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Abstract. We give a new proof of the result that if f and g are entire transcendental
functions, then f◦g has infinitely many fixed points. The method yields a number of generalizations
of this result. In particular, it extends to quasiregular maps in Rd .

1. Introduction and main results

The following result was conjectured by Gross (see [11, p. 542] and [15, Prob-
lem 5]) and first proved in [4].

Theorem A. Let f and g be entire transcendental functions. Then f ◦ g
has infinitely many fixed points.

The following generalization of Theorem A was proved in [5].

Theorem B. Let f and g be entire transcendental functions. Then f ◦ g
has infinitely many repelling fixed points.

Here a fixed point ξ of a holomorphic function h is called repelling if |h′(ξ)| >
1. The repelling fixed points play an important role in iteration theory.

The purpose of this paper is twofold. Firstly, we give a new proof of Theo-
rem A. Secondly, we obtain some generalizations of Theorem A (and B).

The main difference between the method employed here and the previous
proofs of Theorem A and B is that the Wiman–Valiron method which was crucial
in [4], [5] is not used here. Instead we use some ideas from normal families. This
method is also applicable for quasiregular maps; see [23] for the definition and
basic properties of quasiregular maps.

Theorem 1. Let d ≥ 2 and let f, g: Rd → Rd be quasiregular maps with

an essential singularity at ∞ . Then f ◦ g has infinitely many fixed points.
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For functions in the plane we also obtain some extensions of the previously
known results.

Theorem 2. Let f and g be entire transcendental functions. Then there

exists a sequence (ξn) such that (f ◦ g)(ξn) = ξn and (f ◦ g)′(ξn) → ∞ .

Theorem 3. Let f and g be entire transcendental functions. Then f ◦ g
has infinitely many nonreal fixed points.

Theorem 3 answers a question of Clunie [10] who had shown that at least
one of the two functions f ◦ g and g ◦ f has infinitely many nonreal fixed points.
The special case f = g had been dealt with earlier in [8], answering a question of
Baker [2]. Theorem 3 implies that for any straight line there are infinitely many
fixed points not lying on this line.

Similar ideas to the ones employed in this paper were used—in the context of
iteration rather than composition—in [3], [7], [12], [13] for holomorphic maps, and
in [25], [26] for quasiregular maps.

Although each of the Theorems 1–3 contains Theorem A as a special case, we
will first give a proof of Theorem A in Section 2, as this explains the underlying
idea best. In Sections 3–5 we will then prove Theorems 1–3. These sections will
make occasional reference to Section 2, but are independent of each other.

2. Proof of Theorem A

2.1. Preliminary lemmas. We shall need a result from the Ahlfors theory
of covering surfaces; see [1], [17, Chapter 5] or [21, Chapter XIII] for an account
of this theory. To state the result of the Ahlfors theory that we need, let D ⊂ C

be a domain and let f : D → C be holomorphic. Given a Jordan domain V ⊂ C ,
we say that f has an island over V if f−1(V ) has a component whose closure
is contained in D . Note that if U is such a component, then f |U : U → V is a
proper map.

Lemma 2.1. Let D ⊂ C be a domain and let D1, D2 ⊂ C be Jordan

domains with disjoint closures. Let F be a family of functions holomorphic in

D which is not normal. Then there exists a function f ∈ F which has an island

over D1 or D2 .

For example, Lemma 2.1 follows from Theorem 5.5 (applied with a domain
D3 containing ∞) and Theorem 6.6 in [17].

For a different proof of Lemma 2.1 see [6, Section 5.1]. The proof given there
is particularly simple in the case where the Dj are small disks. It turns out that
this special case suffices for our purposes.

The following lemma is a simple consequence of the maximum principle.

Lemma 2.2. Let D ⊂ C be a domain and let (fn) be sequence of functions

holomorphic in D which is not normal. If (fn) converges locally uniformly in

D\E for some finite set E , then fn → ∞ in D\E .
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This lemma will be useful when dealing with quasinormal families. By defi-
nition, a family F of functions holomorphic in a domain D is called quasinormal

(cf. [9], [20], [24]) if for each sequence (fn) in F there exists a subsequence (fnk
)

and a finite set E ⊂ D such that (fnk
) converges locally uniformly in D\E . If the

cardinality of the exceptional set E can be bounded independently of the sequence
(fn), and if q is the smallest such bound, then we say that F is quasinormal of
order q .

We denote the maximum modulus of an entire function f by M(r, f).

Lemma 2.3. Let f be an entire transcendental function and A > 1 . Then

lim
r→∞

M(Ar, f)

M(r, f)
= ∞.

This result follows easily from the convexity of log M(r, f) in log r and the
transcendency of f . We omit the details. For an alternative proof of Lemma 2.3
see the proof of Lemma 3.3 in Section 3.1 below.

2.2. Proof of Theorem A. We first choose a sequence (cn) tending to ∞
such that |f(cn)| ≤ 1. We may assume that |cn| ≥ |g(0)| for all n and define rn

by M(rn, g) = |cn| .
We define

fn(z) :=
f(cnz)

rn

and gn(z) :=
g(rnz)

cn

.

It is easy to see that no subsequence of (fn) is normal at 0. Since fn(1) →
0 it follows from Lemma 2.2 that (fn) is not normal in C\{0} . Passing to a
subsequence if necessary we may thus assume that no subsequence of (fn) is
normal at a1 := 0 and some a2 ∈ C\{0} .

It follows from Lemma 2.3 that if n → ∞ , then M(r, gn) → 0 if r < 1
and M(r, gn) → ∞ if r > 1. Lemma 2.2 implies that the sequence (gn) is not
quasinormal. Passing to a subsequence if necessary we may thus assume that
there exist b1, b2, b3 ∈ C\{0} where no subsequence of (gn) is normal. We choose
0 < ε < 1

2 such that the closed disks of radius ε around the bj are pairwise
disjoint and do not contain 0. In the following we denote by B(a, r) the open
disk of radius r around a point a ; that is, B(a, r) := {z ∈ C : |z − a| < r} .

It follows from Lemma 2.1 that if n is sufficiently large and j ∈ {1, 2} , then
fn has an island in B(aj, ε) over at least two of the domains B(bk, ε). This
implies that there exists k ∈ {1, 2, 3} such that fn has an island U1 ⊂ B(a1, ε)
and another island U2 ⊂ B(a2, ε) over the same disk B(bk, ε).

Moreover, it follows from Lemma 2.1 that if n is sufficiently large, then there
exists j ∈ {1, 2} such that gn has an island V ⊂ B(bk, ε) over B(aj, ε). Then
V ∩ g−1

n (Uj) contains a component W of (fn ◦ gn)−1
(

B(bk, ε)
)

satisfying W ⊂
B(bk, ε).
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For z ∈ ∂W we have

∣

∣

(

(fn ◦ gn)(z) − bk

)

−
(

(fn ◦ gn)(z) − z
)
∣

∣ = |z − bk| < ε = |(fn ◦ gn)(z) − bk|.

Rouché’s theorem implies that the number of fixed points of fn◦gn in W coincides
with the number of zeros of fn ◦ gn − bk in W . As fn ◦ gn is a proper map from
W onto B(bk, ε) the function fn ◦ gn − bk has at least one zero in W and thus
fn ◦ gn has a fixed point ξ ∈ W ⊂ B(bk, ε). Then ξn := rnξ is a fixed point
of f ◦ g . Since ξn ∈ B(rnbk, rnε) it follows that ξn → ∞ as n → ∞ so that f ◦ g
has infinitely many fixed points.

3. Proof of Theorem 1

3.1. Preliminary lemmas. As a general reference for quasiregular maps
we recommend [23]. We first state some lemmas analogous to those stated in
Section 2.1, and begin with the analogue of Lemma 2.1.

We note that Lemma 2.1 is a generalization of Montel’s theorem, which in
turn is the result that corresponds to Picard’s theorem in the context of normal
families. The analogue of Picard’s theorem for quasiregular maps was given by
Rickman [22] who proved that there exists q = q(d, K) ∈ N with the property
that every K -quasiregular map f : Rd → Rd which omits q points is constant.
We shall call this number q the Rickman constant. The corresponding normality
result was proved by Miniowitz [19], using an extension of the Zalcman lemma [27]
to quasiregular maps. We refer to [19] also for further information about normal
families of quasiregular maps. Besides normal families we will also consider quasi-
normal families of quasiregular maps, which are defined in exactly the same way
as for holomorphic functions.

Miniowitz’s extension of the Zalcman lemma has been used by Siebert [25],
[26] to deduce the following Lemma 3.1 from Rickman’s theorem. Here we call, as
in Section 2.1, a domain U an island of the quasiregular map f : D → Rd over
the simply connected domain V ⊂ Rd , if U is a component of f−1(V ) and if
U ⊂ D . And as in dimension 2 we denote by B(a, r) the open ball of radius r
around a point a ∈ Rd ; that is, B(a, r) := {x ∈ Rd : |x− a| < r} . Here |x| is the
(Euclidean) norm of a point x ∈ Rd . With this notation Siebert’s result (see [25,
Satz 2.2.2] or [26, Corollary 3.2.2]) can be stated as follows.

Lemma 3.1. Let d ≥ 2 , K ≥ 1 and let q = q(d, K) be the Rickman

constant. Let a1, . . . , aq ∈ Rd be distinct. Then there exists ε > 0 with the

following property : if D ⊂ Rd is a domain and F is a non-normal family of

functions K -quasiregular in D , then there exists a function f ∈ F which has an

island over B(aj, ε) for some j ∈ {1, . . . , q} .

The following lemma is literally the same as Lemma 2.2 in Section 2.1, and it
is again a simple consequence of the maximum principle.



Fixed points of composite entire and quasiregular maps 527

Lemma 3.2. Let D ⊂ Rd be a domain and let (fn) be non-normal sequence

of functions which are K -quasiregular in D . If (fn) converges locally uniformly

in D\E for some finite set E , then fn → ∞ in D\E .

The next lemma is identical to Lemma 2.3 in Section 2.1. Again we denote
by M(r, f) the maximum modulus; that is, M(r, f) := max|x|=r |f(x)| .

Lemma 3.3. Let f : Rd → Rd be quasiregular with an essential singularity

at ∞ and let A > 1 . Then

lim
r→∞

M(Ar, f)

M(r, f)
= ∞.

Proof. Suppose that the conclusion does not hold. Then there exist C > 1
and a sequence (rn) tending to ∞ such that M(Arn, f) ≤ CM(rn, f). The
sequence (fn) defined by

fn(x) :=
f(rnx)

M(rn, f)

is then bounded and thus normal in B(0, A). Passing to a subsequence we may
assume that fn → h for some quasiregular map h: B(0, A) → Rd . We have
h(0) = 0 while M(1, h) = 1. Thus h is not constant.

Now there exists a ∈ Rd such that f has infinitely many a -points. Without
loss of generality we may assume that a = 0 since otherwise we can consider
f(x+a)−a instead of f(x). A contradiction will now be obtained from Hurwitz’s
theorem (cf. [19, Lemma 2]).

More precisely, choose 0 < t < 1 such that h(x) 6= 0 for |x| = t . For
large n we then have µ

(

h, B(0, t), 0
)

= µ
(

fn, B(0, t), 0
)

= µ
(

f, B(0, rnt), 0
)

. Here

µ
(

h, B(0, t), 0
)

denotes the topological degree. Thus

µ
(

h, B(0, t), 0
)

=
∑

x∈h−1(0)∩B(0,t)

i(x, h)

where i(x, h) is the topological index. But µ
(

f, B(0, rnt), 0
)

→ ∞ as n → ∞
since f has infinitely many zeros. This is a contradiction.

The next lemma is a simple consequence of Lemma 3.3.

Lemma 3.4. Let f : Rd → Rd be quasiregular with an essential singularity

at ∞ . Then

lim
r→∞

log M(r, f)

log r
= ∞.

The following lemma (see [25, Lemma 1.3.14] or [26, Lemma 2.1.5]) replaces
the argument where Rouché’s theorem was used in the proof of Theorem A.
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Lemma 3.5. Let U ⊂ Rd be a domain and let a ∈ Rd and r > 0 be such

that U ⊂ B(a, r) . Suppose that h: U → B(a, r) is proper and quasiregular. Then

h has a fixed point in U .

Next we shall need the following result.

Lemma 3.6. Let K > 1 , let D ⊂ Rd a domain and let C be a compact

subset of D . Then there exist α, β > 0 with the following property : if f is

K -quasiregular in D and satisfies |f(x)| ≥ 1 for all x ∈ D , then log |f(y)| ≤
α + β log |f(x)| for all x, y ∈ C .

Proof. It follows from [23, Corollary 3.9, p. 91] that there exist A, B > 0 such
that if B(a, 2δ) ⊂ D , then log |f(x)| ≤ A + B log |f(a)| for all x ∈ B(a, δ). We
may assume that C is connected. Since C is compact there exist a1, . . . , aN ∈ C
and δ > 0 with

C ⊂
N
⋃

j=1
B

(

aj,
1
2δ

)

and
N
⋃

j=1
B(aj, 2δ) ⊂ D.

The conclusion follows with β := BN+1 and some α .

Finally we need the following observation which seems to have been made
first in [14, Lemma 3].

Lemma 3.7. Let A , B be sets and let f : A → B and g: B → A be

functions. Then the set of fixed points of f ◦ g and the set of fixed points of g ◦ f
have the same cardinality.

To prove this lemma we only have to observe that g is a bijection from the
set of fixed points of f ◦ g to the set of fixed points of g ◦ f .

3.2. Proof of Theorem 1. Let (cn) be a sequence in Rd which tends to ∞
and define Fn(x) := f(|cn|x)/|cn| and Gn(x) := g(|cn|x)/|cn| . Lemma 3.4 yields
that M(r, Fn) → ∞ and M(r, Gn) → ∞ as n → ∞ if r > 0, while Fn(0) → 0
and Gn(0) → 0. Thus no subsequence of (Fn) or (Gn) is normal at 0.

We distinguish between two cases.

Case 1. For every choice of (cn) the sequences (Fn) and (Gn) are both
quasinormal.

We may choose the sequence (cn) such that |g(cn)| ≤ 1 for all n . Apply-
ing Lemma 3.2 and, passing to subsequences if necessary, we may assume that
Fn → ∞ in Rd\Ef and that Gn → ∞ in Rd\Eg for two finite sets Ef and
Eg containing 0. Moreover, we may assume that Eg contains at least one point
b ∈ Rd with |b| = 1, with no subsequence of (Gn) converging in a neighborhood
of b .
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We choose ε > 0 such that 2ε < |a−b| for all a ∈ Eg\{b} and 2ε < |a| for all
a ∈ Ef\{0} . For sufficiently large n we then have |Gn(x)| > 2 for x ∈ ∂B(b, ε)
and |Fn(x)| > 2 for x ∈ ∂B(0, ε), while |Gn(y)| < 1 for some y ∈ B(b, ε) and
|Fn(z)| < 1 for some z ∈ B(0, ε). Since B(0, ε)∪B(b, ε) ⊂ B(0, 2) this implies that
Gn has an island V ⊂ B(b, ε) over B(0, ε) while Fn has an island U ⊂ B(0, ε)
over B(b, ε). As in the proof of Theorem A we find that V ∩ G−1

n (U) contains a
component W of (Fn ◦ Gn)−1

(

B(b, ε)
)

satisfying W ⊂ B(b, ε). Lemma 3.5 now
implies that Fn ◦Gn has a fixed point ξ ∈ B(b, ε) and thus f ◦g has a fixed point
ξn ∈ B(|cn|b, |cn|ε). It follows that f ◦ g has infinitely many fixed points.

Case 2. The sequence (cn) can be chosen such that one of the sequences (Fn)
and (Gn) is not quasinormal.

Because of Lemma 3.7 we may assume that the sequence (Fn) is not quasi-
normal. Passing to a subsequence if necessary, we may in fact assume that no
subsequence of (Fn) is quasinormal.

As in the proof of Theorem A we may assume that |cn| ≥ |g(0)| and define rn

by M(rn, g) = |cn| . As there we also define fn(x) := f(|cn|x)/rn = Fn(x)|cn|/rn

and gn(x) := g(rnx)/|cn| . Again we find that no subsequence of (fn) is normal
at 0.

We now show that (fn) is not quasinormal. To do this we assume that (fn)
is quasinormal. Passing to a subsequence we then may assume that fn → ∞ in
Rd\E for some finite set E . Let C ⊂ Rd\E be a compact set containing ∂B(0, r)
for some r > 0. Then there exists a domain D ⊃ C such that |fn(x)| ≥ 1 for
x ∈ D if n is large. Lemma 3.6 yields that

(3.1) log M(r, fn) ≤ α + β log |fn(x)|

for x ∈ C and large n . On the other hand, Lemma 3.4 implies that

log M(r, fn) = log M(|cn|r, f) − log rn ≥ 4β log(|cn|r) − log rn

if n is large. Lemma 3.4 also yields β log |cn| = β log M(rn, g) ≥ log rn for large n .
Thus log M(r, fn) ≥ 3β log |cn|+4β log r ≥ 2β log |cn| for large n . We deduce from
this and (3.1) that

log |fn(x)| ≥
log M(r, fn) − α

β
≥ 2 log |cn| −

α

β
≥ log |cn|

for x ∈ C and large n . It follows that

log |Fn(x)| = log |fn(x)| − log |cn| + log rn ≥ log rn

for x ∈ C and large n . Hence Fn → ∞ in Rd\E , contradicting the assumption
that no subsequence of (Fn) is quasinormal. Thus (fn) is not quasinormal. Pass-
ing to a subsequence if necessary we may assume that no subsequence of (fn) is
quasinormal.
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From Lemma 3.3 we deduce that M(r, gn) → 0 if r < 1 and M(r, gn) → ∞
if r > 1. Lemma 3.2 now implies that no subsequence of (gn) is quasinormal.

Let K be such that f and g are K -quasiregular and define p := 2q − 1 ≥ q
where q = q(d, K) is the Rickman constant. Passing to subsequence if necessary
we may assume that there exist a1, . . . , ap ∈ Rd\{0} where no subsequence of
(fn) is normal and that there exist b1, . . . , bp ∈ Rd\{0} where no subsequence of
(gn) is normal.

It follows from Lemma 3.1 that there exists ε > 0 such that if n is sufficiently
large and j ∈ {1, . . . , p} , then fn has an island in B(aj, ε) over at least p− q + 1
of the p balls B(bk, ε), and gn has an island in B(bj, ε) over at least p− q + 1 of
the p balls B(ak, ε).

This implies that there exists k ∈ {1, . . . , p} such that fn has an island
in B(aj, ε) over B(bk, ε) for at least p − q + 1 = q values of j . Lemma 3.1
implies that for at least one such value j the function gn has an island in B(bk, ε)
over B(aj, ε).

Thus we obtain j, k ∈ {1, . . . , p} such that fn has an island U ⊂ B(aj, ε)
over B(bk, ε) and gn has an island V ⊂ B(bk, ε) over B(aj, ε). As before we
find that V ∩g−1

n (U) contains a component W of (fn ◦gn)−1
(

B(bk, ε)
)

satisfying

W ⊂ B(bk, ε). Lemma 3.5 now implies that fn ◦ gn has a fixed point in B(bk, ε),
and thus f ◦g has a fixed point in B(|cn|bk, |cn|ε). Thus f ◦g has infinitely many
fixed points.

4. Proof of Theorem 2

4.1. Preliminary lemmas. We shall require an additional result from the
Ahlfors theory. An island U of a function f over a domain V is called simple if
f : U → V is univalent. The following result can also be found in the references
given in Section 2.1.

Lemma 4.1. Let D ⊂ C be a domain and let D1 , D2 and D3 be Jordan

domains with pairwise disjoint closures. Let F be a non-normal family of func-

tions holomorphic in D . Then there exists a function f ∈ F which has a simple

island over D1 , D2 or D3 .

It follows from Lemma 4.1 that a non-constant entire function f has a simple
island over one of three Jordan domains D1, D2, D3 with pairwise disjoint closures.
We shall need the simple observation made in [7] that we need only two domains
D1, D2 if f is a polynomial or, more generally, a proper holomorphic map whose
range contains D1 and D2 .

Although the formulation of the following Lemma 4.2 was slightly different
in [7, Lemma 2.2], we omit the simple proof based on the Riemann–Hurwitz for-
mula, but note that it is analogous to the proof of Lemma 4.3 which we will give
below.
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Lemma 4.2. Let f : U → V be a proper holomorphic map and let D1 and

D2 be Jordan domains with disjoint closures contained in V . Then there exist

two domains U1, U2 ⊂ U which are simple islands over D1 or D2 .

Here U1 and U2 need not be islands over the same domain. We allow the
possibility that U1 is an island over D1 and U2 is an island over D2 , or vice versa.
For example, this will always be the case if f is univalent. For proper maps of
higher degree, however, we have the following lemma.

Lemma 4.3. Let f : U → V be a proper holomorphic map of degree at

least 2 and let D1 , D2 and D3 be Jordan domains with pairwise disjoint closures

contained in V . Then there exists k ∈ {1, 2, 3} such that f has two simple islands

over Dk .

Proof. Let U1, . . . , Um be the components of f−1
(
⋃3

k=1 Dk

)

. Thus the Uj

are the islands over the domains Dk . Now f |Uj
is a proper map of some degree

µj and
∑m

j=1 µj = 3d , where d is the degree of f . By the Riemann–Hurwitz
formula the number of critical points contained in Uj is µj − 1, and f has d − 1
critical points in U . Thus

3d − m =
m

∑

j=1

(µj − 1) ≤ d − 1

so that m ≥ 2d + 1. Since f has d − 1 critical points in U we conclude that the
number n of domains Uj which do not contain a critical point satisfies

n ≥ m − (d − 1) ≥ (2d + 1) − (d − 1) = d + 2 ≥ 4.

Thus among the Uj there are at least 4 simple islands, and hence two of them
must be over the same domain Dk .

We shall also use the following well-known result; see, e.g., [7, Lemma 2.3] for
the simple proof.

Lemma 4.4. Let 0 < δ < 1
2ε and let U ⊂ B(a, δ) be a simply-connected

domain. Let f : U → B(a, ε) be holomorphic and bijective. Then f has a fixed

point ξ in U which satisfies |f ′(ξ)| ≥ ε/4δ .

We shall also need the following lemma concerning entire functions of small
growth.

Lemma 4.5. Let g be an entire function of the form

g(z) =

∞
∏

k=1

(

1 −
z

zk

)

where 0 < |z1| ≤ |z2| ≤ · · · and limk→∞ |zk+1/zk| = ∞ . Denote the zeros of g′

by z′k , ordered such that 0 ≤ |z′1| ≤ |z′2| ≤ · · ·. Then limk→∞ |z′k+1/z′k| = ∞ .
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Proof. For sufficiently large n there exists r satisfying |zn| ≤ r and 8r ≤
|zn+1| . We show first that for such r

(4.1) min
|z|=4r

|g(z)| > max
|z|=r

|g(z)|,

provided n is large enough. Let |u| = r and |v| = 4r . We will show that
|g(v)| > |g(u)| . To this end we write

log
|g(v)|

|g(u)|
=

∞
∑

k=1

log
|v − zk|

|u − zk|
=

n
∑

k=1

log
|v − zk|

|u − zk|
+

∞
∑

k=n+1

log
|v − zk|

|u − zk|

= S1 + S2.

For k ≤ n we have |zk| ≤ r < |v| so that

|v − zk|

|u − zk|
≥

|v| − |zk|

|u| + |zk|
≥

4r − r

r + r
=

3

2
.

Thus S1 ≥ n log 3
2
.

For k ≥ n + 1 we have |zk| ≥ 8r > |v| so that

log
|v − zk|

|u − zk|
≥ log

|zk| − |v|

|u| + |zk|
= log

(

1 −
4r

|zk|

)

− log

(

1 +
r

|zk|

)

≥ −
8r

|zk|
−

r

|zk|
.

Here we have used the inequalities log(1 + x) ≤ x and log(1− x) ≥ −2x valid for
0 ≤ x ≤ 1

2 . For large n we also have |zk+1/zk| ≥ 2 if k ≥ n + 1. We find that

log
|v − zk|

|u − zk|
≥ −

9r

|zk|
≥ −

9r

|zn+1|
2n+1−k ≥ −

9

8
2n+1−k

for k ≥ n + 1. It follows that

S2 ≥ −
9

8

∞
∑

k=n+1

2n+1−k = −
9

4
.

Together with the estimate for S1 this implies that (4.1) holds for large n .
Let now U be the component of g−1

(

B
(

0, M(r, g)
))

which contains B(0, r).
It follows from (4.1) that U ⊂ B(0, 4r). By our choice of r the number of zeros of
g in U is n . The Riemann–Hurwitz formula yields that g′ has n− 1 zeros in U .
Thus g′ has at most n − 1 zeros in B(0, r) and at least n − 1 zeros in B(0, 4r).
Thus r ≤ |z′n| and |z′n−1| ≤ 4r . Since this holds for any r satisfying |zn| ≤ r and
8r ≤ |zn+1| we conclude, choosing r = |zn| or r = 1

8 |zn+1| , that |z′n−1| ≤ 4|zn|
and 1

8 |zn+1| ≤ |z′n| for large n . Thus 1
8 |zn+1| ≤ |z′n| ≤ 4|zn+1| for large n . The

conclusion follows.
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The following result is a variant of Lemma 3.7.

Lemma 4.6. Let f and g be entire transcendental functions. Suppose that

there exists a sequence (ξn) such that (f ◦ g)(ξn) = ξn and (f ◦ g)′(ξn) → ∞ .

Then ηn := g(ξn) satisfies (g ◦ f)(ηn) = ηn and (g ◦ f)′(ηn) = (f ◦ g)′(ξn) → ∞ .

The proof is straightforward and thus omitted.

4.2. Proof of Theorem 2. We proceed as in the proof of Theorem A and
define the sequences (cn), (rn), (fn) and (gn) as there. Again we find that (gn)
is not quasinormal in B(0, 2). In the proof of Theorem A we noted that by passing
to a subsequence we can achieve that no subsequence of (gn) is normal at any of
three points b1, b2, b3 ∈ C\{0} . The same argument yields this for any number of
points bk . Moreover, we can achieve that these points are in B(0, 2)\{0} .

We will have to distinguish several cases now.

Case 1. It is possible to choose the sequence (cn) such that (fn) is not
quasinormal of order 2.

Passing to a subsequence if necessary we may assume that there exist a1, a2, a3

∈ C where no subsequence of (fn) is normal and that there exist b1, . . . , b7 ∈
C\{0} where no subsequence of (gn) is normal.

We choose 0 < ε < 1
2 such that the closures of the disks B(aj, ε) are pairwise

disjoint. Moreover, we require that the closures of the disks B(bj, ε) are pairwise
disjoint and do not contain 0. We also choose 0 < δ < 1

2ε .

It follows from Lemma 4.1 that if n is sufficiently large and j ∈ {1, 2, 3} , then
fn has a simple island in B(aj, ε) over at least five of the seven disks B(bk, ε).
Overall we obtain at least 15 domains in the union of the three disks B(aj, ε)
which are simple islands over one of the seven disks B(bk, ε). This implies that
there exists k ∈ {1, . . . , 7} such that fn has three simple islands Uj ⊂ B(aj, ε),
j ∈ {1, 2, 3} , over the same disk B(bk, ε). It also follows from Lemma 2.1 that
if n is sufficiently large, then there exists j ∈ {1, 2, 3} such that gn has a simple
island V ⊂ B(bk, δ) over B(aj, ε). Then W := V ∩ g−1

n (Uj) is a simple island of
fn ◦ gn over B(bk, ε), and W ⊂ B(bk, δ). Lemma 4.4 implies that fn ◦ gn has a
fixed point ξ ∈ W with |(fn ◦ gn)′(ξ)| ≥ ε/4δ . Then ξn := rnξ is a fixed point
of f ◦ g with |(f ◦ g)′(ξn)| ≥ ε/4δ . Since δ can be chosen arbitrarily small the
conclusion follows.

Case 2. For every choice of the sequence (cn) the sequence (fn) is quasinormal
of order 2.

Then fn → ∞ in C\{0, 1} by Lemma 2.2. Let K > 2. For sufficiently large
n we then have |fn(z)| > 2 if 1

4
≤ |z| ≤ K and |z − 1| ≥ 1

4
.

We now distinguish two subcases.

Case 2.1. There are infinitely many n such that B
(

1, 1
4

)

contains at least
two zeros of fn .
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Passing to a subsequence if necessary we may assume that this holds for all n .
We note that if n is sufficiently large, then B

(

0, 1
4

)

also contains at least two zeros

of fn . With a1 := 0 and a2 := 1 thus both disks B
(

aj,
1
4

)

contain at least two
zeros of fn .

We may assume that no subsequence of (gn) is normal at five points b1, . . . , b5

∈ B(0, 2)\{0} . Again we choose 0 < ε < 1
2

such that the closures of the disks
B(bk, ε) are pairwise disjoint and do not contain 0, and we choose 0 < δ < 1

2ε . We
can now deduce from Lemma 2.1 that if n is sufficiently large and k ∈ {1, . . . , 5} ,
then gn has an island over one of the disks B

(

aj ,
1
4

)

in B(bk, δ). It follows that
for at least three values of k the function gn has an island over the same disk
B

(

aj ,
1
4

)

in B(bk, δ). We may assume that the bk are numbered such that this
holds for k ∈ {1, 2, 3} .

We claim that there exists k ∈ {1, 2, 3} such that fn has two simple islands
U1, U2 in B

(

aj,
1
4

)

over B(bk, ε). To this end we assume first that there are

two components X1, X2 of f−1
n

(

B(0, 2)
)

contained in B
(

aj ,
1
4

)

in which fn is
univalent. Then we can simply take Ul := f−1

n (B(bk, ε)) ∩ Xl , for l ∈ {1, 2}
and arbitrary k ∈ {1, 2, 3} . Suppose now that such components X1, X2 do not
exist. Since |fn(z)| > 2 if |z − aj | = 1

4 and since fn has at least two zeros in
B

(

aj ,
1
4

)

, there now exists a component X of f−1
n

(

B(0, 2)
)

contained in B
(

aj ,
1
4

)

such that f : X → B(0, 2) is a proper map of degree at least 2. Now Lemma 4.3
yields our claim that there exists k ∈ {1, 2, 3} such that fn has two simple islands
U1, U2 ⊂ X ⊂ B

(

aj ,
1
4

)

over B(bk, ε).

Recall that in turn gn has an island V ⊂ B(bk, δ) over B
(

aj,
1
4

)

. Lemma 4.3,

applied to the proper map gn: V → B
(

aj ,
1
4

)

, now implies that V contains a
domain W which is a simple island of gn over U1 or U2 . Then W is a simple
island of fn ◦ gn over B(bk, ε), and W ⊂ V ⊂ B(bk, δ). As before Lemma 4.4
implies that fn ◦ gn has a fixed point ξ ∈ W with |(fn ◦ gn)′(ξ)| ≥ ε/4δ . Again
ξn := rnξ is a fixed point of f ◦ g with |(f ◦ g)′(ξn)| ≥ ε/4δ , and the conclusion
follows since δ can be chosen arbitrarily small.

Case 2.2. For all sufficiently large n the disk B
(

1, 1
4

)

contains at most one
zero of fn .

Since |fn(z)| > 2 for 1
4
≤ |z| ≤ K and |z − 1| ≥ 1

4
, provided n is sufficiently

large, we conclude that the annulus R :=
{

z ∈ C : 1
4 ≤ |z| ≤ K

}

contains at most

one zero of fn . On the other hand, since fn(1) → 0 we conclude that B
(

1, 1
4

)

contains a component Y of f−1
n

(

B(0, 2)
)

and thus in particular a zero of fn for
large n . Thus fn has exactly one zero in R if n is sufficiently large. In fact,
fn takes every value in B(0, 2) exactly once in Y , and since there are no other
components of f−1

n

(

B(0, 2)
)

intersecting R , we see that fn takes every value in
B(0, 2) exactly once in R . We find that if z1 ∈ Y and z2 ∈ C with |z2| ≥ |z1| and
fn(z2) = fn(z1) ∈ B(0, 2), then |z2| ≥ K while |z1| ≤

5
4 so that |z2| ≥

4
5K|z1| .

In terms of f we see that f has infinitely many c -points for every c ∈
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C\{0} , and the sequence (wn) of c -points of f , arranged such that |wn+1| ≥ |wn| ,
satisfies |wn+1| ≥

4
5
K|wn| . Since K can be chosen arbitrarily large we deduce that

limn→∞ |wn+1/wn| = ∞ . It follows that the number n
(

r, 1/(f − c)
)

of c -points

of f in B(0, r) satisfies n
(

r, 1/(f − c)
)

= o(log r) as r → ∞ , for any c ∈ C\{0} .
Standard estimates from value distribution theory ([17], [18], [21]) now imply that
log M(r, f) = o

(

(log r)2
)

as r → ∞ . In particular, f has order 0.
Lemma 4.6 says that the conclusion is symmetric with respect to f and g . We

may thus assume that interchanging the roles of f and g leads again to Case 2.2.
We find that g is also of order 0 and that the sequence (zn) of zeros of g satisfies
lim infn→∞ |zn+1/zn| = ∞ .

Assuming without loss of generality that g(0) 6= 0 we deduce from Lemma 4.5
that the sequence (z′n) of zeros of g′ satisfies

(4.2) lim
n→∞

|z′n+1|

|z′n|
= ∞.

Proceeding as before we may assume, passing to a subsequence if necessary,
that no subsequence of (gn) is normal at four points b1, . . . , b4 ∈ B(0, 2)\{0} .
As before we choose 0 < ε < 1

2 such that the closures of the disks B(bj, ε) are
pairwise disjoint and do not contain 0, and we choose 0 < δ < 1

2ε .
With a1 := 0 and a2 := 1 we can deduce as before from Lemma 2.1 that if n

is sufficiently large and k ∈ {1, . . . , 4} , then gn has an island Vk ⊂ B(bk, δ) over
one of the disks B

(

aj,
1
4

)

. It follows from (4.2) that at most one of these four
islands contains a zero of g′

n , provided n is large enough. Thus Vk is a simple
island for at least three values of k . Hence there exist two values of k such that
Vk is a simple island over the same disk B

(

aj ,
1
4

)

. We may assume that the bk are
numbered such that this holds for k ∈ {1, 2} . By Lemma 4.2 the function fn has
a simple island U ⊂ B

(

aj ,
1
4

)

over B(b1, ε) or B(b2, ε). Without loss of generality
we can assume that U is a simple island over B(b1, ε). Then W := V1∩g−1

n (U) is
a simple island of fn ◦ gn over B(b1, ε), and W ⊂ B(b1, δ). As before we deduce
that fn ◦ gn has a fixed point ξ ∈ W with |(fn ◦ gn)′(ξ)| ≥ ε/4δ . Again ξn := rnξ
is a fixed point of f ◦ g with |(f ◦ g)′(ξn)| ≥ ε/4δ so that the conclusion follows
also in this case.

5. Proof of Theorem 3

5.1. Preliminary lemmas. We shall need the following quantitative version
of Lemma 2.1.

Lemma 5.1. Let D1, D2 ⊂ C be Jordan domains with disjoint closures and

let f : B(a, r) → C be a holomorphic function which has no island over D1 or D2 .

Then
|f ′(a)|

2µ(log µ + A)
≤

1

r
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where µ = max{1, |f(a)|} and A is a constant depending only on the domains D1

and D2 .

While Lemma 2.1 says that the family of holomorphic functions having no
islands over any of two given domains is normal, Lemma 5.1 is based on the fact
that this family is in fact a normal invariant family. Lemma 5.1 follows from
Lemma 2.1 together with results of Hayman [16] on normal invariant families. It
is a direct consequence of Theorems 6.8, 6.6, and 5.5 of his book [17].

We also need the following version of a classical growth lemma due to Borel.

Lemma 5.2. Let r0 > 0 and let T : [r0,∞) → [e,∞) be increasing and

continuous. Define

F :=

{

r ≥ r0 : T

(

r

(

1 +
1

(

log T (r)
)2

))

> eT (r)

}

.

Then
∫

F

dt

t
≤

π2

6
.

Proof. We may assume that F 6= ∅ and define

r1 := inf F, r′1 := r1

(

1 +
1

(

log T (r1)
)2

)

and then inductively

rk := inf
(

F ∩ [r′k−1,∞)
)

, r′k := rk

(

1 +
1

(

log T (rk)
)2

)

.

If F ∩ [r′k,∞) = ∅ for some k so that the process terminates, then we put N := k .
Otherwise we put N := ∞ .

We have T (rk) ≥ T (r′k−1) ≥ eT (rk−1). Hence T (rk) ≥ ek−1T (r1) ≥ ek so

that
(

log T (rk)
)2

≥ k2 . If N = ∞ we thus have rk → ∞ as k → ∞ . In any case
we find that

F ⊂
N
⋃

k=1

[rk, r′k]

so that
∫

F

dt

t
≤

N
∑

k=1

log
r′k
rk

=

N
∑

k=1

log

(

1 +
1

(

log T (rk)
)2

)

.

Since log(1 + x) < x for x > 0 this yields

∫

F

dt

t
≤

N
∑

k=1

1
(

log T (rk)
)2 ≤

∞
∑

k=1

1

k2
=

π2

6
.
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5.2. Proof of Theorem 3. We proceed as in the proof of Theorem A and
define the sequences (cn), (rn), (fn) and (gn) and the points a1, a2 and b1, b2, b3

as there. If we could choose all three points b1, b2, b3 nonreal, then the argument
given there would imply that f ◦ g has infinitely many nonreal fixed points. We
may thus assume that (gn) is quasinormal of order 2 in C\R and thus gn → 0
locally uniformly in C\R by Lemma 2.2.

If there exist three annuli Ωj := {z ∈ C : Sj < |z| < Tj} with disjoint closures
such that gn has an island over B(a1, ε) or B(a2, ε) in Ωj\R , for all j ∈ {1, 2, 3}
and infinitely many n , then the argument used in the proof of Theorem A shows
again that fn ◦ gn has a fixed point in one of these islands, and thus f ◦ g has
infinitely many nonreal fixed points.

We may thus assume that such annuli Ωj do not exist. Passing to a subse-
quence if necessary we thus find an annulus Ω := {z ∈ C : S − 1 < |z| < T + 1}
with S > 1 and T > e2S such that no gn has an island over B(a1, ε) or B(a2, ε)
in Ω\R . Since gn → 0 in C\R we may assume that |gn(z)| ≤ 1 for S ≤ |z| ≤ T
and | Im z| ≥ 1.

To save indices, we now write h := gn . For S ≤ |z| ≤ T and | Im z| ≤ 1 we
conclude from Lemma 5.1 that

|h′(z)|

2µ(log µ + A)
≤

1

| Im z|

where µ = max{1, |h(z)|} and A is a constant. We may assume that A > 1. If
S ≤ r ≤ T and log |h(reit)| ≥ A , then |h(reit)| ≥ eA > 1 so that | Im(reit)| =
r| sin t| ≤ 1 and thus

(5.1)
|h′(reit)|

|h(reit)| log |h(reit)|
≤

2|h′(reit)|

|h(reit)|
(

log |h(reit)| + A
) ≤

4

r| sin t|
.

We denote by T (r, h) the Nevanlinna characteristic of h and recall the inequality

(5.2) log M(r, h) ≤
R + r

R − r
T (R, h)

valid for 0 < r < R . Since M(r, gn) → ∞ as n → ∞ if r > 1 we conclude
that T (r, h) = T (r, gn) → ∞ for r > 1. In particular we may assume that
T (r, h) ≥ 3A > 3 for r ≥ S .

Choosing

R := r

(

1 +
1

(

log T (r)
)2

)

in (5.2) and noting that log(T/S) > 2 > π2/6 we deduce from Lemma 5.2 that
there exists r ∈ [S, T ] such that

log M(r, h) ≤

(

2 +
1

(

log T (r, h)
)2

)

(

log T (r, h)
)2

eT (r, h).
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Now
(

log T (r, h)
)2

≥ (log 3A)2 ≥ 1 and hence

(5.3) log M(r, h) ≤ 3eT (r, h)
(

log T (r, h)
)2

.

For a value of r satisfying (5.3) we consider the set

E(r) :=
{

t ∈ [0, 2π] : log |h(reit)| ≥ 1
2T (r, h)

}

and define λ(r) := meas E(r), where meas E denotes the measure of a set E .
Then for at least one of the four sets El(r) := E(r) ∩

[

l 1
2
π, (l + 1) 1

2
π
]

, where
l ∈ {0, 1, 2, 3} , we have meas El(r) ≥

1
4λ(r). We assume now that this is the case

for l = 0. The modifications that have to be made for the other cases will be
obvious. We define

α(r) := maxE0(r)

and
β(r) := min

{

t ∈
[

α(r), 1
2π

]

: log |h(reit)| = A
}

.

Then α(r) ≥ meas E0(r) ≥ 1
4λ(r). For α(r) ≤ t ≤ β(r) we have 1 < A ≤

log |h(reit)| ≤ 1
2
T (r, h). Thus log log h may be defined on the arc {reit : α(r) ≤

t ≤ β(r)} , and we may choose the branch of the logarithm such that
∣

∣log h
(

reiβ(r)
)
∣

∣

≤ log
∣

∣h
(

reiβ(r)
)
∣

∣ + π = A + π and hence log
∣

∣log h
(

reiβ(r)
)
∣

∣ ≤ log(A + π). Thus

log log
∣

∣h
(

reiα(r)
)
∣

∣ − log(A + π) ≤ log
∣

∣log h
(

reiα(r)
)
∣

∣ − log
∣

∣log h
(

reiβ(r)
)
∣

∣

≤
∣

∣log log h(reiα(r)
)

− log log h
(

reiβ(r)
)
∣

∣

=

∣

∣

∣

∣

∫ β(r)

α(r)

h′(reit)

h(reit) log h(reit)
ireit dt

∣

∣

∣

∣

≤ r

∫ β(r)

α(r)

|h′(reit)|

|h(reit)| log |h(reit)|
dt

≤ 4

∫ β(r)

α(r)

dt

| sin t|
.

Here the last inequality follows from (5.1). Now sin t ≥ 2t/π for 0 ≤ t ≤ 1
2
π .

Thus

log log
∣

∣h
(

reiα(r)
)
∣

∣ − log(A + π) ≤ 2π

∫ β(r)

α(r)

dt

t
= 2π log

β(r)

α(r)
≤ 2π log

π

2α(r)
.

Since
log

∣

∣h
(

reiα(r)
)
∣

∣ = 1
2
T (r, h)
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this yields

(5.4) log T (r, h) ≤ 2π log
π

2α(r)
+ log(A + π) + log 2.

Now

T (r, h) =
1

2π

∫ 2π

0

log+ |h(reit)| dt

=
1

2π

∫

E(r)

log+ |h(reit)| dt +
1

2π

∫

[0,2π]\E(r)

log+ |h(reit)| dt

≤
1

2π
λ(r) logM(r, h) +

1

2
T (r, h)

so that
λ(r)

π
≥

T (r, h)

log M(r, h)
.

Hence
π

2α(r)
≤

2π

λ(r)
≤

2 logM(r, h)

T (r, h)
.

Using (5.3) we find that

π

2α(r)
≤ 6e

(

log T (r, h)
)2

.

Together with (5.4) this yields

log T (r, h) ≤ 2π log
(

6e(log T (r, h))2
)

+ log(A + π) + log 2.

This implies that
log T (r, h) ≤ 4π log log T (r, h) + C

for some constant C , which is a contradiction since T (r, h) = T (r, gn) → ∞ as
n → ∞ .
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