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1. Introduction
The customary concept of Walrasian equilibrium presumes that agents are price-
taking maximizers. Thus, prices precede maximization. But where do prices come
from? More to the point: is price-taking and maximization essential?
Confining attention to transferable utility, this paper suggests - as novelties - that

• prices need not come from anywhere - they may rather emerge;
• price-taking or maximization is neither necessary and nor quite realistic;
• agents could do without public prices;
• instead of maximizing, agents could seek improvements and avoid set-backs;
• direct exchanges can, by way of repeated deals, ensure convergence to equilibrium;
• everybody may contend with idiosyncratic, local information;
• no coordination, central agency, or global knowledge need ever be required.
Arguing for these assertions, this paper circumvents all causal or logical links, if

any, between price-taking and maximization. In fact, either activity appears redun-
dant - like a superfluous limitation of the solution concept. Most important: the
process studied here below is fully driven by bilateral exchanges.
In a seminal paper, Feldman [9] also invoked just such exchanges. On so weak a

premise, but presuming smooth objectives, he already showed that equilibrium may
obtain. He required, however, that each deal yields a core outcome for the two trading
parties. Thereby, optimization again takes center stage. Related studies include [20],
[26], [38] and [42]. Many of these papers inquire whether Pareto optimality "in the
small" suffi ces for effi ciency "in the large."
This paper differs in orientation, being fully focused on possible emergence of

effi ciency and equilibrium. The approach is agent-based and computational [17], [18],
[44], [45]. While inspired by behavioral and experimental economics [43], it contends
with non-smooth data, and most important: no optimization - individual or joint -
is ever undertaken. Agents merely adapt, step by step, each move being somewhat
moderate and myopic.
Still, the chief issues remain: can pair-wise, direct deals lead non-coordinated

agents towards consistent choices? Is market equilibrium - whence Pareto effi ciency
- thereby attainable?1 Can agents proceed without public announcement of prices?
Might common prices emerge as final outcomes, identifiable only after all desirable
transactions are completed?
The paper addresses all these issues and provides positive answers. It relates to

exchange economies, production games, and price-supported core solutions [13], [31].
Unlike most studies, it plays down the importance of agents’experience, information,
rationality, and skills. Since real parties often are short on some among such desirable
requisites, what appears below is a dynamic, but fictitious experiment - fully driven
by somewhat short-sighted agents and by differences in their margins [43], [44]. Pre-
sumably, exchange goes on until no two agents can improve their lot. When stable,

1Several studies consider links between pairwise, t-wise, and overall Pareto optimality; see e.g.
[9], [10], [20], [26].
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the resulting process provides some micro-foundation for market equilibrium.
Numerous studies have offered various underpinnings of such equilibrium. While

emphasizing strategic aspects, many deal with anonymous trading posts, or merely
with two-sided markets - or with indivisible goods to be transferred from sellers to
buyers [37]. In one line of inquiry, agents meet pair-wise, maybe randomly, to bargain
[32], [38]. Other approaches evoke auctions or iterative price mechanisms [17], [40].
In contrast, the market depicted below is not composed of pure buyers and sellers;

diverse parties may demand some goods, but supply others. Goods are divisible,
transferable, and possibly numerous. Transactions could occur in fixed, periodic, or
random order. Bargaining or haggling is not precluded, but never made explicit. No
auctions, market makers, or price mechanisms need ever come into play.
At no intermediate stage must choices be effi cient, optimal, or stable somehow.

In fact, agents can come forwards with moderate competence, fairly general feasible
sets, and non-smooth objectives. Nobody must display optimizing or forward-looking
capacities. And nobody need ever develop behavioral strategies. In short, exchange
can proceed without perfection in competence, foresight, or rationality.
The setting may fit exchange of natural resources or user-rights to such. Important

instances comprise transfers of fish quotas, production allowances, pollution permits,
or rights to water usage. One may envisage that public-private enterprises coexist
with governmental agencies, the latter acting as managers or owners of commons.
Also fitting is trade of contingent claims [11]. In that case, what comes up is

mutual insurance or security exchange [12]. Markets for such items are well devel-
oped. In contrast, large investment projects are less marketable. Yet, if construed as
members of a portfolio, the value of each can be studied via the approach adopted
below [15].
The paper adds to and extends recent studies [12], [13], [14], [15]. Its analytical

innovations come by allowing simple non-optimal steps, preserving feasibility through-
out, and permitting non-smooth data. Its economic novelties amount to show that
decentralized, direct, two-sided deals may generate clearing prices. The attending
convergence result speaks for the stability of equilibrium in stationary economies -
as well as for the expediency of bilateral barters. The size of the economy appears
unimportant. Despite small numbers, the likelihood of equilibrium emergence seems
non-negligible.
In the sequel, the role of convexity is somewhat reduced. Its presence will be

emphasized precisely when and where crucial. Likewise, but more on a technical
note, classical differentiability is largely dispensed with. Only for a final step, from
pair-wise to overall effi ciency, at least one agent should make a smooth and strictly
feasible choice.2 Also on this point, paper adds the received literature which stresses
the advantages of smooth criteria across the entire agent set and either all agents
holding some common commodity or some agent holding all commodities [9]. To
bring all this out, the paper is planned as follows.

2This weakens the differentiability conditions in [9].
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Section 2 introduces the setting, defines solutions, and characterizes these.
Section 3 models exchange as direct, between only two parties at a time.
Section 4 studies convergence to market equilibrium.
Section 5 relates direct exchange to differences in gradients and margins.
Section 6 outlines three examples.
Section 7 concludes. Proofs are deferred to appendix.

2. The Setting and Equilibrium

This section introduces the chief components of the model as well as some prelimi-
naries.
Consider a fixed, finite set I of economic agents, all engaged in exchange of vectors

that belong to a finite-dimensional space X, equipped with inner product 〈·, ·〉 and
associated norm ‖·‖.3 Each vector in X represents a commodity bundle, contingent
claim, or property rights.
Agent i ∈ I already holds endowment ei ∈ X. When possible, he seeks to improve

own payoff ui(xi) ∈ R by way of repeated bilateral exchanges. His choice xi must
always belong to a non-empty closed set Xi ⊆ X.
Besides the goods that form bundles in X there is another good, construed as

transferable utility, money, or pecuniary reward, serving as means of payment [41].
Thus, agent i worships maximization of an objective

(xi, ri) ∈ Xi × R 7→ ui(xi) + ri ∈ R,

commonly referred to as quasi-linear utility. His initial monetary wealth is of no con-
sequence for subsequent choices, and income that results from trade, is unconstrained
throughout.4

For interpretation, one may regard ui(xi) as the profit of a producer who im-
plements input-output bundle xi. Alternatively, ui is a production function for one
output sold at unit price.
A profile x = (xi) ∈ XI is called an allocation iff

∑
i∈I xi =

∑
i∈I ei =: eI . It

is feasible moreover, iff xi ∈ Xi for each i. A feasible allocation is declared effi cient
provided it realizes the optimal value

uI(x) := sup

{∑
i∈I

ui(xi)

∣∣∣∣∣ ∑
i∈I

xi = x and xi ∈ Xi

}
(1)

when the aggregate endowment x = eI . Naturally assume that uI(eI) be finite.5

The main concerns here are with fully integrated market equilibrium and its pos-
sible attainment merely via repeated bilateral exchanges. So, by tacit assumption,

3The subsequent arguments and notations allow consideration of Hilbert space settings.
4Of course, no agent, present here, can create money out of nothing. Otherwise the concept of

transferable utility would become elusive.
5By convention, in (1) and elsewhere, sup ∅ = −∞.
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no auctioneer or referee will come to the fore - and no central planner, coordinator,
or invisible hand will work backstage.

Definition (Market equilibrium). A feasible allocation x = (xi), alongside a price
vector p ∈ X, constitutes a market equilibrium iff

ui(xi) + 〈p, ei − xi〉 ≥ ui(χ) + 〈p, ei − χ〉 for each i ∈ I and χ ∈ Xi.

In essence, subject to non-strategic behavior, demand should equal supply when
everybody maximizes own payoff plus the value of his net sales. Thus, the solution
concept - and the final outcome - is market clearing in a production-exchange economy
where utility and endowments are perfectly transferable.
The definition requires merely two things: first, the consistency of individuals’

plans; second, no single agent can improve his choice at equilibrium prices. Neither
price-taking behavior nor complete markets is presumed. Thus, we avoid some self-
imposed limitations embedded in the standard concept of Walrasian equilibrium.
Accordingly, no price curves come up here. And no mention is made of infinitely
elastic demand schedules - so prominent in perfect competition.
The cardinality of I plays no role; there is no concern with the size of the economy

or the effectivity of small groups [46]. The no-surplus condition, which characterizes
perfect competition [28], [33] and the marginal productivity theory of distribution
[34], does not hold; see Example 2.3.
I envisage that ui(xi) emerges as the best monetary value of a tradeable input-

output vector xi; confer Example 6.2.6 This optic partly justifies the consideration
of transferable utility and resources.
Of chief interest are various forms of dynamics. Clearly, iterated adaptations of

endowments precede the arrival, if ever, at a steady state - if any. So, the dynamic
phase deserves priority. Nonetheless, for a long perspective, I pause briefly to discuss
characterization and existence of equilibrium. To this end, recall that x∗ ∈ X is a
supergradient of a function f : X→ R∪{−∞} at x ∈ X, as signalled by writing
x∗ ∈ ∂f(x), iff f(x) is finite and

f(χ) ≤ f(x) + 〈x∗, χ− x〉 for each χ ∈ X.

With reference to (1), any p ∈ ∂uI(eI) is henceforth named a shadow price. No
convexity assumption is invoked here. Yet, shadow prices capture the essence of
solutions:

Theorem 2.1 (Characterization and existence of equilibrium).
• (On shadow pricing and equal margins). Let the function ǔi : X→ R∪{−∞} equal
ui on Xi and −∞ elsewhere. Then, for any effi cient allocation (xi),

p ∈ ∂uI(eI)⇔ p ∈ ∂ǔi(xi) for each i.

6For precisely that reason some reduced criterion ui(·) could come non-differentiable at places;
see Example 6.2.
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• (On equilibrium). Any effi cient allocation alongside any shadow price constitute an
equilibrium. Conversely, every equilibrium allocation is effi cient, and every associated
price must be a corresponding shadow entity.
• (Existence of an effi cient allocation). Assume each ui upper semicontinuous. Sup-
pose there is a subset I ⊆ I such that Xi is bounded when i ∈ I, and

∑
i/∈I ui(xi)→

−∞ as ‖(xi)i/∈I‖ → ∞. Then there exists an effi cient allocation.
• (Existence of a shadow price). Let ûI : X→ R∪{−∞} denote the smallest concave
function pointwise ≥ uI , the latter being defined in (1). If ∂ûI(eI) is non-empty and
ûI(eI) = uI(eI), then each p ∈ ∂ûI(eI) is a shadow price.

Example 2.1 (Smoothness isn’t needed). Let X = Xi = R, each ui(xi) = min {xi, 1} ,
and ei ∈ (0, 1) with

∑
i∈I ei = 1. Allocating the entire aggregate endowment to one

agent is effi cient, and p = 1 becomes an equilibrium price. Everybody takes home
payoff pei. ♦

Example 2.2 (Concavity and continuity is not necessary). The same conclusions
as in Example 2.1 hold with

ui(xi) :=


xi when xi ≤ 0,
0 when xi ∈ (0, 1),
1 elsewhere. ♦

Example 2.3 (Equilibrium with surplus). Let X = R and Xi = R+. Suppose a single
land-lord 0 ∈ I derives concave, strictly increasing payoff u0(x0) from labor input x0,
with u0(0) = 0 = e0. Each agent i 6= 0 is a landless worker, so that ui ≡ 0, but he can
deliver effort ei ≥ 0. Then, provided eI > 0, any p ∈ ∂u0(eI) becomes an equilibrium
price, and x = (eI , 0, ..., 0) is the unique effi cient allocation. The presence of the
landlord benefits each worker [33]. ♦

Theorem 2.1 invites a traditional, top-down perspective. It starts from coordinated
shadow pricing at the upper, system level and descends down to equal margins across
agents. As noted, in such a perspective, no function −ui or set Xi need be convex.7

This paper approaches matters from the opposite end. Starting from unequal
margins deep down, it moves upwards, by way of bilateral barters, to consider possible
emergence of common pricing. Upon travelling this turned-around path, convexity
comes handy at places. To indicate how, recall that for any non-empty set X ⊆ X,

NX(x) := {x∗ ∈ X | 〈x∗, χ− x〉 ≤ 0 for all χ ∈ X }

is named its outward normal cone at x ∈ X. Granted convexity, such cones Ni := NXi

help in describing effi ciency:

7What imports is only that −uI be convex with respect to one point, namely eI .



Reaching Market Equilibrium merely by Bilateral Barters 7

Corollary 2.1 (Equilibrium and one price). For each i, suppose −ui and Xi are
convex. In that case, at any allocation x = (xi), if all agents see a common price

p ∈ ∩i∈I [∂ui(xi)−Ni(xi)] , (2)

then (x, p) is an equilibrium. Conversely, if (x, p) is an equilibrium, (2) holds, and
p ∈ ∂uI(eI).

Example 2.4 (An incomplete security market). Suppose Xi is a linear subspace
of X = RS, S being a finite set of states. Then, with ui concave and differentiable, (2)
says that p equals the projection of the gradient u′i(xi) onto Xi. Agent i can, by his
market behavior, only reveal the Xi-component of his gradient; the part that resides
in the orthogonal complement X⊥i = Ni(xi) remains hidden; see [27] and Example
6.3. below. ♦

The preceding results indicate the convenience of having each Xi convex and each ui
concave. Such assumptions will, however, wait until they are needed.
So far, effi ciency was described by a dual approach - via prices. An alterna-

tive, primal perspective, which invokes feasible directions and displacements, is also
expedient - as shown next.
Given a subset X ⊆ X and point x ∈ X, let

DX(x) := {d ∈ X | x+ rd ∈ X for all r > 0 suffi ciently small} (3)

denote the cone of feasible directions. For any function f : X→ R∪{−∞} , and point
x ∈ X where f(x) is finite, let

f−(x; d) := lim inf
r→0+

f(x+ rd)− f(x)

r

denote the lower derivative in direction d ∈ X. In these terms, writing Di := DXi ,
effi ciency shows up in the form of a variational inequality (4):

Proposition 2.2 (Effi ciency and unprofitable deviations). Consider a feasible al-
location (xi). If effi cient, then∑

i∈I
u−i (xi; di) ≤ 0 for all di ∈ Di(xi) such that

∑
i∈I

di = 0. (4)

Conversely, if each −ui and Xi is convex, (4) suffi ces for effi ciency.

I henceforth take existence for granted in order to inquire: Can equilibrium come about
merely by bilateral barters? Can agents proceed without prices ever being elicited?
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3. Bilateral Barter
By assumption, all dynamics derive from bilateral barters [24], [45]. It’s appropriate
therefore to isolate a single barter from others. So, this section considers one episode
of the following recurrent sort: Two agents i, j ∈ I meet, then holding respective
bundles xi ∈ Xi and xj ∈ Xj. On such an occasion they could, in principle,

maximize ui(x+1i ) + uj(x
+1
j ) s. t. (x+1i , x+1j ) ∈ Xi ×Xj & x+1i + x+1j = xi + xj. (5)

Any optimal values ui(x+1i ), uj(x
+1
j ) would ensure Pareto effi ciency. Besides such

effi ciency, either party might also demand rationality, meaning

ui(x
+1
i ) ≥ ui(xi) & uj(x

+1
j ) ≥ uj(xj). (6)

Each pair (x+1i , x+1j ) which solves (5) subject to (6) generates a core solution to the
two-person, cooperative game at hand. Like Feldman [9] one may insist that agents
i, j indeed implement a core deal. I hesitate, however, in presuming so much. The
reasons are several:
* Resolution of problem (5) could easily overstretch the competence or diligence of
either party [17].
* Real agents rather seldom prove expert negotiators or optimizers.
* Exact resolution of (5) requires that constraints and objectives be fully revealed.
* It is likely that each agent only sees a local, linearized version of his decision problem.
Typically, he lacks a global perception of the setting. At his actual holding, he might
merely discern a ”payoff gradient”as well as a conical approximation to the feasible
set.
* Inequalities (6) reflect that utility isn’t transferable. Such is not the setting here.
In short, for greater flexibility and realism, suppose the interlocutors act with

moderate competence and some myopia. To formalize how, note that any updated
holding x+1i 6= xi of agent i defines a unit direction d := (x+1i − xi)/

∥∥x+1i − xi∥∥ of
transfer to i from j - and a positive step-size σ :=

∥∥x+1i − xi∥∥ along that direction.
Thus, presuming that direct exchange neither creates nor destroys any amount of any
commodity, there is no loss of generality in viewing the process unfold as repeated
manifestations of

x+1i := xi + σd ∈ Xi and x+1j := xj − σd ∈ Xj, (7)

with σ > 0 and ‖d‖ = 1.
The first inclusion in (7) tells that d had better belong to the cone Di(xi) =

DXi(xi); see (3). Likewise, −d should reside in Dj(xj). So, it’s indispensable that

d ∈ Dij(xi, xj) := Di(xi) ∩ −Dj(xj).

When several directions are feasible, which appear attractive? Clearly, if the aggre-
gate holding xi + xj permits strict improvement over ui(xi) + uj(xj) =: uij(xi, xj),
the agents shouldn’t miss such a chance. The increment in their joint payoff

∆uij = ∆uij(xi, xj, σ, d) := ui(xi + σd) + uj(xj − σd)− ui(xi)− uj(xj) (8)
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ought then be notable. To clarify that concern of theirs, it’s natural to invoke the
concept of steepest slope. Henceforth suppose the directional derivative

Sij(xi, xj, d) := lim
σ→0+

∆uij(xi, xj, σ, d)

σ
(9)

is well defined for any two agents i, j ∈ I at each pair (xi, xj) ∈ Xi × Xj when
d ∈ Dij(xi, xj).

Definition 3.1 (The steepest slope). At (xi, xj) ∈ Xi ×Xj the joint payoff ui + uj
to agents i, j has steepest slope

Sij(xi, xj) := sup {Sij(xi, xj, d) | d ∈ Dij(xi, xj) & ‖d‖ ≤ 1} . (10)

Section 5 invokes convexity to study this slope in detail. For now, this entity only
serves as a benchmark.
Any d that realizes the supremum in (10) qualifies as a best direction. Admittedly,

it may require some effort or skill of agents i, j to identify the said slope - and to
find an associated best direction, if any.8 So, if these objects were to play important
roles, their demanding nature could frustrate agents who show moderate enthusiasm
or excellence in computation. Put differently: assigning prominence to the steepest
slope appears at variance with this paper’s basic purpose - which is to provide a
low-complexity model of agent-based barters. These queries motivate a more relaxed
notion, one for which (10) is realized at least up to a fixed fraction ϕij ∈ (0, 1) :

Definition 3.2 (Real transfer). Agents i, j are said to make a real transfer if
(7) holds with d ∈ Dij(xi, xj), ‖d‖ = 1, and

∆uij ≥ σϕijSij(xi, xj) > 0. (11)

Proposition 3.1 (On real transfers). Whenever (xi, xj) ∈ Xi×Xj and Sij(xi, xj) >
0, agents i, j may indeed make a real transfer.

A real transfer (11) ensures, of course, that ∆uij > 0. Then, the inequalities

ui(x
+1
i ) + ∆ri > ui(xi) and uj(x

+1
j ) + ∆rj > uj(xj)

are solvable with monetary side-payments or "rewards" ∆ri, ∆rj that sum to zero;
see Example 6.1. Indeed, if only ui(x+1i ) > ui(xi), offer j additional payment ∆rj
such that uj(xj)− uj(x+1j ) < ∆rj < ui(x

+1
i )− ui(xi) and debit i that same amount.

8Quite often, however, the best direction comes up immediately, at moderate computational cost
- or after little cognitive effort. Specifically, this happens when:
• each feasible set Xi is a non-negative orthant; conf. [9] and Example 6.1 below;
• each function ui derives as the optimal value from linear or concave optimization; see Example
6.2 on production games;
• each Xi is a subspace, as illustrated by Example 6.3 on asymmetric information [11].
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Thus, real transfers can proceed by way of strictly Pareto improving steps - a most
natural condition. Put differently: money ”oils” the transaction machinery. Deals
and incentives are compatible.
Nothing will be said, however, about how agents i, j divide∆uij > 0. As explained

above, there is room for some satisfaction of either party. Fehr and Schmidt [8] report
evidence that people do not exploit their power in bilateral bargaining. Andreoni
and Bernheim [1] explain this phenomenon in terms of social images. Whatever be
the explanations, outcomes, and theories of bargaining [32], [38], those issues are
deliberately left open here.
A closer study of best directions is deferred to Section 5. The choice of appropriate

step sizes is discussed next - as part of the subsequent convergence analysis.

4. Convergence to Market Equilibrium

This section considers whether repeated, bilateral barters converge. Just for the sake
of organizing the arguments, it’s expedient to view the exchange process unfold like
an algorithm, fictitious or real, but affected by some protocol that decides who will
trade next with whom.

Repeated bilateral barters construed as an algorithm:
• Start with some feasible allocation x =(xi).
• Invoke the protocol to activate a novel agent pair i, j ∈ I.
• If Sij(xi, xj) = 0, invoke the protocol anew. Stop only when all steepest slopes
vanish.
• Otherwise, i, j make a real transfer (11).
• Continue to invoke the protocol until convergence.

Thus, at discrete stages k = 0, 1, ..... two selected agents make a real transfer. Like
any algorithm, the above schematic outline invites queries about stopping, protocols,
and convergence. These issues are addressed next, the first two only briefly.

Stopping is idealized and too stringent here. In practice, exchange terminates, and
the market settles, when all Sij(xi, xj) are negligible or so small as to pass unnoticed.
Then, no additional deals are worth any agent’s while.

Protocols can be manifold. There is room for random pairing, deliberate search,
asynchronous or parallel matching - and for different affi nities among agents. Broadly,
what imports is that each agent pair be activated repeatedly - or only when their
steepest slope is largest across the set of player pairs. Here, for lack of space, I shall
only consider two protocols:
In a first, encounters are quasi cyclic. This means that each agent pair meets at least
once during every time interval of some fixed, finite length l.
In a second, periodically, the pair that trades enjoys maximal steepest slope.
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Convergence is more delicate and the main concern. Ultimately, a common price
vector should emerge which balance the market. However, to begin with, it’s prudent
to contend with less, namely: all slopes should finally vanish. Broadly, this means
that, in the end, all prospects for bilateral improvements are exhausted.
To secure such a weak sort of convergence, I first impose quasi-cyclic protocol.

During its execution, step-sizes should dwindle, meaning

σk → 0+, (12)

yet, not too fast. To wit, for any subsequence K ⊆ {0, 1, ...} , along which some agent
pair i, j make real transfers, it should hold that

lim
k∈K

(xki , x
k
j ) = (xi, xj) & lim inf

k∈K
Sij(x

k
i , x

k
j ) > 0⇒

∑
k∈K

σk = +∞. (13)

(12) reflects learning, satisficing behavior, market maturation, and eventual reduction
in volatility. (13) requires that agents i, j who trade and see convergence along a
subsequence, with Sij bounded away from zero, shouldn’t steadily forego possible
improvements. Put differently: agents attend to good options - and respond to
proper incentives with notable drive. (Section 5 concludes with a remark on (13)).
In short, conditions (12), (13) appear reasonable. Either only concerns asymptot-

ics. In the interim agents can enjoy great freedom; they may apply maximizing steps
or inaccurate line search. And finite-time convergence isn’t excluded.

Proposition 4.1 (On exhaustion of two-sided trade options). Suppose each steepest
slope Sij is lower semicontinuous on Xi×Xj. Let encounters be quasi cyclic, transfers
real, and step-sizes dwindling, but not too fast. Then, at every accumulation point of
the resulting sequence xk = (xki ) all steepest slopes are nil.

It’s interesting to weaken the requirement (11). Broadly, one could contend with
maxi,jSij > 0⇒ maxi,j ∆uij > 0. Along that line, let the protocol periodically acti-
vate an agent pair which enjoys maximal Sij. What happens at other stages is left
unspecified. But clearly, feasibility had better be maintained throughout, and overall
payoff

∑
i∈I ui should steadily increase.

Proposition 4.2 (More on exhaustion of two-sided trade options). Suppose that pe-
riodically, agents with maximal Sij make real transfers. Also suppose trading agents
i, j use a step-size σ ≥ σij(xi, xj) where σij is lower semicontinuous and positive
wherever Sij(xi, xj) > 0. Then, provided each ui is upper semi-continuous, all steep-
est slopes are nil at every accumulation point of the resulting sequence.

Propositions 4.1&2 dealt with convergence to the set

A0 := {feasible allocation x | all Sij(xi, xj) = 0} .
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The aim is, however, to reach the set E of equilibrium allocations. Clearly, E ⊆ A0,
but alas this inclusion can be strict:

Example 4.1 (Complete trade with no common price). Consider three agents i ∈
{1, 2, 3} and two goods s ∈ S = {1, 2}. Posit X = RS, write xis := xi(s), and use
concave utility functions

u1(x1) = min {0, x11} ,
u2(x2) = min {0, x22} ,
u3(x3) = 1

2
[min {0, x31, x32}+ x31 + x32] .

Let choice be unconstrained: Xi = X. Consequently, each normal cone Ni(xi) is
degenerate everywhere, containing only 0 := (0, 0). At xi = ei := 0 the agents have
superdifferentials

∂u1(x1) = [0, (1, 0)] , ∂u2(x2) = [0, (0, 1)] , ∂u3(x3) = conv

{
(
1

2
,
1

2
), (1, 0), (0, 1)

}
.

Consequently, ∂ui(xi)∩∂uj(xj) 6= ∅ for each agent pair i, j - that is, eachSij(xi, xj) =
0 so that x ∈ A0 - but x /∈ E because ∩i∈I∂ui(xi) is empty. ♦

Presence of at least two commodities was essential in Example 4.1. With merely
one commodity available, equilibrium obtains immediately:

Proposition 4.3 (Equilibrium with one commodity9). Suppose the commodity space
is one-dimensional : X = R. Let each function −ui and set Xi be convex. Then, any
feasible allocation (xi) at which all steepest slopes are nil is also an equilibrium.

Besides the complete absence of constraints, it also distinguishes Example 4.1 that
each function ui is non-smooth. If merely one agent has a differentiable unconstrained
objective, equilibrium easily obtains. More generally, it follows forthwith

Proposition 4.4 (Single-agent smoothness and equilibrium). Suppose each func-
tion −ui and set Xi is convex. Also suppose that at every x ∈ A0, at least one agent
i has xi ∈ intXi and ∂ui(xi) a singleton. Then A0 = E.

The following main result synthesizes the preceding facts:

Theorem 4.5 (Convergence to equilibrium). Under the conditions in Theorem 4.4
suppose that the hypotheses of Propositions 4.1 or 4.2 hold. Also suppose the set of
feasible allocations is bounded. Then, the exchange process accumulates, and each
limit point is an equilibrium profile supported by a market clearing price vector.

9Examples include CO2-equivalents (as regulated by the Kyoto agreement). Otherwise, when
resource supply is at stake, water is a case in point.
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5. Differences in Gradients and Margins
Real transfers (11) was motivated in terms of the steepest slope - a rather geometric
concept. What is the underlying economic and practical significance? And how do
convex data affect such matters? These are the issues addressed in this somewhat
technical section. It can be skipped with little loss of economic substance.
I now fix attention on two agents i, j, actually holding (xi, xj) ∈ Xi×Xj. Through-

out this section, suppose data are convex in the sense that all objects −ui,−uj, Xi,
Xj are convex.
For motivation, suppose the agents see a well-defined gradient difference ∆ :=

u′i(xi)−u′j(xj) 6= 0 at (xi, xj) ∈ int(Xi×Xj). The normalized difference d := ∆/ ‖∆‖
then becomes a best direction, giving steepest slope

Sij(xi, xj, d) =
∥∥u′i(xi)− u′j(xj)∥∥ = Sij(xi, xj). (14)

How are these simple facts modified if the gradient difference isn’t well-defined or if
(xi, xj) /∈ int(Xi × Xj)? To spell out how, I recall (2) to say that agents i, j see a
common price vector iff

[∂ui(xi)−Ni(xi)] ∩ [∂uj(xj)−Nj(xj)] 6= ∅. (15)

By tacit assumption, the concerned parties need no time to decide whether (15) holds
or not. Since 0 ∈ Ni(xi) ∩ Nj(xj), it suffi ces for (15) that ∂ui(xi) ∩ ∂uj(xj) be non-
empty. When moreover, ui, uj are differentiable, this simply means u′i(xi) = u′j(xj).
Note that problem (5) amounts to sup-convolution (1) when I = {i, j} and

x = xi + xj This observation invites another take on existence of common prices:

Proposition 5.1 (A common price blocks bilateral reallocation). For convex data,
suppose there exists (x̃i, x̃j) ∈ int(Xi × Xj) such that x̃i + x̃j = xi + xj. Then, at
any optimal solution (x+1i , x+1j ) to problem (5), agents i, j see a common price vector
(15).
Conversely, if indeed they see one such vector at (x+1i , x+1j ) ∈ Xi × Xj, and

x+1i + x+1j = xi + xj, then (x+1i , x+1j ) solves (5).

Proposition 5.1, while serving as a reference, gives priority to duality and prices.
It says that two agents who see a common price vector, shouldn’t contemplate any
bilateral barter; they better walk separate ways. Put differently: when their margins
(and substitution rates) coincide, they have no incentives to make a deal.
A simplified version of Proposition 2.2 repeats the same message, but in primal

terms:

Proposition 5.2 (At bilateral optimum no common direction offers improvement).
For convex data, the pair (xi, xj) solves problem (5) iff

u′i(xi; d) + u′j(xj;−d) ≤ 0 for each d ∈ Dij(xi, xj).
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Taken together, Propositions 5.1&2 invite the following question: Suppose agents i, j
see no common price vector albeit a common feasible direction; that is, suppose

[∂ui(xi)−Ni(xi)] ∩ [∂uj(xj)−Nj(xj)] = ∅ yet Dij(xi, xj) 6= {0} .

On such an occasion, how is the steepest slope characterized? To see how, let
Pij [x] := t denote the projection of x ∈ X onto the closure Dij(xi, xj) of Dij(xi, xj).10

As one expects, such projection informs about the prospects for joint improvement:

Proposition 5.3 (The steepest slope as a projected gradient difference). For convex
data, the steepest slope equals

Sij(xi, xj) = max
{
u′i(xi; d) + u′j(xj;−d)

∣∣ d ∈ Dij(xi, xj) & ‖d‖ ≤ 1
}

= min {‖Pij [gi − gj]‖ | gi ∈ ∂ui(xi), gj ∈ ∂uj(xj)} .

In the convenient case, when (xi, xj) ∈ int(Xi ×Xj),

Sij(xi, xj) = min {‖gi − gj‖ | gi ∈ ∂ui(xi), gj ∈ ∂uj(xj)} .

If moreover, ui and uj are differentiable at xi and xj respectively, (14) holds.
The last observations indicate the possibly expedient roles played by agents with

smooth objectives and interior choice. In particular, it appears that presence of
barrier-like criteria - e.g. where Xi is an orthant, and ui a Cobb-Douglas or logarith-
mic type function - can simplify some transactions, and make many others superflu-
ous; confer the main Theorem 4.5. In short, it facilitates exchange that everybody
trade regularly with some ”smooth, interior-point”agent.
Lower semicontinuity was crucial in Propositions 4.1&2. The projected gradient

difference in Proposition 5.3 helps to argue that such continuity is natural. For the
statement, given any two sets Ci, Cj ⊂ X, their distance is

dist(Ci, Cj) := inf ‖Ci − Cj‖ = inf {‖ci − cj‖ | ci ∈ Ci, cj ∈ Cj }

Proposition 5.4 (Lower semicontinuity of the steepest slope). For convex data,

Sij(xi, xj) = dist [∂ui(xi)−Ni(xi), ∂uj(xj)−Nj(xj)]

= dist [0, ∂ui(xi)−Ni(xi)− ∂uj(xj) +Nj(xj)] .

It follows that Sij is lower semicontinuous on Xi × Xj. Further, Sij(xi, xj) = 0 iff
agents i, j see a common price (15). Hence (xi, xj) already solves problem (5) if

0 ∈ Pij [∂ui(xi)− ∂uj(xj)] .
10I ought write Pij [·, xi, xj ] for the operator Pij [·] . The pair (xi, xj) is, however, tacitly understood

or clear from the context.
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When at some feasible allocation x = (xi) all Sij(xi, xj) = 0, every agent pair detects
a common price. Accordingly, by Proposition 5.4, if the process arrives at such a
point, trade stops.11

Concluding this section is an upper bound on the payoff increment (8) - to be
followed by a remark on assumption (13).

Proposition 5.5 (Overestimating the payoff increment). Given convex data, it holds
for any unit direction d ∈ Dij(xi, xj) and suffi ciently small step-size σ > 0 that

∆uij(σ) ≤ σSij(xi, xj).

Consequently, under real transfers,

∆uij(σ)→ 0 iff σSij(xi, xj)→ 0.

A remark on assumption (13). Admittedly, the justification given for (13) might
appear somewhat ad hoc or simply geared towards suffi ciency. Yet, (13) appears
necessary as indicated next.
Consider an economy which comprises only two agents i, j who make real transfers,

have ui, uj concave, and Xi, Xj bounded so that supergradients of ui, uj are norm-
bounded by some β > 0. Thus, for any feasible allocation (xi, xj) and gi ∈ ∂ui(xi),
gj ∈ ∂uj(xj) it follows from Proposition 5.3 that

Sij(xi, xj) ≤ ‖Pij(gi − gj)‖ ≤ ‖gi − gj‖ ≤ 2 max {‖gi‖ , ‖gj‖} ≤ 2β.

Proposition 5.5 implies
∞∑
k=0

∆ukij ≤ 2β
∞∑
k=0

σk.

Consequently, the two parties would never reach an effi cient outcome if

2β

∞∑
k=0

σk < max
{
U(x)− U(x0) | x feasible

}
.

6. Three Examples
This section illustrates the exchange process, first by a simple numerical example.
Thereafter it brings out two important, fairly general instances. One concerns linear
production games; the other deals with trade of contingent claims under asymmetric
information.
11By Propositions 5.1-3, agents i, j shouldn’t barter if

* they see a common price (15), or
* they detect no proper common direction: Dij(xi, xj) = {0}, or
* their difference in margins is orthogonal to such directions: 0 ∈ Pij [∂ui(xi)− ∂uj(xj)] . In each
case, Sij(xi, xj) = 0.
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In all examples the cone Di(xi) of feasible directions is closed convex. Also, the
best direction is easily found.

Example 6.1. (Exchange when some margins are nil). Following Goldman and
Starr [20] consider agents i = 1, 2, 3, troubled by absence of double coincidence of
wants. Let S = {1, 2, 3}; use X = RS with standard inner product; choose Xi = RS+,
and posit linear objectives

u1(x1) = 2x11 + 1x12 + 0x13, e1 = (1, 1, 0),
u2(x2) = 0x21 + 2x22 + 1x23, e2 = (0, 1, 1),
u3(x3) = 1x31 + 0x32 + 2x33, e3 = (1, 0, 1).

Let agent pairs {1, 2} , {1, 3} , {2, 3} trade in that order. Start from [x0i ] = [ei],
invariably use the best direction d = Pij

[
u′i − u′j

]
and step-size σ = 1, to get

first: d = P12 [u′1 − u′2] = (0,−1, 0) ⇒ [x1i ] = [(1, 0, 0), (0, 2, 1), (1, 0, 1)] ,
second: d = P13 [u′1 − u′3] = (1, 0, 0) ⇒ [x2i ] = [(2, 0, 0), (0, 2, 1), (0, 0, 1)] ,
third: d = P23 [u′2 − u′3] = (0, 0,−1) ⇒ [x3i ] = [(2, 0, 0), (0, 2, 0), (0, 0, 2)] ,

and thus finally, the effi cient allocation. The equilibrium price p = (2, 2, 2) becomes
common (2) by choosing normals [ni] = − [(0, 1, 0), (0, 0, 1), (1, 0, 2)] ∈ ΠiNi(xi).
In each round, the two traders gain ∆uij = 1. The receiving agent gets additional

payoff 2, and the donor gives up 1. So, if the first compensates the other with 1.5,
both gain 0.5. ♦

The preceding instance invites a brief glance at an important class of economies
that feature both exchange and production:

Example 6.2: Linear production games. Let

ui(xi) := sup {y∗i · y | xi ≥ Aiyi & yi ≥ 0} . (16)

Here the ”price-vector” y∗i and the ”activity plan” yi both belong to a Euclidean
space Yi. That space and X are equipped with standard vector orders and inner
products. The linear mapping Ai : Yi → X represents a technology that consumes
various production factors - of which the bundle xi is available.12

Conveniently, by Danskin’s envelope theorem, x∗i ∈ ∂ui(xi) iff x∗i solves the dual
to problem (16), namely:

inf
{
x∗i · xi

∣∣ ATi x∗i ≥ y∗i & x∗i ≥ 0
}
.

Moreover, the cone Di(xi) is closed convex and easily computable at any feasible xi.
Indeed, if X = RS for some finite list S of goods, the index ensemble

Si(xi) := {s ∈ S | [xi − Aiyi]s = 0 and yi is optimal in (16)}
12Agent i′s feasible set Xi := u

−1
i (R).
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identifies the binding constraints. Then Di(xi) equals the ”orthant”that has R+ in
each component s ∈ Si(xi), and the entire line R in all others. Hence projection onto
Dij(xi, xj) is easily executed.
In principle, extensions to non-linear production games are immediate. Specifi-

cally, in analogy with (16), let the reduced utility

ui(xi) := sup {fi(yi) | xi ≥ gi(yi), yi ∈ Yi}

stem from convex functions −fi : Yi → R, gi : Yi → X, and a closed convex set
Yi ⊆ Y. Then, to find supergradients x∗i ∈ ∂ui(xi) - alias Lagrange multipliers - is
usually harder. But again, to identifyDi(xi) amounts only to assess which constraints
are binding.

Example 6.3: Contingent claims and asymmetric information ex post [11].
In the setting of finance or insurance, plagued by uncertainty about the future, let S
denote a finite, full set of relevant, but mutually exclusive states s ∈ S. Posit X = RS
as the linear space of all contingent claims x : S → R to money.
Such a claim x ∈ X is adapted to a partition P of S, written x ∈ A(P), if x is

constant on each part P ∈ P. Agent i is information constrained iffXi ⊆ A(Pi) for
some proper partition Pi of S. In particular, when Xi = A(Pi), agent i can identify
state s ex post only up to the part P (s) ∈ Pi which contains s. Agents i, j have
asymmetric information structures if Pi 6= Pj; see [11].
Of particular importance are instances Xi = A(Pi) for each i ∈ I. Then, since

A(Pi) is a closed linear subspace, each direction d ∈ Dij(xi, xj) = Xi ∩ Xj must be
constant on Pi ∪ Pj whenever the parts Pi ∈ Pi and Pj ∈ Pj intersect.
Many agent pairs i, j may see few feasible barters of mutual interest. In contrast,

suppose a particular party j enjoys the most fine-grained information, his state-space
partition Pj being composed only of singletons. Since Xj = X, presence of such a
well-informed ”intermediary”or broker j largely facilitates trade.
As to computation, suppose scenario s ∈ S comes up with objective probabil-

ity πs > 0,
∑

s∈S πs = 1. Endow X with probabilistic inner product 〈x∗, x〉 :=∑
s∈S x

∗
sxsπs and corresponding norm. Then, on part P of a partition P of S, the

projection Pr(x) of x ∈ X onto the subset X := A(P) equals the conditional expecta-
tion

Pr(x)s =

∑
s∈P xsπs∑
s∈P πs

for each s ∈ P . ♦

7. Concluding Remarks
When must agent-based, decentralized choices be coordinated somehow? That in-
tricate question is common to diverse fields, including computation, economics, and
political science.
This paper has considered a particularly important case - namely, endowment

exchange - and found it somewhat singular: under weak conditions, no coordination
is needed. Even quite simple modes of market operation may suffi ce for convergence.
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In fact, a market isn’t always needed. It can suffi ce that bilateral barters be the only
vehicle.
Admittedly, while emphasizing mathematical aspects, the above narrative was

scarce on institutional detail and description. Further, it considered merely two
traders at a time - and played down their anonymity. The opposite, traditional optic
- in which economic agents are linked only through perfect, fully anonymous markets
- is well studied, but not always convincing; see Kirman (2010). In particular, it does
not quite fit emerging markets.
I have, with no excuse, accommodated agents of bounded rationality, each with

a local, limited perspective. Chief concerns were with market stability. The rate
of convergence remains a secondary issue. No claims were made in that regard, and
stages were not related to real time. It deserves emphasis, however, that most markets
display a permanent bid-ask spread no less than some monetary tick ε > 0. So, for
practical purposes, what replaces the commonality of prices (2) is

∩i∈I [∂ui(xi)−Ni(xi) + εB] 6= ∅,

B being the closed unit ball. Then any p from the above intersection qualifies as
approximate equilibrium price. Upon allowing such ”fuzzy”prices, convergence may
prove fairly rapid - possibly finite.
One important obstacle has not been mentioned though, namely: The market

topology might prevent that some agents meet; only conveniently connected ”neigh-
bors”can interact; see [21], [30].13 Attainment of fully integrated market equilibrium
then becomes more problematic. In extremis, the economy might decompose into
disconnected autarkies. However, presence of well-connected middlemen - who prefer-
ably choose interior bundles and have smooth objectives - will enhance effi ciency, and,
at best, bring about convergence [39]. It appears worthwhile to explore how bilateral
exchange, as modelled above, will fare in such settings.
I have also ignored that some constraints could be implicit. To wit, only finite-

valued functions ui were admitted above. Instances like Example 6.2 may, however,
feature effective domains domui := u−1i (R) that are proper subsets of X. When
Xi is interior to domui, no problems emerge. Otherwise, agent i must care that
xi ∈ Xi ∩ domui. Such concerns motivate further studies.
To conclude, it is appropriate to mention that barters and commodity transfers,

by themselves, may generate extra cost or cause some inertia. Yet here, they were
implemented with no expense or hesitation. To mitigate this objectionable feature,
one could envisage that agent i invokes a regularized objective

ui(x) := max {ũi(x̃)− ai(x̃, x) | x̃ ∈ X} .

The underlying ũi : X→ R∪{−∞} reports his proper revenue whereas ai : X× X→ R
accounts for adjustment or transaction cost. Presumably, ai(x̃, x) ≥ 0, and ai(x, x) =
0. Quite reasonably, the regularization could also require that x̃ ∈ Xi.

13Numerous papers study such settings; see e.g. [6], [22], [29].
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Besides its appeal, that operation often brings an extra bonus: it is apt to
smoothen the resulting objective. Specifically, provided ũi(x̃) − ai(x̃, x) be strictly
concave in x̃ and differentiable in x, the maximizing x̃ = x̃(x) is unique, and - by
Danskin’s envelope theorem [7] - the derived criterion ui becomes differentiable with

u′i(x) = − ∂

∂x
ai(x̃, x).

Plainly, an agent who regularizes his objective, appears competent as optimizer. But
that feature does not square with how he was portrayed. So, although interesting, I
have not considered the effects of iterated regularizations.
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Appendix: Proofs

Proof of Theorem 2.1. In essence, the first bullet was already proved in [12]. For
completeness the demonstration is included. Define the ”death”penalty δ0(·) on X
by δ0(χ) = −∞ when χ 6= 0 and δ0(0) = 0. Note that supχ {δ0(χ)− 〈x∗, χ〉} = 0 for
any x∗ ∈ X. Now, p ∈ ∂uI(eI)

⇔
∑
i∈I

ǔi(χi) + δ0(χ−
∑
i∈I

χi) ≤ uI(χ) ≤ uI(eI) + 〈p, χ− eI〉 ∀χ ∈ X, (χi) ∈ XI

⇔
∑
i∈I

ǔi(χi) +
∑
i∈I
〈p, ei − χi〉+ δ0(χ−

∑
i∈I

χi)−
〈
p, χ−

∑
i∈I

χi

〉
≤ uI(eI) ∀χ, (χi)

⇔
∑
i∈I
{ǔi(χi) + 〈p, ei − χi〉} ≤ uI(eI) ∀(χi) ∈ XI .

Let (xi) be any effi cient allocation. Then the above string of equivalences says that
p ∈ ∂uI(eI) iff ∑

i∈I
ǔi(χi) ≤

∑
i∈I
{ǔi(xi) + 〈p, χi − xi〉} ∀(χi) ∈ XI . (17)

Consider any i ∈ I. In (17) posit χj = xj when j 6= i to have

ǔi(χi) ≤ ǔi(xi) + 〈p, χi − xi〉 for all χi ∈ X, and i ∈ I.

So, p ∈ ∂ǔi(xi),∀i. Conversely, summing the last inequalities over i yields (17). This
proves the first bullet on common margins.
For the second bullet, simply note that the very last system of inequalities amounts

to the equilibrium conditions:

ui(χi) + 〈p, ei − χi〉 ≤ ui(xi) + 〈p, ei − xi〉 for all χi ∈ Xi, and i ∈ I.

Moreover, when (χi) is a feasible allocation, summation of the said conditions gives∑
i∈I ui(χi) ≤

∑
i∈I ui(xi). That is, any equilibrium profile is effi cient. Further, by

repeating the same summation, but now with
∑

i∈I χi = χ, we obtain

uI(χ) ≤ uI(eI) + 〈p, χ− eI〉 for all χ,

hence p ∈ ∂uI(eI).
For the third bullet, suppose an allocation (xi) does not belong to the compact

set Πi∈IXi × Πi/∈IrB where B denotes the closed unit ball in X. Then, for r large
enough,

∑
i∈I ui(xi) < uI(eI). Hence existence of an effi cient allocation derives from

the upper semicontinuity of each ui.
Finally, for existence of a shadow price, observe that ∂ûI(eI) ⊆ ∂uI(eI). �
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Proof of Corollary 2.1. For any subset X ⊆ X let the extended indicator δX
equal 0 on X, and −∞ elsewhere. Then NX(x) = −∂δX(x). Suppose (2) holds for
some allocation (xi). Since Ni is empty outside Xi, we must have xi ∈ Xi - to the
effect that the allocation at hand is feasible. Further, p ∈ ∂ui(xi) − Ni(xi) amounts
to

0 ∈ ∂ [ui + 〈p, ei − ·〉+ δXi ] (xi),

which is the optimality condition for an agent i who faces price vector p. Conversely,
when (x, p) is an equilibrium, by Theorem 2.1, p ∈ ∂ǔi(xi) = ∂ui(xi)−Ni(xi). �

Proof of Proposition 2.2. Provided
∑

i∈I(xi, di) = (eI , 0), it holds that
∑

i∈I(xi +
rdi) = eI for any real r. Then, with di ∈ Di(xi) for each i, and (xi) effi cient,∑

i∈I [ui(xi + rdi)− ui(xi)] ≤ 0 for small enough r > 0, whence
∑

i∈I u
−
i (xi; di) ≤ 0.

Conversely, suppose (xi) be strictly dominated by another feasible allocation (χi).
Posit di := χi − xi to have

∑
i∈I di = 0. Clearly, when Xi is convex, di ∈ Di(xi).

Further, presuming ui concave,

u−i (xi; di) ≥
ui(xi + rdi)− ui(xi)

r
for each r > 0

so that with r = 1,∑
i∈I

u−i (xi; di) ≥
∑
i∈I

[ui(xi + di)− ui(xi)] =
∑
i∈I

[ui(χi)− ui(xi)] > 0. �

Proof of Proposition 3.1. By definition (10) there exists d ∈ Dij(xi, xj), ‖d‖ ≤ 1,
such that

Sij(xi, xj, d) ≥ ϕ
1/2
ij Sij(xi, xj).

The positive homogeneity of the directional derivatives ensures that we may take
‖d‖ = 1. For small enough σ > 0, inclusions (7) hold and

∆uij(xi, xj, σ, d) ≥ σϕ
1/2
ij Sij(xi, xj, d).

Combining the last two inequalities, (11) follows forthwith. �

Proof of Proposition 4.1. Consider the aggregate payoff function

U(x) :=
∑
i∈I

ui(xi). (18)

Real transfers (11) imply that U(xk) =
∑

i∈I ui(x
k
i ) steadily increases. Since U(xk) ≤

uI(eI) < +∞, limk→∞ U(xk) is well defined and finite. Consequently,

lim
k→+∞

σkSij(x
k
i , x

k
j ) = 0 for each agent pair i, j.
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Otherwise (11) yields limk→∞ U(xk) = +∞. Further, the entire sequence xk = (xki ),
k = 0, 1, ... is asymptotically regular, meaning∥∥xk+1 − xk∥∥→ 0. (19)

(19) follows from σk → 0 and ∥∥xk+1 − xk∥∥ = σk21/2.

For the last equality use format (7) and ‖d‖ = 1.
Let L denote the set of all accumulation points of the generated sequence xk =

(xki ), k = 0, 1, .... Suppose L is non-empty and pick any x ∈ L. Then x = limk∈K x
k

for some subsequenceK ⊆ {0, 1, ...}. If necessary, pass to a subsequence ofK in which
the lapse between consecutive members is greater than l. Assume this is already done.
I claim that Sij(xi, xj) = 0 for every i, j. To arrive at a contradiction, suppose

some agent pair i, j has Sij(xi, xj) > 0. Let κ(k) be the first stage ≥ k ∈ K at which
i, j trade. Thus emerges, by the quasi-cyclic nature of the encounters, a sequence K
of stages κ(k) ∈ [k, ...., k + l[, k ∈ K, at which i, j always trade. The asymptotic
regularity (19) ensures that x = limκ∈K x

κ. By the lower semicontinuity of Sij,

lim inf
κ∈K

Sij(x
κ
i , x

κ
j ) ≥ Sij(xi, xj) > 0.

(13) yields
∑

κ∈K σ
κ
ij =∞. Again (11) implies the contradiction limk→∞ U(xk) = +∞.

In conclusion, Sij(xi, xj) = 0 for each pair i, j. �

Proof of Proposition 4.2. Let A denote the set of all feasible allocations. Its
subset A0 := {(xi) ∈ A | all Sij(xi, xj) = 0} is of prime interest.
When x ∈ A, let dij ∈ XI have all components 0 except i, j which feature unit

vectors di and dj respectively such that di + dj = 0.
Define ϕ := minij ϕij. At each profile x ∈ A�A0 posit S(x) := maxi,jSij(xi, xj)

and

B(x) :=
{
x+1 = x+ σijdij∈ A

∣∣ σij ≥ σij(xi, xj) and U(x+1) ≥ U(x) + σijϕS(x)
}
.

In contrast, when x ∈ A0, letB(x) = {x} . This point-to-set correspondenceB : A A
is closed outside A0. Moreover, if x /∈ A0 and x+1 ∈ B(x), then U(x+1) > U(x). The
conclusion now follows from Theorem 7.3.4. in [5]. �

Proof of Proposition 4.3. Since ∂ui(xi)−Ni(xi) and ∂uj(xj)−Nj(xj) are closed
convex sets, it follows from Sij(xi, xj) = 0 that each two of them intersect; see
Proposition 5.4. Since moreover, the sets just mentioned are real intervals (maybe
degenerate), ∩i∈I [∂ui(xi)−Ni(xi)] is non-empty. Proposition 2.1 tells that any p in
this intersection serves as an equilibrium price. �
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Proof of Proposition 5.1. Let x := xi + xj and write

B(x) := {(x̂i, x̂j) ∈ X× X | x̂i + x̂j = x} (20)

for the set of two-person balanced redistributions. Also for easier notation, given a
constraint set K, the extended lower penalty function δK equals 0 on K, and −∞
elsewhere. Thus problem (5) assumes the equivalent form:

maximize ui(x
+1
i ) + δXi(x

+1
i ) + uj(x

+1
j ) + δXj(x

+1
j ) + δB(x)(x

+1
i , x+1j ).

Because B(x)∩int(Xi×Xj) is non-empty, the superdifferential operator ∂ distributes
over the sum just stated. Further, since ∂δXi = −NXi , in optimum (x+1i , x+1j ) it holds

[0, 0] ∈
[
(∂ui −NXi , ∂uj −NXj)−NB(x)

]
(x+1i , x+1j ).

NB(x)(x
+1
i , x+1j ) equals the ”diagonal”{(x∗, x∗) : x∗ ∈ X} at each (x+1i , x+1j ) ∈ B(x).

So, it follows from the preceding inclusion of [0, 0] that there exists a common price

x∗ ∈
[
∂ui(x

+1
i )−NXi(x

+1
i )
]
∩
[
∂uj(x

+1
j )−NXj(x

+1
j )
]
.

Conversely, given such a vector x∗, Corollary 2.1 tells that (x+1i , x+1j ) solves (5). �

Proof of Proposition 5.3. Recall that a concave function f : X→ R∪{−∞}
which is finite near x ∈ X, has a non-empty compact convex superdifferential ∂f(x)
and a directional derivative

f ′(x; d) := lim
r→0+

f(x+ rd)− f(x)

r
= min {〈x∗, d〉 : x∗ ∈ ∂f(x)} ; (21)

see Theorem 23.4 in [35]. Since f ′(x; d) is convex in d, it’s continuous in that variable.
This explains the first inequality. The second follows from Sij(xi, xj) =

max
d

min
gi,gj

{
〈gi − gj, d〉

∣∣ gi ∈ ∂ui(xi), gj ∈ ∂uj(xj), d ∈ Dij(xi, xj) & ‖d‖ ≤ 1
}

= min
gi,gj

max
d

{
〈gi − gj, d〉

∣∣ gi ∈ ∂ui(xi), gj ∈ ∂uj(xj), d ∈ Dij(xi, xj) & ‖d‖ ≤ 1
}

= min {‖Pij [gi − gj]‖ | gi ∈ ∂ui(xi), gj ∈ ∂uj(xj)} .

In the preceding string, the first equality used formula (21) and the definition of the
steepest slope. Since all intervening sets are non-empty compact convex, the second
equality follows from the von Neumann min-max theorem.
For the last equality, recall the following result of Moreau: Given a non-empty

closed convex cone T ⊆ X, any vector ∆ ∈ X has a unique orthogonal decomposition
∆ = t+ n into a ”tangent”t ∈ T, and a normal n ∈ N := NT (0), these components
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being perpendicular: 〈t, n〉 = 0; see Prop. 0.6.2 in [2]. Since T = Dij(xi, xj) is indeed
closed convex, let ∆ = gi − gj and t = Pij [∆] . Now the last equality in the above
string derives from the Cauchy-Schwartz inequality, using the Moreau decomposition
of the difference ∆ with respect to Dij(xi, xj). �

For the proof of Proposition 5.4 we need a

Lemma (The distance between compact convex translates of closed convex cones).
Suppose Ci = Gi−Ni, Cj = Gj−Nj, where Gi, Gj are non-empty compact convex sets,
and Ni, Nj are closed convex cones. Define dual cones

Ti := {x∗ | 〈x∗,Ni〉 ≤ 0} , Tj := {x∗ | 〈x∗,Nj〉 ≤ 0} ,

and posit Tij := Ti ∩ −Tj. Then, writing Pij for the orthogonal projection onto Tij,
it holds

dist(Ci, Cj) = min {‖Pij(gi − gj)‖ | gi ∈ Gi, gj ∈ Gj } = ‖vij‖ . (22)

The said distance is attained.

Proof of the Lemma. Bauschke and Borwein [3] have already considered the
case where Gi, Gj are singletons gi, gj respectively. The more general result derives
from dist(Ci, Cj) =

inf {dist(gi −Ni, gj −Nj) | gi ∈ Gi, gj ∈ Gj } = min {‖Pij(gi − gj)‖ | gi ∈ Gi, gj ∈ Gj } .

For the attainment of dist(Ci, Cj) simply note that Gi,Gj are compact convex. �

Proof of Proposition 5.4. Posit Gi := ∂ui(xi), Ni := Ni(xi), and similarly,
Gj := ∂uj(xj), Nj := Nj(xj), to get (22). The lower semicontinuity of Sij de-
rives from the fact that all point-to-set correspondences in (22) are (upper) outer
semicontinuous [36]. Further,

Sij(xi, xj) = min {‖Pij(gi − gj)‖ | gi ∈ Gi, gj ∈ Gj } = dist(Ci, Cj).

Here the left hand equality derives from Proposition 5.3 and the other from (22). �

Proof of Proposition 5.5. Since both functions ui, uj are concave, it holds for
any supergradients gi ∈ ∂ui(xi), gj ∈ ∂uj(xi), direction d, and step-size σ that

ui(x
+1
i ) ≤ ui(xi) + σ 〈gi, d〉 and uj(x

+1
j ) ≤ uj(xj)− σ 〈gj, d〉 .

When moreover, d ∈ Dij(xi, xj), adding these two inequalities yields

∆uij ≤ σ 〈gi − gj, d〉 ≤ σSij(xi, xj) ‖d‖ . �
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