
Nonlinear Dual Mode Adaptive Control of PAR2 : a 2-dof Planar
Parallel manipulator, with Real-time experiments

G. Sartori Natal and A. Chemori and F. Pierrot and O. Company

Abstract— This paper deals with nonlinear dual mode adap-
tive control of a redundant manipulator for a pick-and-
place scenario with high acceleration (20G). For performance
comparisons, a conventional Proportional-Derivative (PD) con-
troller has also been implemented. In this context, the experi-
mental testbed is not equipped with velocity sensors. Therefore,
a high-gain observer has been implemented to estimate the ar-
ticular velocities. Real-time experiments show the performance
improvements obtained by the proposed control approach in
comparison to the conventional one.

I. INTRODUCTION

Par2 is a new two-degree-of-freedom (do f ) parallel ma-

nipulator that is able to produce two translations in the

vertical plane, and can reach accelerations above 40G. The

proposed architecture of this robot can guarantee that it can

be lighter and stiffer than a classical 2 do f planar mechanism

[13]. One other advantage of this parallel robot is that it has

the possibility to keep the motors fixed on the base, allowing

fast movements to be performed [7].

In order to achieve such accelerations and perform an

accurate movement, a good controller must be used. By using

simple linear single-axis controllers (such as a Proportional

Derivative (PD) controller), the tracking performance can

be limited, especially when the robot has highly nonlinear

dynamics and/or when the velocities/accelerations are high

[7].

During last decades, adaptive control systems have been

widely developed. The main principle of this control tech-

nique is to adjust automatically the controller parameters in

the case of unknown and time-varying process parameters

in the aim that a desired degree of the performance index

is met. One of the main characteristics of adaptive control

systems is their capability to tune the controller parameters

in real-time from the measurable information of the closed-

loop system.

In the literature, there are mainly four techniques of

adaptive control, namely Gain Scheduling, Model Reference

Adaptive Control, Self-tuning controllers and Dual control.

They can be classified into two classes: Direct methods and

indirect methods. In the first case, the adjustment rules tell

us directly how the controller parameters should be updated.

This class of schemes includes: Gain scheduling [15] and

Model Reference Adaptive Control [10].
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In the former, a set of measurable variables that correlate

with eventual changes in the process dynamics is used to

adapt the controller parameters. The latter was proposed to

solve the problem in which the performance specifications

are given in terms of a reference model.

The second class concerns indirect methods, where the

estimates of the process parameters are updated and the

controller parameters are obtained through the solution of

a design problem using estimated parameters. This class

includes: Self-tuning controllers [1] and Dual control [5].

The three first adaptive controllers do not take into account

parameter uncertainties in the design stage. However, if non-

linear stochastic control theory is used, it will significantly

improve the performance of the control approach. Already in

1960, A. Feldbaum indicated that adaptive control systems

based on the certainty-equivalence (CE) approach are often

far away from being optimal. Instead of the CE approach,

he introduced the principle of adaptive dual control [5]. The

design of such a controller takes into account uncertainties

in the estimated parameters, so that it will be able to take

special actions when it has poor knowledge about the system.

Different model-based adaptive controllers have been used

until now for the control of parallel robots. In [7], a nonlinear

adaptive feedforward controller was proposed for the control

of the Hexaglide (a 6 do f parallel robot), in addiction to a PD

feedback term. The main objective of this work was to show

the convergence of the adaptive parameters by simulation.

In [6], a scheme similar to the so called computed torque

controller 1 [4] was also proposed to control the Hexaglide

robot, but with experimental results that showed a good

improvement in the trajectory tracking with relation to a PD

controller, although no control signal has been presented.

In this paper, a nonlinear Dual Mode (DM) controller,

originally refered as ’binary’ in [8], is proposed to control

the Par2 parallel manipulator for a pick-and-place application

with high acceleration. This controller consists in the one

proposed by Slotine and Li in [16], with the addition of a

projection to the parametric adaptation law, such that it would

be possible to guarantee that the estimated parameters would

be bounded.

This paper is organized as follows. In section 2, a

description of the Par2 parallel robot is presented. Section

3 details the proposed control algorithm. In section 4,

the experimental results are presented and commented. In

section 5, a conclusion about the current results and the

1With the modification that the dynamic model is computed from the
desired values, instead of the actual joint coordinates.
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expectations on the future performance of Par2 robot with

the proposed controller is made.

II. PAR2 PROTOTYPE: DESCRIPTION AND

DYNAMICS

A. Description of the Par2 robot

In the aim of application of the proposed control scheme,

the prototype Par2 will be used. It’s a two-dof parallel

manipulator, illustrated in figure 1, with the following char-

acteristics:

• the platform 6© is a rigid body,

• only the two inner arms 3© are actuated,

• the two other arms 4© are linked to the frame 1© through

passive revolute joints,

• inner arms 3© and 4© are connected to the platform 6©
with pairs of rods 5© mounted on ball joints 7©,

• the rotations of the arms 4© are coupled in order to

guarantee planar motions along x and z axes.
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Fig. 1. The two-dof parallel manipulator Par2: view of the robot (left),
schematic view of its mechanical structure (right)

The proposed architecture of the prototype has the following

advantages:

• the two coupled passive chains made a constrained

system supporting almost all the moments and force

besides the driving forces,

• it can be designed with existing technologies and parts

(can be made as light as for Delta [3] or Par4 [11]

parallel robots)

• it is symmetric with respect to motion plane and the yoz
plane in its centered position

The proper functioning of this two-dof parallel manipulator

is guaranteed by the coupling of the rotation of arms 4©.

This constrains the robot’s platform to evolve in one plane.

The coupling means that the rotation of the first arm in the

clockwise direction involves the rotation of second one in

the counterclockwise direction.

Remark 1: The two actuated articulations of the robot

are equipped with TPM50 Alpha motors coupled with gears

having a reduction ratio of 21. For more details about the

prototype Par2, the reader is referred to [13].

B. Dynamic model of the robot Par2

The Lagrangian nonlinear dynamic model [14], [18] of the
manipulator Par2 is given by:

Ieq

[
q̈1

q̈2

]
= τ − fd

[
sign(q̇1)
sign(q̇2)

]
− fv

[
q̇1

q̇2

]
−

g
2
(M1 +M2)

[
L1 cos(q1)
L2 cos(q2)

]
+ JT

(
MpJ̇(q, q̇)q̇−g

[
Mp
Mp

]) (1)

where Ieq = Idrv + I f + Ia + JT MpJ, Idrv is the motor driver

inertia, I f is the forearm inertia, Ia is the arm inertia, J is the

jacobian matrix, Mp is the mass of the platform of the robot,

g is the gravitational acceleration, fv is the viscous friction

coefficient, fd is the dry friction coefficient, M1 and M2 are

the masses of the arms, L1 and L2 are their lengths.

This dynamic model can be written in the following matrix

form:

D(q)q̈+C(q, q̇)q̇+G(q)+ f (q, q̇) = τ (2)

where

D(q) ∈ R
2×2 is the inertia matrix,

C(q, q̇) ∈ R
2×2 is the matrix of the centrifugal and

Coriolis terms,

G(q) ∈ R
2 is the vector of gravitational forces,

f (q, q̇) ∈ R
2 is the vector of friction forces,

τ ∈R
2 is the vector of control inputs (torques generated

by the actuators),

q =
[

q1

q2

]
∈ R

2 is the vector of articular positions,

q̇ =
[

q̇1

q̇2

]
∈ R

2 is the vector of articular velocities,

q̈ =
[

q̈1

q̈2

]
∈R

2 is the vector of articular accelerations.

III. PROPOSED SCHEME: A NONLINEAR

ADAPTIVE DUAL MODE CONTROLLER

The Dual Mode controller consists basically in the uti-

lization of a high adaptation gain together with a projection

of the estimated parameters. Then, to large tracking errors

in the transitory stage, the controller behaves approximately

as a sliding mode controller, generating an exponential con-

vergence to a residual domain arbitrarily small. To smaller

errors, it behaves as a parametric adaptation law. Other

important advantages of the adaptation law in dual mode

with respect to other adaptation laws or known robust control

algorithms are listed below:

• Generation of continuous control signals,

• Improvement of the robustness of the system,

• Limitation of the values of the estimated parameters

through a projection, which has the effect of reducing

the effective gain of the controller when the tracking

error increases (reducing the sensitivity to measurement

noises).

2115



A. High-Gain Observer Based Control Algorithm

The desired articular trajectory denoted by qd(t) is sup-

posed uniformly bounded, twice continuously differentiable

with its two first derivatives q̇d(t) and q̈d(t) also uniformly

bounded. In order to obtain this trajectory, the Cerebellum

Path Generator [12] based on adept cycle is used. It generates

the desired cartesian trajectories, which will be the input for

the direct geometric model of the robot [13]. This scheme is

illustrated in the diagram of figure 2:

Cerebellum

PATH
GENERATOR

Par2

GEOMETRIC
MODEL

Desired
Cartesian
Trajectory

Desired
Articular
Trajectory qd.

qd

..qd
...
...

...

Fig. 2. Generation of the desired articular trajectories

According to [16], the following errors are introduced:

q̃ = qd −q , ˙̃q = q̇d − q̇ , s = ˙̃q+λ q̃ , q̇r = q̇d −λ q̃ (3)

where q̃ is the position error, qd is the desired joint

position, q is the measured joint position, ˙̃q is the velocity

error, s is an auxiliary error, λ is a positive constant, and q̇r
is the denominated ’reference velocity’ [16],[17].

Assume that only the articular positions are measured

(which is the case of the Par2 manipulator). Therefore the

easiest way to compute the articular velocities consists in

a numerical derivation. However, if the measured positions

are noisy or do not have a good enough resolution, this

technique will amplify the noise/quantization effect. In order

to overcome this problem, an observer-based technique is

proposed. It consists in estimating the joint velocities by

means of a High-gain observer (HGO) [9], described by the

following:

{
˙̂x1 = x̂2 + 1

ε η1(x1 − x̂1)
˙̂x2 = 1

ε2 η2(x1 − x̂1)− q̈d + F̂(x̂,qd , q̇d)+ Ĥ(x̂1,qd)τs (4)

where
• x1 represents the error of the system (x1 = q̃) and x2, its

derivative,

• x̂1 and x̂2 represent the estimated states,

• ε , η1 and η2 are positive constants,

• F̂(x̂,qd , q̇d) = −D−1(x1,qd)[C(x,qd , q̇d)(x2 + q̇d) +
G(x1,qd)],

• Ĥ(x̂1,qd) = D−1(x1,qd),
• τs is the saturated torque (to avoid the ’peaking phe-

nomena’).
The control architecture is illustrated in figure 3, and will

be detailed in the following:

As illustrated in figure 3, the control law consists in the

sum of three terms: an ’adaptive term’, a ’smooth variable
structure term’ and a ’stabilizing term’, and is given by:

τ = Y â+ d̄Sat(αs)+K.s (5)
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Fig. 3. Block diagram of the proposed control scheme

where

Sat(αs) =
αs

||αs||+1
(6)

being d̄, α and K positive constants, Sat(.) is a continuous

function with respect to its argument (with continuous partial

derivatives and components limited to the interval [−1,+1]).
The vector â represents an estimate of the unknown parame-

ters of the system given by the vector a, and Y is the regressor

vector (based on the dynamic model of the system). The

adaptation of the parameters is given by:

˙̂θ = −σθ̂ − γsY (7)

where

θ̂ = â−anom (8)

is the difference between the currently estimated values

and the nominal values of the parameters. The variable σ is

given by the following:

σ =
{

0, if ||θ̂ || < Mθ or σeq < 0

σeq, if ||θ̂ || ≥ Mθ and σeq ≥ 0
(9)

σeq = − γsY θ̂
||θ̂ ||2 (10)

being Mθ the maximum possible value (supposed known)

of the norm of the estimated deviation of the parameters with

relation to their nominal values.

Let us now consider the dynamic model (2) with the

estimates of the system parameters â:

D(q, â)q̈+C(q, q̇, â)q̇+G(q, â)+ f (q, q̇, â) = τ (11)

the regressor vector Y =Y (q, q̇, q̇r, q̈r) can then be computed:

D(q, â)q̈r +C(q, q̇, â)q̇r +G(q, â)+ f (q, q̇, â) = Y â (12)

Note that in (12) we use q̇r and q̈r instead of q̇ and q̈. The

key idea comes from eliminating undesirable steady-state

position errors by restricting them to evolve on a sliding

surface [16] such as in robust sliding mode control [2].
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By neglecting the mass of the platform and the dry

friction, these terms become D(q, â) = Imotor +Iarm +I f orearm,

f (q, q̇, â) = fv and:

G(q, â) = −g
2
(M1 +M2)

[
L1cos(q1)
L2cos(q2)

]
(13)

where

Imotor =
[

Im 0

0 Im

]
, (14)

Iarm =
[

Ia 0

0 Ia

]
, (15)

I f orearm =
[

L2
1

m2
2 0

0 L2
2

m2
2

]
(16)

By rewriting the dynamics of the system such that it has

the form given in (12), one can find that:

Y =
[

q̈1r 0 q̇1r −L1cos(q1)
0 q̈2r q̇2r −L2cos(q2)

]
(17)

and

â =

⎡
⎢⎢⎣

â1

â2

â3

â4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Im + Ia +L2
1

m2
2

Im + Ia +L2
2

m2
2

fv
g
2 (M1 +M2)

⎤
⎥⎥⎦ (18)

IV. REAL-TIME EXPERIMENTAL RESULTS

The objective of this section is to present real-time exper-

imental results of the application of the proposed control

scheme described in section III to the Par2 parallel ma-

nipulator described in section II. A PD controller was also

implemented for a performance comparison with respect to

the proposed controller.

The platform evolves in the XOZ plane (being X the

horizontal axis and Z the vertical axis). The desired cartesian

trajectory to be tracked by the Par2 parallel robot is a usual

’pick-and-place’ trajectory, and its parameters are described

in table I. The parameters of the proposed control approach

are summarized in table II.

TABLE I

PARAMETERS OF THE CARTESIAN REFERENCE TRAJECTORY

Parameter Description Value
(xdi ,zdi ) Initial desired cartesian position

in the plane XOZ
(-0.35 m,-0.95 m)

(xd f ,zd f ) Final desired cartesian position in
the plane XOZ

(0.35 m,-0.95 m)

ẋmax
d Maximum cartesian velocity 8m/s

ẍmax
d Maximum cartesian acceleration 20G

This experimental scenario deals with the control of the

parallel manipulator for one cycle of a pick-and-place tra-

jectory, that is, the robot’s platform has to go (as illustrated

in figure 4) from the initial cartesian position (xdi ,zdi) to the

desired final cartesian position (xd f ,zd f ) and then return to

TABLE II

PARAMETERS OF THE CONTROL APPROACH

Parameter Description
Kp = 94.5 Proportional gain
Kd = 2.1 Derivative gain
λ = 25 Positive constant
K = 2I Matrix gain

d̄ = 2.5 Smooth variable structure gain
α = 0.05 Smooth variable structure slope

ε = 0.002, η1 = η2 = 1 HGO gains
Mθ = 0.25 Maximum value of the norm of the adaptive

parameters’ deviation
γ = 0.3345 Adaptive gain
Ts = 0.0005 Sampling time (s)

n = 3 Number of cycles

the initial one (xdi ,zdi). The corresponding cartesian refer-

ence trajectory and the illustration of the robots movements

are plotted in figure 4.

x

z (xdi,zdi) (xdf,zdf)

x

(-0.35,-0.95)m (0.35,-0.95)m
z 0.

02
5m

0.7m

Fig. 4. Illustration of the robot’s movements (top) and the desired cartesian
trajectory x-z in a larger scale (bottom)

The trajectory tracking obtained by the PD controller and

by the DM controller for 20G is shown in figure 5, the

tracking errors are shown in figure 6, and the control inputs

are shown in figure 7. The real-time implementation of both

controllers was made with a sampling time of 0.5msec. In

such scenario, the main control objective is to have the small-

est tracking error possible, specially on the final positions

of the trajectory. These positions occur at t ∈ [0.125,0.175]
(final desired position) and at t ∈ [0.325,0.375] (back to the

initial desired position).

By analyzing figures 5 and 6, it is possible to notice that

the DM controller has a considerably smaller tracking error

than the PD controller during all the trajectories tracking,

specially in the stop points, which is the most important

objective of this experiment. The PD controller keeps the
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Fig. 6. Tracking errors for the PD controller (dashed) and for the DM
controller (continuous)

tracking errors inside the limits of [−4.15◦,3.3◦] during all

the trajectories, the DM controller keeps it inside the limits

of [−2.8◦,1.9◦] (peak-to-peak improvement of approximately

37%). And concerning the stop points, the PD controller

generates errors inside [−2.3◦,2.3◦] while the DM controller

generates errors inside [−0.7◦,0.7◦] (peak-to-peak improve-

ment of approximately 70%).

Concerning the control signals shown in figure 7, it is

possible to notice that the PD controller was delayed in

comparison to the DM controller, and the amplitudes of both

signals were roughly similar.

As it was noticed above, Par 2 is equipped with TPM50
Alpha motors of a maximum torque of 483 N.m, therefore

according to figure 7 of the generated torques, we conclude

that this bound is largely satisfied, but it should also be

checked that the power requirement remains within the

admissible limit.

To check the admissibility of the required power of the

actuators, the idea is to plot their absolute torques versus
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Fig. 7. Torques for the PD controller (dashed) and for the DM controller
(continuous)
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Fig. 8. Absolute torques of the actuators versus their absolute angular
velocities for the PD controller, and admissible region

their absolute angular velocities, and to check if the obtained

curves remain within the admissible region given by the

manufacturer. These curves are plotted in figure 8 (for the PD

controller) and in figure 9 (for the DM controller). According

to the obtained results, it is easy to conclude that the required

power of the actuators is admissible for both controllers.

The performance details of the two controllers are summa-

rized on table III. The obtained movements of the robot while

tracking the pick-and-place reference trajectory is illustrated

by the video accompanying the paper.

V. CONCLUSIONS AND FUTURE WORKS

This paper deals with a nonlinear adaptive Dual Mode

controller for the parallel manipulator (Par2), for a pick-and-

place trajectory tracking with an acceleration of 20G. The

obtained experimental results show that the Dual Mode (DM)

controller has a considerably better performance than the

conventional Proportional-Derivative (PD) controller. In the
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TABLE III

PERFORMANCE COMPARISON BETWEEN THE PROPOSED CONTROL

APPROACH AND A CONVENTIONAL PD CONTROLLER

Performance PD DM
Error peaks [−4.15◦,3.3◦] [−2.8◦,1.9◦]

Stop point errors [−2.3◦,2.3◦] [−0.7◦,0.7◦]
PD controller delayed in comparison to the DM controllerControl signals
Roughly similar amplitude values

future, the proposed control approach will be evaluated for

higher accelerations and also for different load conditions.
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