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Abstract: In examples of reinforcement learning where state 
space is continuous, it seems impossible to use reference tables 
to store value-action .In these problems a method is required for 
value estimation for each state-action pair  .The inputs to this 
estimation system are (characteristics of)  state variables which 
reflect the status of agent in the environment .The system can be 
either linear of nonlinear .For each member in set of actions of 
an agent, there exists an estimation system which determines 
state value for the action .On the other hand, in most real world 
problems, just as the state space is continuous, so is the action 
space for an agent .In these cases, type 2 type 2 fuzzy systems 
may provide a useful solution in selection of final action from 
action space .In this paper we intend to combine reinforcement 
learning algorithm with fuzzified actions and state space along 
with a linear estimation system into an intelligent systems for 
parking Trailers in cases where both state and action spaces are 
continuous .Finally, the successful performance of the proposed 
algorithm is shown through simulations on trailer parking 
problem . 

Keyword: Reinforcement Learning; Type 2 type 2 fuzzy 
Systems; Trailer Parking Problem; SARSA Algorithm.  

I. 0BINTRODUCTION 

Learning is the ability to improve behavior based on 
previous experiences and observations  .Machine learning 
was proposed in artificial intelligence in order to create 
learner machines and therefore higher levels of flexibility 
and intelligence .If equipped with learning tools, a machine 
can constantly improve its performance and increase its 
efficiency .Reinforcement learning is a wide area of research 
in machine learning [1-22]. In reinforcement learning, agent 
attempts to improve its behavior based on trial and error and 
using its experiences  .Agents can observe environment 
characteristics which form the state space for learner  .Then, 
during each interval, agent influences the environment 
through some operations  .Therefore, in the next interval, 
different inputs are fed to the agent based on their previous 
actions .In addition to these new inputs, each agent receives a 
reinforcement signal called “reward” which shows the 
appropriateness of the previous action  .Reward can assume 
positive or negative values regarding the appropriateness of 
the previous action .In limited discrete spaces, value of each 
action for each state is stored in a reference table called Q 
Table [1, 2, 5]. Each row of this table represents a state while 
each column corresponds to an action  .Agent makes 
decisions based on this table and its policies. 

 However, in larger and more complex environment 
where state space is continuous, it is virtually impossible to 

use reference tables  .The problem becomes more serious 
when action state is also continuous and not contained to a 
limited number of actions. One way to generalize states in a 
continuous space and to produce continuous sets of actions is 
to employ type 2 type 2 fuzzy inference systems [23] In type 
2 type 2 fuzzy environments, a number of membership 
functions or type 2 type 2 fuzzy sets are defined over the 
range of each variable; each variable is then described 
according to its membership to any of these type 2 type 2 
fuzzy sets [6, 7, 18, 19] Type 2 type 2 fuzzy rules allow the 
system to perform human-like inference under uncertainty 
[23].  

In this paper, we attempt to employ SARSA algorithm – 
a well-known algorithm in reinforcement learning [1] 
combined with type 2 fuzzy logic for cases where both state 
and action spaces are continuous  .Then, we try to improve 
system efficiency using estimation systems for value-action 
functions .Finally, the system is applied to intelligent Trailer 
parking problem  .The problem is defined as designing an 
automatic controller for parking a Trailer with forward and 
backward movements [24].  Here, we assume that Trailer 
driver is not an expert and his/her knowledge can not be used 
in control and simulations; rather, the intelligent agent should 
learn how to park the Trailer based on trial and error . 

The paper is organized as follows. Section II describes 
the proposed algorithm;  Trailer parking problem is 
introduced in Section III where the proposed algorithm is 
used to find a solution to the problem; Section IV provides 
simulation results; and finally, the paper concludes with 
Section V and some suggestions. 

II. 1BTHE PROPOSED ALGORITHM  

In this chapter we introduce type 2 fuzzy 
State-Action-Reward-State-Action (SARSA) algorithm with 
linear value estimation .First, we define type 2 fuzzy sets in 
the problem environment and over range of actions for 
agents .In this case, each rule Ri is related to a region in state 
space corresponding to an action in the action set  .Each 
action in the rule has a value (Q) which is used by the agent 
to select a particular action  .In other words, the table Q is 
extended in a way that each row points to a set of states 
instead of only one state; as well, each column represent as 
set of actions .These sets are type 2 fuzzy sets which cover 
the whole state and action space .This leads to definition of 
one element as ( )ji asQ ~,~  where both is~ and ja~  are type 2 
fuzzy sets . 
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As mentioned earlier about reinforcement learning 
algorithms, this element represents a space-action value 
which is estimated by a linear estimator in the proposed 
algorithm using weighted combination of state variables   .
Each row of the table is in form of a type 2 fuzzy rule Ri . 
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Where <x1, x2, ..., xn> are state variables; i
jA   is 

membership function for the jth variable in the state space in 
the ith rule; and Bm is the membership function for the mth 
action  .Furthermore, the element ),( j

i BSQ  corresponds to 

the state iS and the action jB which are both type 2 fuzzy 
sets .According to what we have so far, the number of rules 
equals the multiplication of number of membership functions 
for all states  .For real values, and for the input vector  

( )Tnxxx ,...,1=
 the output y at the Takagi-Sugeno type 2 fuzzy 
system using Mamdani multiplication inference engine for k 
rules will be as follows : 
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Where μij refers to the  jth membership function in the ith 
rule. )(xyi  is the center of the selected set of actions in the 
ith rule sometimes referred to as ith local action . 

In the proposed algorithm state-action value is 
determined as follows : 
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As mentioned before, Bj represents the membership 
function for the action selected based on the agent’s policies 
in the ith rule  .Initially, all wi’s are zero  .Suppose that the 
agent performs and action and takes the state xt .According to 
xi’s membership function and according to the action 
selected based on the rule and policies (local action), (1) 
determines the basic action selected by the agent  .Equation 
(4) presents how the basic action is chosen: 
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Where G
ta  is the basic action at the step t and i

ta  represents 
the local action at the step t chosen according to the agent’s 

policy in the rule Ri  .In addition, )( ti xφ is a basic type 2 
fuzzy function defined as below: 
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According to SARSA, the value of each state must be 
updated now .The update equations are 
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Now ),( i
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doing so, an MSE error is defined as 
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Now, we can update ),( i
ti asQ parameters based on this 

error and using optimization methods  .Such optimization 
algorithm may be of steepest descent type, LRSE, or 
intelligent optimization methods  .The algorithm will be 
described in details in the following sections  .For each 
variable involved in creating a state, several type 2 fuzzy sets 
are defined over its range  .Then, premises for type 2 fuzzy 
rules are created based on these type 2 fuzzy sets .The weight 
vector )1( +× nkw is then given initial value  . k is the number 
of rules and n represents the number of state variable  .It is 
clear that for m actions there will be m value of )1( +× nkw . The 
following steps are repeated for each episode : 

t=0 and the process begins with the initial state x0 .
According to the agent’s policies, a local action is selected at 
each rule .Then, the basic action Ga0  is selected according to 
(4).  

For the step t in the episode do the following: 

2-1 Perform the action G
ta  ; go to the state xt+1;and 

receive the reward rt+1 . 

2-2  -Use (6)  to determine the state-action values 
),( G

tt axQ  and ),( 11
G
tt axQ ++  for doing so, you need 

i
ta 1+ which is determined according to the agent’s policies . 

2-3 Use (7)  to determine the target for each action 
selected at each rule . 

2-4 derive an error function in form of (8) for each action 
selected at each rule and update w using an optimization 
algorithm . 

2-5 i
t

i
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End, if xi is a final state; otherwise 1+= tt and go to 2 
[25]. 

Fuzzy Sarsa Learning 

Fuzzy Sarsa learning (FSL) is a Fuzzy method based on 
Sarsa learning [11], for environments with continuous 
operation and state. 

Sarsa methods show the value of the act ofa in state of s 
as ),( asQ  and updated formula is as (1). 

)],(),([
),(),(

111 tttttt

tttt

asQasQr
asQasQ

−+
+←

+++ γα           (1)
 

Whereα is the learning rateγ forgetting rate and 1+tr is the 

award in which the environment after the act of ta  give to 

factor in state of ts . 
A zero-order TSK Fuzzy system with R rules have the 

following form [3]: 

if 1x is 1iL and …and  nx is inL :iR  

Then ( 1ia with value 1iw ) or … or (( ina with value inw ) 

s= nxx *..*1  is n-dimensional input vector. 

inii LLL *...*1= are set of Input Fuzzy membership 

functions , m is a discrete set of actions for each rule, ija and 
ijw are the j-th Function candidate and Approximate values 

for the i-th rule, respectively.FSL aims to regulate ijw online 
to get the best policy. 

The possibility of choosing is obtained the j-th action in 
i-th rule in state of ts based on the policy of soft max ]3[ .  
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)( ti sµ Is Fire intensity normalized of i-th rule in state of 

ts and T> 0 is the temperature factor. 

The actions chosen by each rule and its value with 

+iia and 
+iiw are shown, respectively, and their values  in 

(2) and (3) is calculated as [1, 9]: 
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Therefore the total weighted discrete function is selected 
by the rules. 

Performing the act of ta goes the environment to next 

state of 1+ts  and the factor take the award signal 1+tr .  

The next action 1+ta calculated based on current weighted tw . 

Thus The i-th Rule weights updated by following formula 
]3[ : 
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which  ∧

∆Q Is the error function that obtained by (6): 
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2 - FSL multi-agent (MAFSL) 

In this paper we follow the common practice for 
operating multi-agent systems. The main ideas taken from [3] 
and [4]. 

Considering that the maximum value of the function 
mode in case is the same (

( ) ( , )max i
i

V s Q s a=
) the following 

updated formula for V and Q states as follow:  
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( I Rule Number, j Number of operating, k One of the 
possible acts , t represents the time step , Wv Inferior to the 
rules of system related to V and Wq Inferior to the rules of 
system related to Q, r amount of award and +ia are chosen 
act of rulei-th.) 

Lower values of V and Q each have a separate phase. 
Input system is as follows. 

Input of fuzzy systems are state-space dimensions. In the 
training phase, the rules are set lower. rules areZero-order 
TSK-type. 

 
Figure 1: fuzzy Membership functions 

The rules of the system multiplied by the number of input 
membership functions. Each represents a fuzzy rule. 

Q inferior to the rules relating to systems containing the 
integer values corresponding to each fuzzy state implies that 
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the weight of each operation. Each set of operating rules and 
is independent of other factors. 

Inferior to the rules of the system V of integers, each of 
which corresponds to the values of the fuzzy rule is 
expressed. 

By partitioning Mode and calculating the fuzzy mode, 
fuzzy Q and V for the same position entirely solve the 
problem of curse of dimension and the number of dimensions 
even Compared to [4] are also significantly. 

One of the issues that have a significant impact in 
decreasing sizes, the proper definition of the state. In the 
next section we will elaborate on this. 

  The following table shows the pseudo-code description 
of the algorithm is given. 

This table shows Pseudo-code algorithm MAFSL 
For any agent k we have j same action: 
1.Initialize Qij and Vi by Zero 

2.loop untile Q values converge 

3.observe sate S1 

4.select action from each rule by using (2) 

5.choose final action by (6) equation 

6.observe S2, reward and other agents actions 

7.update Q and V use 7 and 8 equations 

8.end loop 

III. 2BTRAILER PARKING PROBLEM 

A. Problem Definition  

Designing an optimal pathway for backward movement 
of a trailer through a number of fixed and moving obstacles 
is among most complicated problems in engineering. Factors 
such as type, shape, and rate of movement as well as time 
limitations for achieving the target dock may introduce 
further complication into the problem.  

Backward movement of a trailer on a dock is a nonlinear 
control problem. Using the conventional control methods, a 
mathematical model for the system can be obtained, and then 
nonlinear control theory may be employed to design of the 
controller. An alternative to this is to design a controller 
which simulates human behavior. The latter is used in the 
present paper. We assume that an experience trailer driver is 
available; in addition, we can measure different positions of 
the trailer and corresponding driver’s actions to move the 
trailer backward. Figure 1 shows the trailer and the loading 
(parking) dock. 

),( yx

tφ
cφ

θ

 

Figure 1.  state variables involved in intelligent backward movement of the 
trailer 

The trailer is controlled by changing θ. Only backward 
movement is allowed here. In each step, the trailer moves 
We assume that a sufficient space is present between the 
trailer and parking spot, and therefore, the vertical position y 
is not required as a state variable for our purpose. 

ct Φ−Φ

0<Φ−Φ ct

0>Φ−Φ tt

cΦ

*
tΦ

tΦ  
Figure 2.  Relationship between truck and trailer angles 

 Problem constraints: 

• The trailer has a constant velocity of V.  

• The length of the trailer is sc LL + . 

LsLc

v

 
Figure 3.  constraints of the trailer parking problem 

IV. 3BDEFINING THE TYPE 2 FUZZY SETS 

TABLE I.  TYPE 2 FUZZY RULES DEFINED FOR THE 
CONTROL PROBLEM 

Details of Plant 
Coordinates of the center 

rear of the trailer 
yx,  

 
 

State 
Angle of trailer with x-axis tΦ  

Angle of the cab with 
x-axis cΦ  

Steering angle of the front 
wheels relative to cab 

orientation 
θ  Control 

The loading dock is at 
0=x  0>x  

 
 

Constraints 

The angle between the cab 
and trailer can't exceed 

90  
90≤Φ−Φ st

 

Limit of steering of the 
front wheel 7070 ≤≤− θ  

)])[][sin(arcsin(][]1[

))sin(arcsin(][]1[

])[sin(][]1[
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])[][cos(
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s
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rA

Φ−Φ×
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+
×

+Φ=+Φ

Φ×−=+
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Φ−Φ×=
×=

θ

θ

  
 
 
 
 

Equations of 
Motion 

Is then adjusted to respect 
the constraint on 

st Φ−Φ  ]1[ +Φ tc
 

distance front wheel moves 
per time step 3m r  

Parameters length of the trailer, from 
rear to pivot 14m sL  

length of the cab, from 
pivot to axle 6m cL  
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Figures 5 through 8 show the membership functions 
defined in MATLAB: 

 
Figure 4.  membership functions for position of the trailer 

 
Figure 5.  membership functions for the angle tΦ=α  (degrees) 

 
Figure 6.  membership functions for the angle cΦ=β  

 
Figure 7.  membership functions for the angle θ  

 

Figure 8.  membership functions for the direction 

type 2 fuzzy sets for states and actions;  variable x in 
state space; variable α in state space; variable β in state 
space and steer wheel angle θ  action . 

3-2 Trailer parking problem as a reinforcement learning 
problem  

The followings are the important notes to consider in the 
proposed algorithm  

Fuzzification of actions and states  

In this problem, each state is represented by 
< βα ,,x  > .To fuzzify the states, five type 2 fuzzy sets are 
defined for x while seven type 2 fuzzy sets are defined 
forα and three type 2 fuzzy sets are defined for β  . Seven 
type 2 fuzzy sets are considered for steer wheel angle as the 
action . 

A. 6BDetermining start points for episodes  

Start points must be uniformly distributed over state 
space  .To achieve this, x is varied between 0 and 100 with 
the step 1; this results in 1000 values for x .For each value of 
x, α varies between -90 and 270 with the step 10; this 
produces 36 values forα  and β varies between -90 and 
90 with the step 10; this produces 18 values for β . Therefore, 
there are 64800 start points for episodes . 

B. 7BAssignment of rewards  

For rewarding, two ranges are considered for the 
variables x and angle .The allowable range initially includes 
the whole range i.e.[0, 100] for x , [-90, 270]and [-90,90] for 
angles  .Then, the ranges are reduced toward the target 
proportional to the increase in number of episodes  .If the 
agent goes to a predetermined range after performing an 
action, it will receive a positive reward which is proportional 
to the size of this range or the episode number; if the agent 
exit the range, however, receives the same reward but as a 
negative amount  .The maximum reward (1)  is that of the 
final episode, while the minimum reward is -1  .There are 
two exceptions in rewarding at each episode  .Reaching the 
target results in the grand prize (i.e.100) .Exiting the allowed 
range brings a -100 punishment  .If the agent goes to the 
determined range as a result of an action, the episode will 
end  .The procedure continues until the agent goes to the 
determined range or exit the allowable range. 

V. 4BDETERMINING THE PARAMETERS AND SIMULATION 
RESULTS 

In simulations, selected values for α, γ, and training rate 
in steepest descent are 0.5, 0.9, and 0.01 respectively .
Maximum number of actions in each episode is 100 .Table I 
shows mean values for 15 runs with different number of 
episodes  .The variance values are almost zero. The first 
column shows the number of episodes, while the second 
column lists number of states which resulted into final state 
as a percentage of 720 states  .For testing, we created 100 
random states in the allowable range and test them using the 
Q table .The results are shown in the third column .There are 
number of states in the state space which do not result in 
target state and produce results outside the allowable range 
through a number of actions .The forth and the fifth column 
show the simulation results after elimination of these states (a 
small tolerance is acceptable in reaching the target; Δφ=5˚, 
Δx=0.5) . 
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TABLE II.  PERCENTAGE OF STATES, OUT OF TOTAL TEST STATES, 
RESULTING IN TARGET STATE. 

 
Number of 

episode 
1 2 3 4 

360000 80 75 93 90 

720000 90 83 99 98 

1440000 98 96 99 99 

2880000 98 98 100 100 

VI. 5BCONCLUSION 

To test the proposed navigation method, simulation is 
performed using MATLAB in different conditions for the 
position of the trailer and moving and fixed obstacles. We 
tried to improve the trailer movement through changing or 
weighting the type 2 fuzzy rules. Due to the low noise in the 
installed sensors in comparison to the minimum range of 
control inputs (maximum of 1 to 2 cm compared to 1 m), 
there is no need to consider the measurement noise while 
modeling the controller. In the following lines, the movement 
of the trailer while facing obstacles moving with constant 
velocity is reviewed. The sign (*) is used to denote the 
movement and speed of the trailer. The space between the 
stars represents the changes in the trailer speed. The 
proposed algorithm is applied for a situation consisting of 
two fixed obstacles and one moving with constant speed 
(however, there is no limitation on the number of fixed and 
moving obstacles). The algorithm may be applied for a 
greater number of obstacles moving with different velocities. 
As it can be seen, the type 2 fuzzy controller operates well in 
variety of conditions. The following shows the program 
results for different conditions. Number of moving and fixed 
can be increased in the simulation. Figure 9 shows the results 
obtained from MATLAB simulation. In this paper, we 
proposed a method for learning in complex environments 
where both states and action spaces are continuous  .The 
algorithm first fuzzifies the value-action table; then the 
desired action is determined based on the state of the input 
and type 2 fuzzy inference; finally, type 2 fuzzy SARA and 
steepest descent are used to update weights in the table .An 
important feature of this algorithm is adaptability of its type 
2 fuzzy table which results in high efficiency as seen in 
simulation results .In addition, the algorithm does not need to 
learn which decision in the decision making process is the 
optimum decision; rather it optimizes the decision making 
through trail and error  .This makes the system independent 
of expert knowledge for decision making in complex 
systems . 

Finally, the proposed algorithm was used for finding a 
solution to Trailer parking problem using reinforcement 
learning for the first time .An important issue in solving the 
problem is how to reward actions which was addressed by a 
heuristic process. In the final section, we presented 
simulation results to prove the proposed method successful. 
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Figure 9.  Trajectories determined for different initial states 
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