0u → , which 
means that k →∞  and the tip TD asymptotically equals the 
base TD: e bT T∆ ∆ . For the further discussion of the 
bifurcation characteristics of the multi-boiling heat transfer 
mode the Turning Points (TP) [37-39], on the e bT T∆ −∆  
diagram will be introduced. 

Bifurcation Diagrams and Temperature Distributions 
On the TP change of the stability characteristics of the 

system is taking place and on the ( , )e bT T∆ ∆  plane these TP are 
determined from the relation: 
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 0b eT T∂∆ ∂∆ =  (26) 

and they are denoted with a characteristic symbol in Figure 3. 
Generally two TP exist in each curve with const.u = , the upper 
and the lower respectively. The upper TP TP TP( ) , ( )u u

e bT T∆ ∆  
corresponds to the upper steady state temperature distribution 
while the lower TP TP TP( ) , ( )l l

e bT T∆ ∆  corresponds to the lower 
steady state temperature distribution (see Figure 6). For 
example for 2u >  there exist two TP while for 2u <  no TP 
exist since the base TD is a single value function of the tip TD 
and for that cases the fin can operate only on single-mode 
boiling. The TP define the values of the base TD for which 
multiple steady states exist. That is only when the condition 

 TP TP( ) ( )u l
e b bT T T∆ < ∆ < ∆  (27) 

is satisfied more than one (in fact three) temperature 
distributions exist. Moreover the TP separate the e bT T∆ −∆  
curves into the following three branches: 

• Upper steady state branch: TP( )u
e eT T∆ > ∆ . 

• Unstable steady state branch: TP TP( ) ( )l u
e e eT T T∆ < ∆ < ∆ . 

• Lower steady state branch: TP( )l
e eT T∆ < ∆ . 

For example when the fin base operates at the transition 
regime, that is n t b t fT T T− −∆ < ∆ < ∆  (i.e. two-mode boiling) 
there exist three operating points: one on the lower stable 
branch for which the tip TD corresponds to nucleate boiling, 
one on the unstable branch for which the tip TD corresponds to 
the transition boiling and one on the upper stable branch with 
the tip TD corresponding on the transition boiling. Therefore 
for two-mode boiling although two operating points are on the 
same boiling regime (i.e. transition) only one of them is stable. 
Furthermore when the fin base operates at the film regime, that 
is t f bT T−∆ < ∆  (i.e. three-mode boiling) there exist three 
operating points: one on the lower stable branch for which the 
tip TD corresponds to nucleate boiling, one on the unstable 
branch for which the tip TD corresponds to the transition 
boiling and one on the upper stable branch with the tip TD 
corresponding on the film boiling. Therefore the TP are the 
limiting stable operating points. Hence with the aid of Figure 3 
we can recognize the mode of heat transfer mechanism (single-
boiling or multi-boiling), the multiplicity pattern (one solution 
or three solutions) and the stability characteristics of each 
solution (stable or unstable). 

Figure 4 represents the hysteresis curves. These are the 
curves of the dimensionless base heat dissipation as a function 
of the base TD with the CCP as the free parameter, which 
correspond to the same states of Figure 3. It is interesting to 
notice that in general there exist three base TD for a given 
value of the heat flux parameter and for a given D there exist 
three base TD values as it was first observed by Haley and 
Westwater [2]. Since the unsteady states are not realizable by 
the system the system it then expected at TP the state variables 
of the system (D and bT∆ ) to move to another stable operating 
point rather than trace the unstable branch. This behavior is 
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indicated in Figure 4 for the curve with 0.7u = and for a 
rectangular profile with insulated tip. During say a heating run 
when the upper TP is reached that is TP( )u

b bT T∆ = ∆  then the 
system state variables will move in the direction of the arrow of 
the dashed line which connects the upper TP with the lower 
stable branch. A similar behavior is expected during a cooling 
run. When the lower TP is reached, TP( )l

b bT T∆ = ∆  the state 
variables will move from the lower stable branch to the upper 
stable branch in the direction indicated by arrow of the dashed 
line, which connects the two branches. 
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Figure 5. Loci of the turning points on the ( , )e buΘ  plane for 
the rectangular profile with parameter the base temperature 
difference bT∆ . 

In the bifurcations diagrams of Figure 5 a family of 
sigmoid curves are shown for a rectangular profile with an 
insulated tip with the corresponding TP in each curve of 
constant base TD. It is observed that the CCP is a triple value 
function of the dimensionless tip TD in Figure 5. For the 
construction of these graphs a different parameterization of the 
problem has been selected. A value for bT∆  is selected (i.e. 
from 35ºC to 125ºC) and the corresponding pair of variables 
( , )e buΘ  is obtained from the solution of Eq.(13). The TP are 
calculated from the relation 

 0b eu∂ ∂Θ =  (28) 

It should be noted here that the following relationship holds 
between u and bu  

 1 2
ref( )b bu u h h=  (29) 

In addition a dotted continuous line that connects the upper and 
the lower TP is plotted in Figure 5. 
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Figure 6. Stable and unstable temperature distributions for the 
rectangular, the trapezoidal and the parabolic profile. 

 iµ  from Sturm-Liouville 
i  Upper 

SS 
Unstable 

SS 
Lower 

SS 
1 -2.59 24.58 -6.57 
2 -22.34 -15.24 -41.02 
3 -61.81 -54.06 -65.23 
4 -121.03 -112.60 -136.08 
5 -199.99 -190.91 -208.08 
6 -298.68 -289.24 -308.94 
7 -417.12 -407.54 -427.09 
8 -555.29 -545.67 -564.37 

Table 5. Eigenvalues iµ  for the temperature profiles of Figure 
6 from the Sturm-Liouville. 

Local Stability Analysis 
The existence of three (two stable and one unstable) 

temperature distributions ( )xΘ  along the fin height is 
demonstrated in Figure 6 for three different profiles. The 
rectangular ( 1, 0nλ = = ), the trapezoidal ( 0.5λ = , 1n = ) and 
the parabolic profile ( 0.05λ = , 2n = ) for the value of the 
CCP 0.5bu = . The two dimensionless knot temperatures the 
nucleate-transition 0.1949n t n t bT T− −Θ = ∆ ∆ =  and the 
transition-film 0.6952t f t f bT T− −Θ = ∆ ∆ =  are also plotted as 
horizontal lines. The upper steady state temperature 
distributions for the rectangular and the trapezoidal profile 
show that the fin is operating under single-mode boiling, both 
the base and the tip TD are in the film regime. For the parabolic 
profile however is operation is being under two-mode boiling 
(FT) since the tip TD just enters the transition regime. For all 
the profiles the unsteady states are under two-mode boiling 
(FT), while the lower one is under three-mode boiling (FTN). 
The stability of a certain steady state ( )ss xΘ  to small 
perturbations i.e. ss ϑΘ = Θ +  is determined by the eigenvalues 
of the corresponding Sturm-Liouville problem (with insulated 
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tip for simplicity) Wei [30], Luss and Lee [31], Aris [32], 
Michelsen and Villadsen [26]: 

 2 ( )
( ) 0rq xd dy x u

dx dx
ϑ µ ϑ

∂   − + =   ∂Θ   
 (30) 

with 
 (0) (1) 0, 0 1xϑ ϑ′ = = ≤ ≤  

where r rq h= Θ . All eigenvalues 1 2 nµ µ µ> > > >… … of the 
Sturm-Liouville problem, Eq.(30), are real and distinct and for 
n →∞ , 2( )n nµ π→ −  but a finite number may be positive in 
which case ( )ss xΘ  is an unsteady steady state. This is exactly 
the case for the unsteady state of Figure 6 where the 
eigenvalues of each steady state are given in Table 5 and in 
Table 6. The positive eigenvalue 1 24.6µ =  is the cause of the 
unstable character of the specific temperature distribution. For 
comparison purposes the eigenvalues for the rectangular profile 
have been computed with Wei’s [30], “resonance integral” for a 
30×30 matrix using the QR algorithm. 

 iµ  from “resonance integrals” 
i  Upper 

SS 
Unstable 

SS 
Lower 

SS 
1 -2.6 24.6 -6.6 
2 -22.3 -15.2 -41.0 
3 -61.8 -54.1 -65.2 
4 -121.0 -112.6 -136.1 
5 -200.0 -190.9 -208.1 
6 -298.7 -289.2 -308.9 
7 -417.1 -407.5 -427.1 
8 -555.3 -545.7 -564.4 

Table 6. Eigenvalues iµ  for the temperature profiles of Figure 
6 from the “resonance integral” technique. 

The locus of the TP on the ( , )i jp p  plane, where ip  and 

jp  are two of the model parameters divides the plane into two 
regions with different number of solutions. Figure 7 presents 
loci of TP on the ( , )b bu T∆  plane for the rectangular profile 
with an insulated tip. It is seen that its locus of TP divides the 
( , )b bu T∆  plane into regions, one where a unique (type A) 
solution exists and another with three (type B) solutions. The 
number of solutions in each region is noted in Figure 7 inside a 
frame while the each solution locus together with the 
multiplicity pattern are given in the inserted graphs inside 
Figure 7. Its locus of TP exhibits a cusp point (CP), which is 
also indicated in Figure 7 and it is calculated from the 
following relations: 

 2 2 0b e b eu u∂ ∂Θ = ∂ ∂ Θ =  (31) 

As the base TD increases the CCP increases (except a small 
region of the lower branch between 35ºC and 50ºC), while the 
multiplicity region increases in size. 
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Figure 7. Loci of the turning points on the ( , )b bu T∆  plane for 
the rectangular profile. 

The Effect of the Profile on the Bifurcation Diagrams 
Figure 8 shows the effect of the profile on the hysteresis 

curves. As the taper ratio λ decreases from 1(0.2)0.2 for the 
trapezoidal profiles, the TP move to higher base TD. Now as 
the taper ratio remains constant ( 0.05)λ =  for the triangular, 
the convex parabolic and the parabolic profile and the profile 
exponent n increases from 1(0.5)2 the same trend is observed 
but much more intensive. Specifically the base TD increases by 
10ºC for the triangular (comparing with the rectangular one), 
by 30ºC for the convex parabolic and by 70ºC for the parabolic. 
This is clearly indicated in Figure 8. Figure 8 reveals another 
worth noticing effect of the profile on the fin heat dissipation. 
From Figure 4 it is inferred that the maximum fin heat 
dissipation is quite close to the upper TP for the rectangular 
profile (about 120ºC for 0.5bu =  in Figure 8). As the taper 
ratio decreases the corresponding base TD moves back to 30º-
35ºC and the maximum heat flux decreases about 10% on the 
average for all the profiles. This is a shift of about 100ºC on the 
operating base TD, which is taking place for a relatively slight 
change of the profile taper (from rectangular 1λ =  to 
trapezoidal 0.7λ ≅ ). 

In Figure 9 the effect of the profile on the multiplicity size 
is presented. A significant reduction is observed as a result of 
the corresponding reduction on the CCP TP for the various 
profiles.  Additionally the CP CCP decreases and the CP base 
TD remains almost unchanged. 
 

ded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of U
0 25 50 75 100 125 150 175 200 225
0.0

0.5

1.0

1.5

2.0

2.5

3.0

CCP u = 0.5

Water, ∆Tref = 100oC
Insulated Tip

H
ea

t F
lu

x 
Pa

ra
m

et
er

 D

Base Tempeature Difference ∆Tb [
oC]

 Rectangular
 Trapezoidal λ = 0.8
 Trapezoidal λ = 0.6
 Trapezoidal λ = 0.4
 Trapezoidal λ = 0.2
 Triangular λ = 0.05
 C. Parabolic n = 1.5
 Parabolic n = 2.0

 
Figure 8. The effect of the profile on the hysteresis curves. 

The Effect of the Biot Number on the Bifurcation 
Diagrams 

The effect of the Biot number will be considered only for 
the rectangular profile since for the other profiles the heat 
transfer are at the tip is significantly decreased and the heat 
transfer from the tip is unimportant. As the Biot number 
increases the multiplicity region decreases as it is presented in 
Figure 10. Figure 11 shows the remarkable effect of the Biot 
number on the hysteresis curves. Comparing with the insulated 
tip case the upper TP has increased by 80ºC while the 
maximum heat dissipation is increased by 20% approximately. 
For the lower TP however only an increase of about 10ºC is 
observed in the base TD TP while the increase in the heat 
dissipation is of the order of 5%. In addition as the Biot number 
increases the curve on the upper TP becomes sharper. 
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Figure 9. Loci of the turning points on the ( , )b bu T∆  plane for 
the five profiles. 
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Figure 10. The effect of Biot number on the locus of the turning 
points on the ( , )b bu T∆  plane for the rectangular profile. 
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Figure 11. The effect of the Biot number on the hysteresis 
curves for the rectangular profile. 
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Fin Performance and Comparison with Experimental 
Data 

Figure 12 shows the removal number for the rectangular 
profile fin where values as high as 100 can be reached. At the 
same time the dimensionless heat flux in terms of the critical 
heat flux in Figure 13 is of the order of 6. This clearly 
demonstrates that the use of an extended surface under multi-
boiling conditions constitutes a powerful heat transfer 
enhancement mechanism. In Figure 14 and in Figure 15 a 
comparison between the calculated and the experimental data 
of Liaw and Yeh [16] are presented since for the rectangular 
profile fin and the corresponding cylindrical pin fin the 
governing equations are identical. For isopropyl alcohol the 
calculations are in reasonable agreement for the upper branch 
while for the lower branch the film boiling data should be 
modified since these values are obtained from extrapolation. 
Similar results were given by Haley and Westwater [2] for the 
case of isopropyl alcohol. For water the agreement is generally 
better except of the area of the upper TP where an 
“overshooting” is predicted. It is suspected that this is because 
of the sharp peak near the nucleate-transition neighborhood 
(although the smoother rational curve was used) in conjunction 
with the high value of the transition-boiling exponent b. 
Numerical experiments with smoother boiling curves show that 
the radius of curvature at the n tT −∆  knot is increased the 
calculated curves complies with the experimental data. 
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Figure 13. The reduced heat flux rQ  of the base TD and the 
CCP for the rectangular profile fin. 

CONCLUSIONS 
In the present study a numerical bifurcation analysis has 

been carried out for longitudinal fin under multi-boiling heat 
transfer mode. Five profiles were considered: the rectangular, 
the trapezoidal, the triangular, the convex parabolic and the 
parabolic one. The theoretical model is based on the one 
dimensional heat conduction with and without heat transfer 
from the tip while a rational function of the TD were used to 
correlate the boiling heat transfer coefficient. Important 
conclusions are: 
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Figure 14. Comparison of the calculated and measured heat 
flux data for isopropyl alcohol for a cylindrical pin fin. 
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Figure 15. Comparison of the calculated and measured heat 
flux data for water for a cylindrical pin fin. 

I. The base TD bT∆ , the CCP u and the Biot number Bi 
are the important operating variables of the boiling 
system under consideration. 

II. The taper ratio λ and the profile exponent n have a 
profound effect on the fin heat dissipation and on the 
size of the multiplicity region. 

III. The Biot number has an important effect on the stable 
operating range and on the maximum heat dissipation 
for a rectangular profile fin. Moreover, as the Biot 
number increases the multiplicity region increases. 

IV. The use of an extended surface can be very beneficial 
since the removal number can take values up to 100 
while the heat flux developed shows a six-fold increase. 
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