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Abstract. It is widely assumed that neural activity related to synchronous
rhythms of large portions of neurons in specific locations of the brain is respon-
sible for the pathology manifested in patients’ uncontrolled tremor and other
similar diseases. To model such systems Hindmarsh-Rose (HR) oscillators are
considered as appropriate as they mimic the qualitative behaviour of neuronal
firing. Here we consider a large number of identical HR-oscillators interacting
through the mean field created by the corresponding components of all oscilla-
tors. Introducing additional coupling by feedback of Pyragas type, proportional
to the difference between the current value of the mean-field and its value some
time in the past, Rosenblum and Pikovsky (Phys. Rev. E 70, 041904, 2004)
demonstrated that the desirable desynchronization could be achieved with ap-
propriate set of parameters for the system. Following our experience with stabi-
lization of unstable steady states in dynamical systems, we show that by intro-
ducing a variable delay, desynchronization is obtainable for much wider range
of parameters and that at the same time it becomes more pronounced.

PACS codes: 05.45.Gg, 02.30.Ks

1 Introduction

Multidisciplinary approach through modelling, computation and engineering has
brought significant progress in many fields. Such is the case with the modern de-
velopments related to the Parkinson disease. The pathology is most easily recog-
nized by the involuntary tremor of the patients limbs. Other key characteristics
are rigidity of the posture, slow movements and postural instability. Condensed
description of the topic can be found in the exposition by Schiff [1]. It has been
observed, although not in all cases, that the neurons in the affected area of the
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brain responsible for movement control are to a significant extent synchronized
in their bursting activity. The chalenge is to find ways to diminish the degree
of synchrony. There are three main approaches: pharmacological therapy, in-
troduction of surgical lesions in specific locations of the brain and deep brain
stimulation (DBS). The latter technique was introduced into medical practice
more than a decade ago. It consists of implantation of device providing elec-
tromagnetic perturbation with appropriate frequency to the affected brain area,
but the physiological mechanism behind such clinical practice is not yet clearly
understood.

Synchronization in general, and in particular, synchronization in systems of large
number of coupled oscillators is a topical area of research in the context of non-
linear sciences [2]. Although the synchronization phenomenon could play a
constructive role and its existence could cause a variety of useful applications,
in some circumstances, as already mentioned, it is desirable to control the de-
gree of synchronization of the oscillator system from the outside, and in the
limiting case, to desynchronize the system and to sustain such a state for a cer-
tain time interval. Synchronization of bursting neurons with delayed synapses
has been discussed by Burić et al. [3]. Computational studies were performed
to find optimal waveforms for DBS [4], to determine the influence of applying
the input in different target zones [5], several linear and nonlinear methods to
achieve desynchronization were proposed by Tass et al. [6]. In this paper, we
discuss the possibility of desynchronization in a population of globally coupled
Hindmarsh-Rose oscillators [7] by applying a variable-delay feedback control.

2 System of Interacting Hindmarsh-Rose Oscillators

An effective method to suppress the synchrony in a network of globally coupled
oscillators was proposed in 2004 by Rosenblum and Pikovsky [8]. They applied
the time-delayed feedback control by taking the control signal to be the differ-
ence between the current value of the mean field, and its past (time-delayed)
value (delayed mean field). The analysis for different models of coupled burst-
ing neurons showed that such a synchronization control is quite effective, and
it could be used to control (suppress) the pathological rhythms in an ensemble
of coupled neurons by a proper choice of the feedback control parameters. The
main advantage of the proposed control method is the fact that it requires neither
information on the details of the individual oscillators and their interactions, nor
access to their parameters. The method is also noninvasive from a control theory
viewpoint, since the feedback signal vanishes after the suppression is achieved,
although the technique is invasive in medical sense since it requires implantation
of batteries and electrodes in the body of the pacient.

In our analysis, we have chosen the Hindmarsh-Rose system of oscillators,
which can be considered as a physiologically realistic model for describing the
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neuronal activity of the brain cells. In this collective model it is assumed that the
oscillators are globally coupled through their mean field.

We consider a system of N identical Hindmarsh-Rose oscillators [7], in which
the dynamics of the individual neurons is described by the following equations:

ẋi = yi − x3
i + 3x2

i − zi + 3 + F1(t) + F2(t), (1)

ẏi = 1 − 5x2
i − yi, (2)

żi = 0.006 [4(xi + 1.56)− zi] . (3)

Here xi is the membrane potential, yi and zi represent the fast and slow currents
of ions for the i-th oscillator, while the constant term in the first equation is the
external current. The coefficients in equations (1)–(3) are commonly selected
values for the parameters modeling the slow and fast ion channels. The term
F1(t) describes the global coupling between the oscillators, and is given by

F1(t) = KMFX(t), (4)

where

X(t) =
1
N

N∑

i=1

xi(t). (5)

is the mean field, created by the x-components of all oscillators (i =
1, 2, . . . , N). The term F2(t) is the variable-delay feedback force defined by
the difference between the delayed and the current mean field signal

F2(t) = K [X(t− τ(t)) −X(t)] , (6)

Here τ(t) represents the delay which is taken to be variable and dependent on
the time t. The structure of the feedback term F2(t) is identical to the form first
proposed by Pyragas [9] for stabilization of unstable periodic orbits in chaotic
systems. In the absence of control (F2 = 0), the synchronous state onsets when
the coupling strength KMF exceeds a certain critical value. The increase of the
coupling parameter KMF beyond the critical value manifests itself via the ap-
pearance of macroscopic oscillations of the mean field X(t), which models the
pathological brain activity. The goal is to achieve desynchronization of the oscil-
lators population, i.e. to suppress the mean field X(t) by applying the feedback
force F2(t) and making a suitable choice of the control parameters.

The motivation to use variable time-delay comes from our previous studies [10]
with varying delay applied to problems of stabilization of unstable steady states
in various systems [11–13]. The results were very favorable leading to signifi-
cant enlargement of the domains in the parameter space for which stabilization
is achievable. Moreover, the approach to the stationary state is faster and its
stability becomes more robust.
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To characterize the influence of the feedback gain parameter K and the time
delay τ in controlling collective synchrony of the Hindmarsh-Rose oscillators,
we use the suppression coefficient defined as

S =

√
var(X)
var(Xf )

, (7)

where X and Xf are the mean fields in the absence and presence of the feed-
back, respectively, and var(X) (analogous for Xf ) is the variance of the mean
field X . The results of numerical calculations for the dependence of the sup-
pression factor S on the control parameters K and τ in the case when the delay
is constant are shown in Figure 1. The simulation is performed for N = 1000
oscillators for the strength of the internal coupling KMF = 0.08. The values
of the suppression factor S are given in a grayscale coding. The values of the
delay τ in the horizontal axis are normalized by the average period T of the
mean-field oscillations without control (T ≈ 175). The domain of suppression
consists of several islands encompassing the values of τ/T equal to (2n+1)/2,
where n = 0, 1, . . . The maximum value of the suppression coefficient in the
depicted range of the control parameters is about 15.

To investigate numerically the effects of inclusion of a variable delay in the
above scheme for desynchronization of globally coupled oscillators, we will use

Figure 1. Numerical calculations of the suppression coefficient S of the mean field os-
cillations in a system of 1000 globally coupled Hindmarsh-Rose oscillators in the plane
parametrized by the feedback strength K and the time delay τ . The delay is normal-
ized by the average period T = 175 of the mean-field oscillations in the system without
control. The value of the coupling strength is KMF = 0.08. The time delay τ in the
feedback force is constant (Pyragas method). Values of S are given in a grayscale cod-
ing. The domain of suppression consists of islands located around τ/T ≈ (2n + 1)/2,
n = 0, 1, . . . . For τ = 0 control can not be achieved, meaning that desynchronization is
not possible without a feedback controller.
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a deterministic delay modulation in a form of a sine wave with amplitude ε and
frequency ν, i.e.

τ(t) = τ + ε sin(νt). (8)

The corresponding calculations of the suppression coefficient in the plane
spanned by the control parameters K and τ/T are shown in Figure 2. The
respective values for the amplitude and the frequency of the delay modulation
are ε = 40 and ν = 10. We notice a substantial enlargement of the suppression
domain in comparison to the one for the constant time delay shown in Figure 1.
At the same time one observes larger values for the suppression coefficient, with
the maximum in the depicted range of control parameters reaching values close
to 20, but also an undesirable effect shows up in the form of increase of the
minimal feedback gainK necessary to obtain higher suppression factor.

Figure 2. The extension of the domain of suppression by a variable-delay feedback con-
trol. The modulation of the delay is with a sine wave with amplitude ε = 40 and fre-
quency ν = 10. The rest of the parameters are as in Figure 1. Notice the shift of the
origin due to the restriction τ ≥ ε.

3 Conclusion

It is thought that specific functional states of neural networks are characterized
by modulation of oscillatory activity in specific frequency bands through basal
ganglia-cortical loops. It is being confirmed by recordings of the local field
potential that the globus pallidus in mammalian brains plays the role of pace-
maker, namely its cells are constantly firing at precise frequency and through
their cortical loops these cells participate in a very important control and have
a hierarchical frequency organization of the local field potential which can be
related to the mean field used in our model.

The present study of the behavior of large number of interacting oscillators,
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coupled through their mean field, shows that their synchronization can be dimin-
ished by using time-delay feedback of Pyragas type in much larger domain in
the parameter space if the delay-time changes as the time goes on. This suggests
that it is worthwhile to look for an optimal choice in the delay modulation in or-
der to increase the suppression coefficient and to extend toward lower gains the
domain with successful desynchronization. Further generalizations could be of
interest such as introduction of several feedback terms with independent delays
or feedback terms with multiple delays [14, 15]. Another extension would be a
study of systems of non-identical oscillators which would be more appropriate
model for real systems. An analytical description of the domain of suppression
in this type of coupled oscillators would be also of interest for future studies.

References

[1] S.J. Schiff (2010) Phil. Trans. R. Soc. A 368 2269.
[2] A. Pikovsky, M. Rosenblum, J. Kurths (2011) “Synchronization”, Cambridge Uni-

versity Press.
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