Gauging a quantum heat bath with dissipative Landau-Zener transitions

Martijn Wubs^{* 1}, Keiji Saito², Sigmund Kohler¹, Peter Hänggi¹, and Yosuke Kayanuma³

(1) Institut für Physik, Universität Augsburg, Germany

(2) Department of Physics, Graduate School of Science, University of Tokyo, Japan (3) Department of Mathematical Science, Osaka Prefecture University, Japan

I. Abstract

We calculate the exact Landau-Zener (LZ) transition probabilities for a qubit with arbitrary linear coupling to a bath at T = 0 (K). The bath causes time-dependent relaxation of the qubit; dephasing has little or no influence. Applications include circuit QED [1,2] and adiabatic quantum computation. A qubit undergoing LZ transitions is a robust "bath detector" [3].

III. Method and "No-go-up theorem" [1,3]

Method: The interaction $V = \sigma_x [\Delta/2 + \sin\theta \sum_{j=1}^N (\gamma_j/2)(b_j + b_j^{\dagger})]$ enables bit flips. A polaron transformation diagonalizes $H_0(t) = H(t) - V$ with eigenstates $\{|\uparrow, \mathbf{n}_{\uparrow}\rangle, |\downarrow, \mathbf{n}_{\downarrow}\rangle\}$. Starting in initial ground state $||, \mathbf{0}_1\rangle$, what is the survival probability $P_{1-1}(\infty)$? Calculate the interaction-picture evolution operator $\tilde{U} = T \exp[-(i/\hbar) \int_{-\infty}^{\infty} d\tau \, \tilde{H}(\tau)]$. Hamiltonian $\tilde{H}_{m,n}(t)$ involves the time-independent matrices W_{mn}^{\pm} as given in Ref. [3],

 $\tilde{H}_{\mathbf{m},\mathbf{n}}(t) = e^{\mathrm{i}(\mathbf{m}-\mathbf{n})\cdot\mathbf{\Omega}t} \{ W_{\mathbf{m}\mathbf{n}}^{+} e^{\mathrm{i}\nu t^{2}/2\hbar} |\uparrow,\mathbf{m}_{\uparrow}\rangle\langle\downarrow,\mathbf{n}_{-}| + W_{\mathbf{m}\mathbf{n}}^{-} e^{-\mathrm{i}\nu t^{2}/2\hbar} |\downarrow,\mathbf{m}_{-}\rangle\langle\uparrow,\mathbf{n}_{+}| \}.$

IV. Transverse coupling ($\theta = \pi/2$) \Rightarrow Relaxation [2]

Spectral density $J(\omega) \equiv \sum_{j=1}^{N} (2\gamma_j/\hbar)^2 \delta(\omega - \Omega_j)$. Exact LZ transition probability depends on integrated spectral density $S = \frac{\hbar^2}{4\pi} \int_0^\infty d\omega J(\omega)$:

V. Diagonal coupling $(\theta = 0) \Rightarrow$ Dephasing [3]

 $P_{\uparrow \rightarrow \downarrow}(\infty) = 1 - e^{-\pi \Delta^2/2\hbar v}$: As for an isolated qubit!

Figure 4: LZ dynamics for a qubit diagonally coupled to three oscillators. Dashed line: *standard* LZ transition probability. \Rightarrow At T = 0 (K), LZ transi-tions are fully robust under dephasing.

VI. Gauging a quantum heat bath [3]

Central result: Exact transition probability for arbitrary bath coupling:

 $P_{\uparrow \to \downarrow}(\infty) = 1 - e^{-\pi W^2/2\hbar\nu} \quad \text{with} \quad W^2(\Delta) = \left(\Delta - E_0 \sin\theta\cos\theta\right)^2 + S \sin^2\theta,$

which involves the reorganization energy $E_0 = \frac{\hbar}{4\pi} \int_0^\infty d\omega J(\omega)/\omega$. Gauging: measure E_0 and $S \Rightarrow$ fix parameters of spectral densities $J(\omega)$.

Idea: vary Δ to find Δ_{min} for which $P_{\uparrow \rightarrow \downarrow}(\infty)$ is minimal. Δ_{\min} gives E_0 and $P_{\uparrow \rightarrow \downarrow}^{\min}(\infty)$ gives S. For $J(\omega) = \alpha \omega e^{-\omega/\omega_c}$, $\hbar \omega_c = S/(E_0)$. Figure 5: Final transition probability $P_{\uparrow \rightarrow \downarrow}(\infty)$ as a function of intrinsic interaction Δ , for several values of coupling angle θ . Parameters: $E_0 = 2\sqrt{hv}$ and

 $S = 0.5\hbar v$. Weak bath coupling gives $E_0^2 \ll S \Rightarrow$ LZ robust under dephasing.

VII. Applications

E.g. Circuit cavity QED, nanomagnets, adiabatic quantum computation.

Figure 6: Cavity QED in a photonic crystal. Atom and defect interact.

computation. Here a 3-qubit algorithm

Acknowledgments and references

This work has been supported by the DFG through SFB 484 and SFB 631, and by a grant from the Ministry of Education of Japan.

[1] K. Saito, M. Wubs, S. Kohler, P. Hänggi, and Y. Kayanuma, Quantum state preparation in circuit QED via Landau-Zener tunneling, Europhys. Lett. 76, 22 (2006) [2] M. Wubs, S. Kohler, and P. Hänggi, Entanglement creation in circuit QED via Landau

Zener sweeps, Physica E (accepted); cond-mat/0703425. [3] M. Wubs, K. Saito, S. Kohler, P. Hänggi, and Y. Kayanuma, Gauging a quantum heat

bath with dissipative Landau-Zener transitions, Phys. Rev. Lett. 97, 200404 (2006). * martijn.wubs@physik.uni-augsburg.de