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The present paper examines a modified shear-lag model for predicting the stress 
distribution in short fiber reinforced composite materials. The model assumes 
perfect bonding between the fiber and the matrix materials, and allows for the 
matrix material to partially sustain axial loads. The stress distribution obtained 
on the basis of this model is used to predict the internal damping characteristics 
of the composite material. These characteristics are a function of both the 
material properties and the geometrical layout of the composite, and are opti
mized by combining the analytical model with a nonlinear programming opti
mization algorithm. Representative numerical results are obtained for glass-epoxy 
and graphite-epoxy composites. 

1. INTRODUCTION 

Internal material damping in composites depends on 
the properties of the fiber and matrix materials, and on 
the geometrical layout of the composite. Glass and 
graphite reinforced polymer matrix composites exhibit 
anisotropic, linear viscoelastic behavior. The princi
pal mechanism of damping in such composites is con
sidered to be the viscoelastic energy dissipation in the 
matrix material. Experimental investigations reported by 
McLean and Read (1975) and Gibson and Yau (1980) 
indicate that the damping in discontinuous fiber compos
ites is in general greater than that in continuous fiber 
composites. This can be partly attributed to the stress 
concentration effects at fiber ends, which facilitates the 
dissipation of energy in the viscoelastic matrix material. 

The first attempt to tailor the damping properties of 
composite structures can be traced to an effort due to 
Plunkett and Lee (1970). Several models have been pro
posed for predicting the damping in short fiber reinforced 
composites. Gibson et al (1982) discuss a formulation for 
obtaining the internal damping for a case in which the 
load is applied parallel to~ the fiber direction. The 
elastic-viscoelastic correspondence principle was used in 
conjunction with both an energy formulation and a force 
balance procedure to obtain the analytical predictions of 
damping. This approach is based on a shear-lag analysis 
of Cox (1952), which assumes that the stresses at the fiber 
ends vanish, and that the matrix material carries no axial 

load. Results obtained in the analysis are shown to be in 
good agreement with experimental data. 

Sun et al (1985) have developed theoretical relation
ships for the material damping of short fiber-reinforced 
polymer matrix composites under off-axis loading. They 
develop relations for the loss and storage modulus in 
terms of fiber aspect ratio, loading angle, stiffness of the 
fiber and matrix materials, the volume fraction, and the 
damping properties of the fiber and matrix materials. 
They also conduct parametric studies to examine the 
variation of the damping with the fiber aspect ratio and 
the loading angle, to determine optimum values of these 
parameters for maximum internal damping. Parametric 
studies of the type described above in design synthesis 
procedures have been shown to yield suboptimal results. 
The present paper proposes a design synthesis approach 
based on formal multidimensional optimization that cir
cumvents some of these problems. 

In the present work, a force distribution approach 
similar to the one proposed by Fukuda and Chou (1981) 
is used to develop relations for the loss and storage 
modulii of the composite in terms of fiber aspect ratio, 
loading angle, stiffness of fiber and matrix materials, the 
fiber volume fraction, and the damping properties of the 
constituent materials. This advanced shear-lag model rep
resents a departure from the Cox's model in that the 
matrix material is assumed to participate in the load 
carrying process. This analysis is then posed as a formal 
multivariable optimization problem to maximize the ex-
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FIG. 1. Representative volume element for a short fiber composite. 

tensional loss factor of a representative volume element 
shown in Fig. 1, with constraints on element mass and 
stiffness characteristics. 

2. ADVANCED SHEAR-LAG MODEL 

The composite structure is assumed to consist of a 
repeating sequence of short fibers, aligned unidirection-
ally and distributed uniformly in the structure. Hence, 
the model needed for developing the force distribution in 
the fibers and matrix is a two-dimensional arrangement 
of a three-fiber representative element shown in Fig. 2. 
The spacing between neighboring fibers is assumed to be 
constant and is indicated by h. An off-axis loading is 
assumed, with the fibers oriented at an angle 8 with 
respect to the loading direction. The distance along the 
fiber direction is denoted by a nondimensional parameter 
i = x/t. As shown in Fig. 2, there are three distinct 
regions along this nondimensional coordinate denoted by 
y ' = l , 2, and 3, where the force distribution is likely to 
change due to the presence, or lack thereof, of adjacent 
fibers. In this representative region, the fibers are num
bered from / = 1 to /' = 3, as shown in the figure. 

As stated before, the model in the present work allows 
for the matrix to partially sustain axial loads. This is 

matrix 

^ ^ 4 i J i ) e r ^ 

matrix 

- dx 

- p + 
dp 
dx 

FIG. 3. Free-body diagram of middle fiber. 

admitted by assuming the matrix material between two 
fiber ends, and of the same diameter as the fibers, be
haves as a fiber with a different value of the Young's 
modulus, ie, the matrix material between the fibers is 
considered an extension of the fiber. The free body 
diagram of the middle fiber is shown in Fig. 3. The 
following differential equations are obtained from force 
equilibrium considerations in the x direction: 

dPu 

(2) 
dp2l 

dx 

dx 

+ r2J-

dPy 

Y Tlj - U 

- T l y = 0 

- r 2 i = 0 (3) 

Here P- and T, are the axial force per unit thickness and 
interfacial shear stress in the /th fiber and y'th region, 
respectively. The normal fiber stress and the interfacial 
shear can be written in terms of a displacement M,. • as 
follows: 

dun 
<>,j = EU dx 

, ( " /+ i ~uIJ)/h, 

(4) 

(5) 

where £,. • is the Young's modulus of region i-j, and the 
Gm is shear modulus of the matrix material; £,.. is either 
Ej (Young's modulus of the actual fiber) or Em (Young's 
modulus of the matrix) depending upon the region j 
under consideration. Introducing a nondimensional pa
rameter a-• as 

a^Eijh/Gt (6) 

Eqs (l)-(3) can be rewritten as follows: 

where 

«i;"i" + " 2 y - M i ; = 0> 

a 2 y " 2 y + " 3 i -
2 " 2 7 + "i7 = 0> 

ayii'J'J-uy-u2J = 0, 

u"- J 

(7) 

(8) 

(9) 

(W\ 

FIG. 2. A 2D three fiber model. 

,j de ' 
Equations (7)-(9) yield a solution of «,. • as a function of 
| , which can be used with Eq (5) to yield a set of 
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equations expressing Ptj as a function of £. Using condi
tions of symmetry and continuity of displacements and 
stresses at £0, | 2 , and £2, a solution for the axial load 
variation in the composite P(.., is obtained as a function 
of nondimensional spatial location £ = x/t and the ratio 
of the matrix and fiber tensile modulii k = Em/Ef as 
follows: 

P -~^~~ Vn (l + 2k) 1 
8A:A1G(1 -k) cosh Ax£ 

3F 
11) 

•^22 "" •* 0 

2(1 ™/c) / 4Gi / \ 
1 + - —coshX 2 (£-£ 2 ) 1 (1 + 2A-; 

= ^ i ; 

= ^o 1 -
(1-k) 

(1 + 2/c) 

i 7 

AGH 
X c o s h \ 2 U - S 2 ) | l - — 

(12) 20 38 40 50 
X y t 

FIG. 4. Load distribution along middle fiber and matrix. 

-< 33 — "n 

(13) 

3Pn 
and A is expressed as 

(2 + k] 

A 3 f c ( l - / c ) c o s h A 3 ( | 1 - £ ) . 
1 + T - ^ : ,.. r r sinhA(£2 - £0)2 

A,- = 
a2 - + la 

V 
\ «2.,«3/ 

0.5 

(19) 

A2(l + 2 / t ) s inhA 3 ( | 3 -£ 0 ) 

X I 
4GW 

F 
(14) 

where 

J F = ( 2 + * ) s i n h \ 3 ( | 1 - | 0 ) 

4A-A1A2cosh A ^ c o s h A2(£0 - £2 

4(l + 3/t)A2-

3 
sinh X^2 sinh A2(£0 - £2) 

The load distribution (or stress distribution) in the mid
dle short fiber and in the matrix material between the 
fibers for the three fiber model, and for selected values of 
k = Em/Ej- is shown in Fig. 4. These plots were obtained 
by assuming values of h/t = 1, IJt = 10, l2/t = 40, l3/t 
= 50, and Gm/Em = 14/34. For k close to zero, one 
observes the expected zero loads at the fiber end. A 
similar trend in the outer fiber and matrix is observed, as 
shown in Fig. 5. 

The average axial force Ptj can be obtained by inte
grating the force expressions P,-•(£,&) over the fiber 

+ [l2/t2A1A3cosh AL|2 • sinh A2(£0 - £2) 

+ 4/c(l + 3 / : ) ^ 2 ^ 3 s m h ^ i ^ 2 c o s h ' > v 2 ( ^ o ^ ^ 2 ) ] 

• cosh X 3 ( £ , - £ 0 ) , (15) 

G = A 2 s i n h A 3 ( £ 1 - £ 0 ) 

x [1 + 2k + (2 + k) cosh A 2 (£ 0 - £2)] 

+ 3kX3 sinh A 2 ( £ 0 - £ 2 ) cosh A 3 ( £ 1 - £ 0 ) , (16) 

3 

2. 

= 1 . 

k_ i i t 

A 2 ( l + 3/t) 
H = sinh Ax£2 tanh A 2 ( | 0 - £2) 

+ A ^ c o s h Ax£2, 

A 2 ( l + 3/c) 

(17) 

FF = sinhA1£2cothA2(£0-£2) 40 53 

+ Aj/ccosh A x | 2 , (18) FIG. 5. Load distribution along outer fiber and matrix. 
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length: 

P„ = 
3Pn 

1 + 2k 

16G kXl(l~~k)sinh(2p/2) 

^22 — *0 1 + 

3F 

4(1 — A:) 

2/> 
(20) 

X s i n h - ( . $ - / ; ) II 
4GY 

F 
(21) 

P = P 
1 32 r \2 

2 ( 1 - * ) 

r ( s - / > ) ( i + 2)t) 

r / 4G7 
X sinh — ( j - ») 1 

2 V F'\ F 

(22) 

V33 ~~ " 13 

3P„ 

(2 + /:) 
1 + 

2A3Ar(l-/c) 

A/>A2~(l + 2/t) 

T 4GW7 

sinh — (s — p) 
2V yj F 

where 
(23) 

M i 
Y = 

3k) sinh —p cosh — (s — p) — 1 

3 sinh —(s-p) 

+ A, A-cosh —p, 
1 2F< 

2 = 

r = 

A = 

d 

A, 

GjEf+2Em) 

E,Em]/(w/4Vf)(l+p/s) -1 

3G,„ 

EAl(Tr/4Vf)(l+p/s) - 1 

0.5 

G,„(£„, + 2£ /) 

^JCv^/Xi+/>/*) -1 

0.5 

(24) 

(25) 

(26) 

(27) 

Substitution of Pij = Afajj and P0 = AfeE/ allows one to 
obtain expressions for the average stress in each region of 
the fiber, denoted and a33. The average 
stress in a representative fiber length s can be obtained 
by an expression based on geometrical considerations as 
follows: 

°a= (V3^){a2i/> + °2i(s ~P) 

+ 2[oJ2(s-p)+onp}}. (28) 

For static equilibrium under the applied load, an expres
sion for the stress in the composite specimen ac can be 
written by invoking a modified rule of mixtures. 

oc = aaVf (1 +p/s) + om [1 -Vf(l+p/s)}, (29) 

where Vf is the fiber volume fraction of representative 

volume element. Substituting the value for the average 
fiber stress from Eq (28), and the matrix stress am by 
EmGm into Eq (29), and assuming equal axial strain in 
fiber and matrix materials, one can write an expression 
for the longitudinal modulus of representative volume 
element of composite between the section of fiber length 
E,. as follows: 

Ec =E,Vf(l+p/s)[l-2 tanh (ps/2)/Ps} 

+ Em[l-Vf(l+p/s)}. 
(30) 

When the same external stress a is applied to short fiber 
composite model and to its equivalent homogeneous ma
terial model, equivalent strain energies may be assumed 
for these two models. Based on this assumption, the 
longitudinal Young's modulus EL of the short fiber com
posite model can be expressed as follows: 

EL = 
EcEm 

7 P / S 

i c 1 + p/s 

1 (31) 

l+p/s 

In the present analysis, both fiber and matrix materials 
were assumed to be viscoelastic. The elastic-viscoelastic 
correspondence principle can be used to define the exten-
sional and shear modulii as the following complex quan
tities: 

E* = E'x + iE/, (32) 

Ef* = Ef + iEf 

G:. 

K + iE,:;, 

GL + iG". 

(33) 

(34) 

(35) 

Subscripts / and m denote fiber and matrix materials, 
and the prime and double prime quantities represent the 
storage and loss modulii, respectively. The ratio E"/E'x 

is the loss factor and is a measure of the internal damp-, 
ing. With these definitions, the complex representation of 
Eq (31) is written as follows: 

E* = E*E* I E* 
p/s 

c l+p/s 
E*-

1 

l+p/s 
(36) 

(37) 

where 

E* = EfVf(l +p/s)[l -2tanh(p*s/2)/(3*s] 

+ E*\\~Vf(l+p/s)}. 

Here, the parameter fi*s depends on the geometrical 
arrangement of the fibers in the matrix. For square 
packing geometry, 

/3*s = 4\ -
G* 

Ef* h\{v/4Vl) 

and for hexagonal packing geometry, 

G* 

0.5 

/ ^ = 4 | -

(38) 

(39) 
Ef l n ( v 2 \ / 3 > / y 

The Halpin-Tsai equations available in Agarwal and 
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Broutman (1980), in conjunction with the rule of mix
tures, allows one to write expressions for the transverse 
modulus Ef and the in-plane shear modulus GfT: 

l+2y]xVf\ 

G?T=G* 
1 

(40) 

(41) 
•ViYfi 

where rjl and rj2 are defined as follows: 

T,! = (Ef*/E* - l ) / ( £ / / £ , * + 2), (42) 

V2 = {Gf*/G* - \)/{Gf*/G* + 1). (43) 

Further, the Poisson ratio can be expressed as 

"LT= Vfvf{\ +p/s)+ pm[l - Vf{l +p/s)]. (44) 

Here, vf and vm are the Poisson ratio for the fiber and 
matrix materials, respectively. With the above definitions, 
the modulus E* assumes the following form: 

1 1 cos 6 sin 6 

E' + iE" + E* 

+ 
2v 

(45) 
LT 

G* E* 
sin 6 cos 6. 

Equation (45) can be separated into real and imaginary 
parts to yield values of the storage and loss modulii. As 
defined before, the loss factor is then expressed as fol
lows: 

T\X=E>X>/E'X. (46) 

The shear loss factor is denned as the ratio of the storage 
to loss components of the shear modulus, where the latter 
are obtained from the expression shown below 

1 

Gx*y 

1 
GXV + >G;'}. 

1 2v, T 1 
= + —— + 

p * p* p * 

( 1 2VLT 1 

- + + 
\ EL* Et E* 

1 
G* 

cos2 20. 

(47) 

3. OPTIMUM SYNTHESIS PROBLEM 

To study the optimum layout of the composite speci
men for maximum internal damping, the problem was 
posed as a nonlinear optimization problem with an objec
tive to maximize t\x, which is a function of the design 
variable vector V= {Ef, E*, G*, p, s, d, D, 0}, and 
subject to upper and lower bound constraints on the 
mass and extensional stiffness of the composite specimen. 
The inequality and side constraints in the present prob
lem were formulated for nominal values of lower and 
upper bounds on the geometric variables and are as 

follows: 
afll/2rv<s/d<1000, (48) 

</<£>-0.001, (49) 

0.01<p/s, (50) 

0 < 6 < IT/2, (51) 

0 . 5 < l ^ < 7 r / 4 (square packing), (52) 

0.5 < Vf<ir/2\f3 (hexagonal packing). (53) 

Here afu is the ultimate strength of short fiber, and rv is 
the matrix yield stress in shear. The constraint of Eq (48) 
stems from considerations of the critical fiber length, as 
developed in Agarwal and Broutman (1980). In this study, 
the Oju of glass fiber and graphite fiber were selected as 
3500 and 2750 Mpa, respectively, and a matrix yield 
shear stress value of 97 Mpa was adopted. The volume 
fraction Vf can be expressed for square and hexagonal 
packing arrangement as follows: 

Vf=7rd2/[4D2(l+p/s)} (square), (54) 

Vf=wd2/l2\f3D2(l+p/s)] (hexagonal). (55) 

The mass of a representative volume element can be 
written as 

m = (w/A){Pfsd2 + Pm[pD2 + s(D2 ~~ d2)}}, (56) 

where p, and pm denote the specific weight of the fiber 
and matrix materials, respectively. In addition to con
straints given by Eqs (48)-(5 3), additional inequality 
constraints can also be imposed on the mass of the 
representative volume element and the extensional stiff
ness of the composite specimen. The latter constraint 
allows for tailoring the damping requirement of the speci
men, with added specification on its load-deflection char
acteristics. 

The optimization problem described above can be 
solved by any of the known methods of nonlinear pro
gramming. Zoutendijk's method of feasible-usable search 
directions, as presented in Vanderplaats (1984) was used 
as the optimization algorithm in the present problem to 
generate a sequence of optimum designs. 

4. RESULTS AND DISCUSSIONS 

An optimum design approach such as the one used 
here allows for a systematic study of composite layout 

TABLE I. MATERIAL PROPERTIES OF THE MATRIX 
AND FIBER MATERIALS 

E, 
ET 

Constants 

(Gpa) 
(Gpa) 

GLT (GP a) 
v,T 

T) 

nc 
pikg/m1) 

Matrix 

Epoxy 

3.4 
3.4 
1.4 
0.4 
0.015 
0.018 

1220 

Glass 

72.4 
72.4 

£ , / [2( l + 
0.2 

Fibers 

«)1 
0.0014 

— 
2539 

Graphite 

228. 
13.8 
27.6 

0.16 
0.0014 

— 
1760 
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TABLE II. OPTIMUM DESIGN FOR GLASS-EPOXY COMPOSITE 
USING MODIFIED SHEAR-LAG ANALYSIS, ( 2 F c / / 2 T r - < S/D (LENGTH UNITS IN MM) 

Packing 

Square 

Hexagonal 

k 

0. 
0.047 
0. 
0.047 

d 

0.01 
0.01 
0.01 
0.01 

D 

0.0124 
0.0124 
0.0134 
0.0134 

P 

0.039 
0.029 
0.029 
0.029 

s 

0.197 
0.189 
0.20 
0.196 

e 

49.5 
50.8 
49.7 
50.4 

v, 

0.5 
0.5 
0.5 
0.5 

s/d 

19.7 
18.9 
20.0 
19.6 

VX 

0.01489 
0.01487 
0.01489 
0.01487 

TABLE III. OPTIMUM DESIGN FOR GLASS-EPOXY COMPOSITE WITH CONSTRAINT ON EXTENSIONAL MODULUS 
OBTAINED BY USING MODIFIED SHEAR-LAG ANALYSIS, (2 /^ /21 ' , , ) < S/D (LENGTH UNITS IN MM) 

Packing 

Square 

Hexagonal 

k 

0. 
0.047 
0. 
0.047 

d 

0.01 
0.01 
0.01 
0.01 

D 

0.0119 
0.0119 
0.0128 
0.0127 

P 

0.040 
0.034 
0.030 
0.040 

s 

0.227 
0.188 
0.197 
0.180 

e 

45.8 
51.0 
45.9 
47.2 

Vf 

0.55 
0.56 
0.55 
0.55 

s/d 

22.7 
18.5 
19.7 
18.0 

Vx 

0.01455 
0.01445 
0.01455 
0.01450 

TABLE IV. OPTIMUM DESIGN FOR GRAPHITE—EPOXY COMPOSITE WITH CONSTRAINT ON EXTENSIONAL MODULUS 
OBTAINED BY USING MODIFIED SHEAR-LAG ANALYSIS, (XFU/2VY) <S/D (LENGTH UNITS IN MM) 

Packing 

Square 

Hexagonal 

k 

0. 
0.015 
0. 
0.015 

d 

0.0053 
0.0053 
0.0053 
0.0053 

D 

0.0054 
0.0054 
0.0062 
0.0062 

P 

0.037 
0.034 
0.024 
0.024 

s 

0.096 
0.098 
0.075 
0.079 

e 

18.0 
19.7 
20.1 
20.7 

Vf 

0.55 
0.56 
0.5 
0.5 

s/d 

18.0 
18.4 
14.2 
14.8 

l.v 

0.01493 
0.01487 
0.01458 
0.01457 

without resorting to a parametric study, an approach that 
frequently yields suboptimal results. A range of optimal 
geometric configurations can be obtained for prescribed 
loadings, and for bounds on parameters such as mass and 
stiffness of the specimen. All material properties used in 
the numerical work are summarized in Table I. A typical 
optimum design with constraint on the element mass is 
illustrated in Table II. The final results for isotropic glass 
fiber composite, with a constraint on the extensional 
stiffness are summarized in Table III. Similar results for 
orthotropic graphite fiber composite are shown in 
Table IV. 

The load distributions in the middle and outer fibers, 
as shown in Figs. 4 and 5, are in accordance with 
expected values. With reference to Fig. 4, a large axial 
load is carried by the fiber at x/t = 0. This load remains 
more or less constant till x/t increases to the point that 
the outer two fibers participate in the load carrying 
process. At this point, there is a drop-off in the load in 
the central fiber. When x/t increases further to the end 
of the central fiber, the load drops to a near zero value 
for a value of k = 0.0. This is in agreement with Cox's 
shear-lag analysis. For finite values of k, there is a finite 
axial load at the fiber end, albeit a small one. Similar 
arguments can be made about the load variations in the 
outer fiber shown in Fig. 5. 

Variation in the optimum loss factor for prescribed 
extensional stiffness requirements is illustrated in Fig. 6. 
This figure depicts the dependence of the loss factor on 
k, with three specific values of k chosen for comparison. 
The case k = 0 illustrates the Cox shear-lag analysis for a 

z 1 o 
U l 1-4 
(/) H-
0 u 1 
_i <r 

a. 
1 "" B 

a. u o <r 

» « ! l 

k»3V?24 
k-0.5 

» ! 

11 13 15 

EXTENSIONAL MODULUS 
Ex - Gpa 

17 

FIG. 6. Variation of loss factor with stiffness and k = Em/Ef (* 
k = 0.141, i)„, = 0.012, 7[f;„, = 0.014). 

glass-epoxy composite and k = 0.047 and k = 0.5 corre
spond to an analysis based on the advanced shear-lag 
model for the same material. A hypothetical matrix mate
rial is represented as the fourth case, with k = 0.141 
associated with ijOT = 0.012 and %„, = 0.014. With in
creasing values of k, the optimum damping is lower. This 
is to be expected as the matrix contributes to the axial 
load carrying capability, generating lower interfacial 
shear, and hence a lower energy dissipation in the matrix 
material. The Cox model appears to be adequate for 
analysis of composites with polymer matrix materials, 
where the extensional modulus of the matrix material is 
low. However, alternate shear-lag models must be ex
plored for matrix materials with higher extensional mod-
ulii, in particular, metal matrix composites. 
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