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We formulate a mathematical model that governs operations of many engineering systems particularly 
the ceiling fan to explain the fluid flow between the fixed impermeable and the porous rotating disks. 
The model is based on the continuity and the Navier-Stokes equations which are reduced into a set of 
coupled ordinary differential equations through transformation by similarity variables. The coupled 
ordinary differential equations are solved using perturbation techniques and the series solution 
obtained is improved by Paté’s approximation. Our results meet the supposition that, with laminar flow 
regime, suction increases with increasing speed of rotation of the rotating porous disk and these are 
shown on the graphical representations. 
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INTRODUCTION AND MODEL FRAMEWORK 
 
The problem of laminar flow between two parallel disks 
stemming from both practical interests (example, ocean 
circulation models and turbo machinery applications) and 
theoretical interests (example, exact solutions of the 
Navier-Stokes equations in certain geometric limiting 
cases) has received much attention over the years 
(Lopez, 1996). In modern times, the theory of flow 
through convergent–divergent channels has many appli-
cations in aerospace, chemical, civil, environmental, 
mechanical and bio-mechanical engineering as well as in 
understanding rivers and canals (Makinde and Mhone, 
2006). Due to the complexity of a real fluid flow, certain 
assumptions are made to simplify the mathematical con-
venience. Some of the basic assumptions are; the fluid is 
ideal (that is, without viscosity for mathematical conve-
nience). In situations where the effect of viscosity is 
small, this assumption often yields results of acceptable 
accuracy, although where viscosity plays a major part 
(example, in boundary layers), the assumption is clearly 
untenable. The flow is steady (that is, the flow para-
meters do not change with time). The fluid is incompres-
sible (or has constant density) (Massey, 1989). 

We consider the flow between a fixed impermeable 
disk and  a  porous  rotating  disk  (Figure 1)  both  being 
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immersed in a large body of fluid. Motion of the fluid is 
induced by the rotation of the porous disk. This study is 
interesting in its own right and also based on its appli-
cability. 

In the sequel, the following notation will be used:  
 

:L =  Distance between the two disks. 
:r =  Radius of each disk 
:Ω = Angular speed of the rotating disk 
:ε =  Measure of the angular speed or momentum of the 

rotating porous disk 
:W = Suction velocity at which fluid is withdrawn from the 

rotating disk (injection if W  is negative). 
, , :u v w = Velocity components in the directions 

, ,r θ and z  respectively. 

Pf ,, �  are the similarity variables used to reduce 
the Navier-Stokes non-linear partial differential equations 
into a system of non-linear ordinary differential equations. 
For fixed impermeable disk, 0, 0, 0u w v= = =  while for 

porous rotating disk, 0, ,u w W v r ε= = = Ω . The disks 

are separated by a distance L  which is small compared 
to their radii. 

The direction of fluid flow as shown by the arrows in the 
Figure 1 is heading towards the porous disk which is 
rotating with a constant angular speed Ω . The suction 
velocity is assumed to  be  constant  and equal toW . The  
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Figure 1. Physical model representing laminar flow between       
parallel disks. 
 
 
 
rotation speed is given by εΩ , where Ω  is the angular 
speed of the rotating disk and the parameter ε  is a 
regulator which controls rotation of the disk ( 10 ≤≤ ε ). 
If 0=ε , then there is no rotation but for 0>ε , rotating 
occurs. 

The question of existence and uniqueness of solutions 
in the similarity formulation has been raised (Mellor et al., 
1968; Parter, 1982). Moreover, a question on the 
behaviour of the flow between the two disks and in 
particular near the stationary disk as the speed of the 
rotating disk approaches infinity has not been satis-
factorily addressed in this type of formulation. 

The nature of the flow between the two disks with finite 
radii is also not yet known. 

There are arguments that boundary layers are formed 
on both disks with the interior fluid rotating (Batchelor, 
1951) whereas on the other hand, the boundary layers 
are formed only on the rotating disk with the interior being 
essentially stationary (Stewartson,1953). 

Fluid flow is either turbulent or laminar. Turbulence 
involves entirely haphazard motions of small fluid 
particles in all directions and it is impossible to follow the 
adventures of every individual particle. With laminar flow, 
the individual particles of fluid follow paths that do not 
cross those of neighbouring particles. Herein, the flow is 
assumed to be laminar.  A brief comment on previous 
works provides the context of this paper. 

The problem of flow over a rotating disk has a long 
history, originally describing similarity transformations 
that enable Navier-Stokes equations to be reduced to a 
system of coupled ordinary differential equations (Von 
Karman, 1921). Flows between or above infinite rotating 
disks are known as the generalized Von Karman swirling 
flows. Ever since Von Karman derived the simplified 
equations that govern the flow over an infinite rotating 
disk, this problem has attracted many researchers 
(Greenspan, 1968; Lopez, 1996; Owen and Wilson, 
2000; Mellor et al., 1968; Kuiken, 1971; Kelson et al., 
2000 to name but a few). Theoretical work on this class 
of flows has been undertaken mainly in the framework of 
similarity solutions because the assumption of self-
similarity to reduce Navier-Stokes equations from partial 
to   ordinary  differential  equations  greatly  simplifies  the  

 
 
 
 
analysis. Lopez (1996) studied the flow between a sta-
tionary and a rotating disk shrouded by a co-rotating 
cylinder. He used a numerical treatment of the axi-
symmetric Navier-Stokes equations together with some 
experiments for the case of finite stationary and rotating 
disks bounded by a co-rotating sidewall and found that in 
the long time limit, the solutions are steady and 
essentially self-similar.  
 
 
MODEL AND ANALYSIS 
 
Figure 1 depicts a system of porous rotating disk and a 
stationary disk both being immersed in a large fluid body. 
Fluid motion is set up by both rotation of the porous disk 
and suction (or injection) of the fluid itself. 

We use the cylindrical polar coordinates ( )zr ,, φ  and 
denote the corresponding velocity components 
by ( )wvu ,, . However, the angle φ  will not appear in our 
analysis because of rotational symmetry. The plane 

Lz =  rotates about the −z axis with constant angular 
velocity εΩ  and the suction velocity is given by W . 

In order to neglect the end effects, we assume that the 
gap L  is very small compared to the radii of the disks, 
that is,  rL <<  ( 0 L r< << ). 

The equations governing the motion of an 
incompressible viscous fluid arise from conservation of 
mass principle and the momentum principle. 

From the conservation of mass principle, we have: 
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From the momentum principle and ignoring gravity, we 
have the Navier-Stokes equations, one for each co-
ordinate direction: 
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Boundary conditions and equations in similarity 
variables 
 

The small gap L  between the two disks allows us to neg- 



 
 
 
 
lect the behaviour of the flow around the edges. There-
fore, the boundary conditions to be specified are those 
applicable to velocity components at both disk surfaces 
and not the edges. 

For the velocity, it is assumed that the no-slip condition 
applies at the surface of the disks. 

On the fixed disk, 0=z , the no-slip conditions are 
( ) ( ) 00,,00, == rvru  and ( ) 00, =rw . On the rotating 

disk, Lz = , the no-slip conditions are  
( ) ( ) Ω== rLrvLru ,,0,   and because of fluid suction 

on the disk, the axial velocity is given by ( ) WLrw ε=, . 
Since the fluid is incompressible, it is possible to define 

the stream function from the governing continuity 
equation in two dimensions. This enables us to solve the 
continuity equation (2) in the familiar way by setting 
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and by defining a dimensionless normal distance from the 
disk (Von Karma), 
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We assume a similarity transformation of the form 
 

Wfrr )(),( 2 ηη =Ψ                                            (7) 
                  
Equations (5) and (7) yield the expression for the radial 
and tangential velocities 
  

)(2,)(/ ηη Wfwfru −=Ω=                              (8) 
                                                 
For the axial velocity and pressure variables, we assume 
that   
 

)(22 ηρρη PArrv +Ω=Ω=
�
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The corresponding boundary conditions for the functions 
f  and �   are 

 

( ) 00/ =f ,  ( ) 00 =f ,  ( ) 0=	�  ,  ( ) 01/ =f  ,  

( )
2
1

1 −=f  ,  ( ) ε=1� . 

Substituting (8) and (9) into equations (2)-(4), we obtain 
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Where the primes denote differentiation with respect toη , 

the parameter 
v

W
Re Ω

=
2

 is the Reynolds number and A  

is an arbitrary constant. Differentiating (10) with respect 
toη , we obtain: 
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Equation (11) can be written as 
  

( ) 
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ff
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Our main focus is on solving the two coupled nonlinear 

ordinary differential equations (13) and (14) subject to the 
boundary conditions: 
  

( ) 00/ =f ,  ( ) 00 =f ,  ( ) 0=	�  ,  ( ) 01/ =f  ,  

( )
2
1

1 −=f  ,  ( ) ε=1� . 

 
Though the transformation has provided a set of ordinary 
differential equations, a closed form solution is still not 
possible. Consequently, we apply the perturbation tech-
nique (Makinde, 1999) and obtain a result similar to that 
of Kelson and Desseaux (2000). Treating eR  as a pertur-
bation parameter, substituting the expansions 
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into equations (13) and (14) transforms the intractable 
original problem into a sequence of simple ones.  By 
collecting terms of the same order, we have: 
                   

  0,0 //
0

////
0 == �f ,    (15)                          

 
subject to the boundary conditions 
 
 

( ) 00/ =f ,   ( ) 00 =f ,   ( ) 0=	� ,   ( ) 01/ =f , 
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The solution of (15) under the given boundary conditions 
yields the following  
  

23
0 2

3ηη −=f , εη=0�  

 
Thus, the perturbed solutions (Makinde, 1996) of the 
system of ordinary differential equations (13) and (14) 
takes the forms 
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2
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where if  and i�  for 0 , 1 , 2 , ...i =  are computed 
using MAPLE. 
 
 
Fluid pressure distribution 
 
From equation (12), we have 
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Integrating the above equation and applying the boun-
dary conditions, we obtain 
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Wall shear stress 
 
The action of velocity in the fluid adjacent to the disks 
tends to set a tangential shear stress which opposes the 
rotation of the disk. The tangential stresses at the rotating 
porous disk are given by  
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Thus, we need to obtain the series for ( )1/�  and ( )1//f  

from our previous series solution of f  and �  above. 
Using computer symbolic algebra package (MAPLE), we 
have obtained the first 22 terms of the solution series for 
several values of the rotating disk parameterε  for  
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The well-known Padé approximation over the last few 
years, proved itself as a powerful benchmarking tool and 
a potential alternative to traditional numerical techniques 
in various applications in sciences and engineering 
(Makinde, 2006). 

This semi-numerical approach is also extremely useful 
in the validation of purely numerical scheme. In order to 
improve on the above series solution, we therefore 
employ this approximation. 

The wall shear stresses at the rotating disk is given by  
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Hence, the expression for the pressure drop in the axial 
direction in non-dimensional form is given by 
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The series for the porous rotating disk wall shear stress is 
transformed as follows of the denominator of the fraction. 
After transforming the solution series into several 
diagonal Padé approximants [M/M] and analyzing the 
denominators of the resulting double series, we observed 
that a singularity occurs at a value of suction, Reynolds 
number Re ≈ 6.2 which may vary slightly above this value 
depending on the choice of 0 < ε � 1, the parameter 
determining the rotational speed of the porous disk. 
 
 
RESULTS AND DISCUSSION 
 
Insight into the physical occurrences within the flowing 
fluid can be obtained by a study of the velocity profiles. 
The distributions of the normal velocity w , radial 
velocityu  and azimuthal velocity v  are plotted as a func-  



 
 
 
 

 
 
Figure 2.  Normal velocity profile, Re=6.0: ( __ ) ε=0.3; 
(ooo) ε = 0.5 and (+++) ε =1.0. 
 
 
 

 
 
Figure 3. Radial velocity profile, Re=6.0: ( __ ) ε =0.3;  (ooo)  
ε = 0.5 and  (+++) ε =1.0. 

 

tion of eta ( )η . Also, the pressure and shear stress varia-
tions are represented graphically. 
 
 
Normal velocity profile with constant Reynolds 
number 
 
In the sequel, we shall use the symbols: ( ___ ) to 
represent the solid lines while (ooo) and (+++) will 
represent the other two lines in the figures. 
From equation (8), ( )ηWfw 2−= . The normal velocity w  

is expressed in terms of ( )ηf−  Note that w  is plotted 
against η  while fluid suction at the porous rotating disk is 

constant being fixed at 0.6=eR . In this case, rotation of 
the porous disk is not constant. It varies in the increasing 
manner and this is exemplified by ε - values that 
increase from 0.3 to  1.0.  Figure  2  shows  that  the  fluid  

Kavenuke et al             161 
 
 
 

 
 
Figure 4. Azimuthal velocity profile for ε =1.0: ( __ ) Re 
=4.0; (ooo) Re= 5.0 and (+++) Re=6.0 

 

normal velocity ( )w  increases transversely towards the 
rotating porous disk. A further increase in this trend is 
observed with an increase in the speed of the porous disk 
rotation. 
 
 
Radial velocity profile with constant Reynolds 
number 
 

From equation (8) ( )η/fru Ω= , where the radial velocity 

u  is expressed in terms of ( )η/f . In this case, u  is 
plotted againstη , fluid suction being kept constant 

at 0.6=eR . Rotation of the porous disk is not constant 
and varies in the increasing manner as indicated by ε - 
values that increase from 0.3 - 1.0. A pattern of radial 
velocity profile is also observed in Figure 3. An increase 
in the speed of the rotating porous disk causes a further 
fluid inflow near the rotating disk but less fluid inflow near 
the fixed impermeable disk. 
 
 
Azimuthal velocity profile with constant rotation 
parameter 
 

From Equation (9), ( )η�Ω= rv . The azimuthal velocity 

v  is expressed in terms of ( )η�  and its profile is shown 
below. 

v  is plotted against η  while the speed of rotation of 

the rotating disk is fixed at 0.1=ε . Suction is kept on 
increasing as shown by the increase of Reynolds 
numbers from left to right. The azimuthal velocity 
increases transversely towards the rotating porous disk. 
The maximum azimuthal velocity is observed at a 
distance very close to the rotating disk but not at the 
rotating disk itself. It is further observed that an increase 
in the suction Reynolds numbers causes a further 
increase in the azimuthal fluid velocity. The Azimuthal 
velocity profile is depicted in Figure 4.  



162        Afr. J. Math. Comput. Sci. Res. 
 
 
 

 
 
Figure 5. Fluid pressure distribution: Re=6.0: ( __ ) ε =0.3; 
(ooo) ε = 0.5 and (+++)ε =1. 
 
 
 
Fluid pressure distribution with constant suction 
 
In this case, the pressure is plotted against η  while 

suction is constant ( 0.6=eR ). The speed of rotation of 
the porous rotating disk varies in the increasing sense as 
shown by the increase in the ε - values from 0.3 - 1.0. 
Fluid pressure increases from the fixed impermeable disk 
towards the porous rotating disk reaching its maximum 
value at a distance close to the impermeable disk and 
drops gradually towards the porous rotating disk due to 
suction. An increase in the speed of rotation of the 
porous rotating disk causes a further decrease in the 
pressure drop towards the rotating porous disk. Figure 5 
depicts the fluid pressure distribution. 
 
 
Shear stress at the rotating porous disk due to radial 
velocity on its wall 
 

This is expressed in terms of ( )1//f . ( )1//f  is plotted 

against eR  while rotation of the porous disk is constantly 

increasing (i.e. 0.1→ε ). The plot is indicated in Figure 6 
which shows that radial shear stress increases with 
increase in suction. Moreover, an increase in the speed 
of rotation of the porous rotating disk causes a decrease 
in the radial shear stress with increase in suction. 
 
 
Conclusion 
 
The presence of fluid inflow between the two disks gua-
rantees the absence of cooling and in general, cooling is 
felt outside the region and in front of the porous rotating 
disk due to suction and fluid outflow. This effect can 
easily be observed from a ceiling fan operation and other 
fan systems used in our homes. 

  
 
 
 

 
 
Figure 6. Shear stress at the rotating porous disk due to 
radial velocity: ( __ ) ε =0.3; (ooo) ε = 0.5 and (+++)ε =1.0. 

 
 

For this particular problem, the numerical analysis 
shows that there is a singularity at 2.6≈eR . This 
singularity can be regarded as a property of the exact 
solution for the problem. 0=ε  corresponds to the case 
of flow between an impermeable fixed disk and a non-
rotating porous disk.  
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