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The authors propose a new classical model for the water molecule. The geometry of the molecule
is built on the rigid TIP5P model and has the experimental gas phase dipole moment of water
created by four equal point charges. The model preserves its rigidity but the size of the charges
increases or decreases following the electric field created by the rest of the molecules. The
polarization is expressed by an electric field dependent nonlinear polarization function. The
increasing dipole of the molecule slightly increases the size of the water molecule expressed by the
oxygen-centered � parameter of the Lennard-Jones interaction. After refining the adjustable
parameters, the authors performed Monte Carlo simulations to check the ability of the new model
in the ice, liquid, and gas phases. They determined the density and internal energy of several ice
polymorphs, liquid water, and gaseous water and calculated the heat capacity, the isothermal
compressibility, the isobar heat expansion coefficients, and the dielectric constant of ambient water.
They also determined the pair-correlation functions of ambient water and calculated the energy of
the water dimer. The accuracy of theirs results was satisfactory. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2730510�

I. INTRODUCTION

One of the evergreen topics of physical chemistry is to
understand the behavior of water in molecular details in pure
form or as a solvent. The popularity of water studies stems
from two sources: the ubiquity of this substance in nature
and the complex properties of materials containing water.
Since the appearance of powerful computers the most obvi-
ous way to study water theoretically is to build a model
based on quantum or classical mechanics and perform com-
putations based on the concepts of statistical mechanics. In
engineering applications or in complex biological systems
the computational demand is still large enough to require
classical models composed of fixed �or stretching and bend-
ing� bonds, partial charges, and simple functions of repul-
sions and attractions.

The most frequently used models of this kind represent
water as a rigid, planar molecule. The geometry of atoms is
fixed, partial charges are placed on the hydrogens and the
bisector of the HOH angle, and the model is completed by a
Lennard-Jones interaction centered on the oxygen atom.
There are numerous parametrizations of this archetype. The
most frequently used versions are the TIP4P �Ref. 1� and the
SPC/E �Ref. 2� models. The former has the geometry of the
gas phase molecule �0.9752 Å for the OH bond length and
104.52° for the HOH angle� with the negative partial charge
�2�0.52 esu� placed at 0.15 Å from the oxygen, while the
latter has perfect tetrahedral geometry �1.0 Å and 109.47°�
with a negative partial charge �2�0.4238 esu� being on the
oxygen atom. The best overall performance3–7 is shown by
two recent parametrizations of this model family: the
TIP4P-EW �Ref. 3� and the TIP4P-2005.4 All the above
models are computationally economic and easy to implement
in simulations.

It is remarkable that some nonpolarizable models fitted
to the properties �internal energy, density, and structure at the
level of pair correlations� of ambient water can provide rea-
sonable predictions at a range of state points in liquid state
and, in some cases, even including high temperature hexago-
nal ice. Still, any water model which is unable to respond to
the polarizing forces of the surrounding by varying its elec-
tric moments will perform poorly in the vapor phase and in
the ice phases in general.5,6 The need for a model being
correct independently from macroscopic state variables and
the actual molecular environment is an aim of researchers
from the beginning of molecular simulations. This is the aim
of this paper too. In the following we propose a model and
report the first results of an approach we opted to follow.

There are several dozen water models in the literature.8,9

Some of them are polarizable and intend to remedy the short-
comings of the simple models. It is not our aim of reviewing
and assessing the performance of these models but, for the
most recent and most successful ones, we refer the reader to
the literature.10–18 As for strategies, there are two extremes to
follow. One is to build a sophisticated model and try to
match the experimental properties as done, for instance, by
Fanourgakis and Xantheas and Burnham and Xantheas.19

The other is to create a simpler model at the expense of some
loss in physics but gain in terms of the easiness of code
implementation and the moderate increase in computational
cost as done by Lamoureux et al.20 In this respect our ap-
proach is much closer to the latter. We wanted a model which
is based on plausible assumptions and straightforward cod-
ing. In this paper we dealt primarily with the solid-liquid
region of the phase diagram, although we simulated a vapor
phase and determined the energy of the water dimer.

In the next section we describe our strategy of potential
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derivation. Then in Sec. III we provide the details of the
calculations and present the results. In the last section we
conclude our study.

II. DESCRIPTION OF THE ENLARGEABLE CHARGES
MODEL FOR WATER

The basic attributions of the enlargeable charges �ENCS�
model are as follows:

�1� The shape of the molecule corresponds to the geometry
of TIP5P: 0.9752 Å for the OH bond length and
104.52° for the HOH angle; there are two weightless
sites �C� placed 0.7 Å from the oxygen with 109.47°
for the COC angle in the plane perpendicular to the
HOH plane.21

�2� The partial charges are set to match the gas phase di-
pole of the water molecule: 1.855 D.22 So, both the H
and C sites carry a charge of 0.195 esu.

�3� The polarization happens as the result of the electric
field created by the partial charges of the other water
molecules in the system.

�4� The response for the electric field is manifested by the
variation of the magnitude of charges on the H and C
sites, while the geometry of the molecule remains fixed.

�5� The polarizability � of the molecule is expressed by a
nonlinear function. In this way the dipole moment var-
ies as �=��E�E.

�6� In addition to the dipole moment, i.e., the magnitude of
the partial charges, we change the size of the molecule
in the form of changing the � parameter of the
Lennard-Jones potential. The increase of the dipole mo-
ment increases the magnitude of �.

The justifications are as follows:

�1� A planar model could not represent the almost isotropic
polarizability of water.9 While the actual geometry
might change later to match the quadrupole moment
and possibly the energy of water clusters, the roughly
tetrahedral arrangement gives more room for varia-
tions. In fact, the ENCS can be seen as an improvement
of the TIP5P interaction.

�2� The simplest way to calculate the polarizing electric
field is to use the direct part of the Ewald sum.23 For
large enough system the net force originating from
charges far from the actual one is practically isotropic.
�Its time or ensemble average is very close to zero.�
This assumption should be checked for each system in
question. For ambient water 250 particles proved to be
sufficient to fulfill this criterion. We checked it by per-
forming calculations on 500 particles. For ice phases
we need more than �150 particles. In the case of hex-
agonal ice we used 432, and for the vapor phase we
used 2000 molecules.

�3� The price to be paid for this method is the loss of rig-
orous energy conservation. This is caused by the as-
sumption of the zero net force beyond the Ewald cut-
off radius. This assumption is correct in the average but
should not be correct instantaneously. However, the
code maintains its simplicity. The only extra cost comes

from the need of an iterative force—charge calculation
to preserve the self-consistency of the method. The im-
portance of these iterations depends on the particular
property to be calculated. Properties determined from
fluctuations proved to be more sensitive in this respect.

�4� While the charges of different molecules are different,
we keep the four partial charges in each molecule iden-
tical. Clearly, this approach prevents the out-of-plane
polarizability of water because the dipole vector of the
molecule is always aligned along the bisector of the
HOH angle. At this stage we accept this limitation of
physics for the sake of computational simplicity. We
calculate the component of the polarizing force parallel
with the OH or OC bonds for each site. Such a way we
determine forces which “stretch” or “compress” the OH
or OC bonds depending on the direction. Then we add
up these plus or minus components as scalars to create
the independent variable of molecule i for the polariz-
ability function as follows:

Fi = �
�=1,2,3,4

− z�

��

�ri
�

�ri
� − ri

O�
�ri

� − ri
O�

, �1�

where � identifies the four charged sites, z�= ±1 is the
sign of the charge �, � is the Coulomb potential cre-
ated by the rest of the molecules as expressed by the
direct part of the Ewald sum, and ri

O is the position of
the oxygen atom.
This method might seem as an oversimplification be-
cause we pay no attention to theories describing re-
sponses of the charge distributions within the molecule
to the impact of an external field. �See, for instance, the
principle of electronegativity equalization.11� However,
at this stage our primary intention merely is to check
whether such a method as an improvement of the rigid
TIP5P model can work.

�5� The polarizability function �in fact, we used the total
��E�E term which provided the total dipole moment of
the molecule� has a trivial fixed point. At zero electric
field the dipole moment of the gas phase molecule is
applied.22 In addition to that, using the ACES II quantum
mechanical code24 we determined the linear, gas phase
polarizability of the molecule and fitted the close to
zero field moments to this value �see Fig. 1�.

�6� A classical model is inherently unable to mimic effects
of quantum mechanical origin. This prompted us to
match the dilatation of the freezing water by increasing
the size of the molecule. It might be a plausible as-
sumption to increase the size of the molecule with the
size of its dipole moment, and it is mandatory if one
wishes to match energy and density values in the
liquid-solid coexistence region. Even rigid models with
fixed dipole moment overestimate the density of the
hexagonal phase. This error would be larger for polar-
izable models because the molecule due to the stronger
field would have a larger dipole moment in the crystal-
line than in the liquid phase. Interestingly, this aspect
was neglected in most of the previous polarizable mod-
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els. These studies were more focused on the correct
liquid-gas features.

The importance of the repulsion was pointed out in our
recent studies.25 The most remarkable finding was that po-
tential models fitted to the density of ambient water overes-
timate the energy of the high pressure ice phases �ice VII and
VIII� by 4–6 kJ/mol.5,25 This is caused by the fact that in
liquid water and in the low pressure ice phases the water
molecule has four neighbors, while in the high pressure
phases the number of neighbors is eight, and only four of
them is connected by hydrogen bonds. The fixed repulsive
part of the interaction is unable to adjust itself to this situa-
tion, in contrast to real molecules. The impact of an ion on its
hydration shell can be seen as a pressure in the range of
102 GPa. The correct reproduction of high pressure phase
energies and structures can improve our understanding of ion
hydration.

We emphasize that in the classical models the charge-
charge and the Lennard-Jones interactions cannot be sepa-
rated. In these models the fitting procedure does not make a
clear distinction between the charge-charge and the Lennard-
Jones contributions. In addition to this, the actual estimate of
the dipole moment in liquid water or ice depends on how the
electron density is partitioned on to molecules. So, models
having dipole moments around 2.5 D are reasonable, despite
recent calculations where this arbitrariness and the classical

character of the model are responsible for the fact that the
size of the dipole moment in ambient water as obtained from
ab initio molecular dynamics26 and from the analysis of ex-
perimental data27,28 is 2.95 D, and recent calculations pro-
vided 3.09 D for hexagonal ice.29 The typical dipole moment
for the simple models is much smaller typically in the range
of 2.1–2.6 D.8,9

Since classical models were fitted to the parameters of
ambient water their fixed geometry and dipole moment pro-
duced poor matches for gas phase properties.5,6 We showed
previously that neither their second virial coefficients in
terms of the temperature nor the estimated critical constants
were close to the experimental value.5,6 To present a property
straightforward to compute and visualize we calculated the
dimer energy of some of the most frequently used nonpolar-
izable, rigid models. For comparison we show results for the
polarizable models too �Table I�.

Our approach has two differences with respect to other
polarizable models in the literature. The first is the tabulated
nonlinear polarizability function. Although the test to find the
optimal form of this function has not been completed yet,
there is a large freedom to adjust this function. While other
models tried to find a simple physical theory of polarization
to justify their model, we state that if the basic principles are
correct it is more important to match the experimental data,
than to constrain the performance of the model with approxi-
mate theories. The other difference is the variable size of the
water molecule. While we pointed to the importance of cor-
rect repulsion in the case of crystalline solids, it cannot be
neglected if transport processes are concerned either. Even
correct static structures can produce false transport coeffi-
cients because the system is too “tight” or too “loose.” A
similar approach was taken by Chen et al. by coupling elec-
tronic properties to Lennard-Jones parameters in order to ob-
tain better liquid-vapor coexistence properties.30

III. DETAILS AND RESULTS OF CALCULATIONS

We wrote a Monte Carlo program with the Ewald
summation.5,23 Since the shape of the molecule has not
changed during the simulation, we could retain the standard
random displacement and rotation technique trying to keep
the 1/2 acceptance ratio.5,23 First we carried out a trial move
and rotation one by one for each water particle. After finish-
ing this cycle, we changed the volume of the system in a

FIG. 1. The nonlinear polarizing function is shown as the dipole moment in
terms of the polarizing Coulomb force. The linear change of the dipole
moment at small fields is marked by a linear line.

TABLE I. Dimer energies for different rigid and polarizable models of water. The experimental values is
22.6±3.0 kJ/mol. �Refs. 37 and 38�.

Rigid
models TIP4 TIP4P-EW TIP4P-2005 TIP4P-ice TIP5P TIP5P-E TIP3P

−Energy
�kJ/mol�

25.9 28.5 29.8 31.3 28.4 28.5 27.2

Reference 1 3 4 33 39 40 41

Polarizable
models

POL3 TIP4P-FQ Burnham
et al.

MCDHO SWM4-DP ENCS Ab initio

Energy
�kJ/mol�

19.6 18.9 22.3 20.9 21.7 22.6 20.9

Reference 14 11 43 15 20 This work 42
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Parinello-Rahman fashion5 and if this was successful we re-
positioned the particles accordingly. While the Monte Carlo
procedure does not need the calculation of forces, for the
sake of polarization, we had to determine the electrostatic
forces acting on each charged site of a molecule by using the
direct part of the Ewald sum.5,23 The result of this force
calculation, as it was described in the previous section, was
used as an input for the nonlinear polarizing function. Thus,
following the successful or unsuccessful attempt to change
the volume, the program calculated the forces and adjusted
the charges of each water molecule. Since their polarizing
environments were different, the molecules obtained differ-
ent charges. �But the four sites of a molecule remained iden-
tical.� Then the program returned to start the random move
and turn attempts again. Such a way we considered a Monte
Carlo cycle as a time step.

The self-consistency of the above algorithm requires an
iterative charge alteration procedure �while keeping the po-
sition of the molecules� because the change of neighboring
charges would alter the electric field acting on the molecule
in question. We involved this possibility in the code. The
iteration was less important in the case of obtaining an accu-
rate average energy or structure than for properties calculated
from fluctuations. Typically, five iterations were sufficient.

In Fig. 1 we present the nonlinear polarizing function
applied in these simulations. The electric field is expressed in
the form of a force acting on the sites of a molecule. At zero
electric field, the function correctly crosses the value of
1.855 D. The zero field polarizability was determined by the
ACES II quantum chemical package for the given rigid
geometry.24 The polarization function has a saturation char-
acter with a saturation value of 2.673 D. This value resulted
from a simultaneous trial and error fit together with the �
parameter of the Lennard-Jones interaction. In principle,
there is no need for a maximum possible value of the water
dipole moment because the increasing size could prevent a
polarization catastrophe. From the point of view of the simu-
lation control, however, it was better to limit the maximum
value for both functions �see Fig. 2�. The function applied for
the size �i of water molecule i was the following:

�i = �min + ���erf�x� + 1.0�/2.0, �2�

where x=a�Fi−F0�. The parameter values applied in this pa-
per were as follows: �min=2.9 Å, ��=0.2445 Å, Fi is the

force of Eq. �1�, F0=25.0 kJ/mol/Å, and a=0.22 mol Å/kJ.
While in the case of the polarizing function we started to

use a similar functional form, and it turned out that the con-
venient parameter adjusting of Eq. �2� should be replaced by
a tabulated function. The tabulated values of Fig. 1 are
shown in Table II.

While the maximum value was determined following the
requirement of matching macroscopic data, the minimum
values are somewhat arbitrary. The dipole moment of the
molecule as a result of polarization in the linear regime at a
rigid geometry is a line crossing the zero field axes. The
minimum value may be fitted to match gas phase and water
cluster properties. �This part of the function needs further
refinement.� In the case of the size function both the mini-

FIG. 3. Distribution of the dipole moments �in arbitrary units� at 273.15 K
in hexagonal ice �dotted line�, water �dashed line�, and gas phase �solid
line�.

FIG. 2. The Lennard-Jones � parameter in terms of the polarizing force.

TABLE II. Values of the polarizing functions as shown in Fig. 1.

F �kJ/mol/Å� D �D�

−200 1.714
−150 1.721
−100 1.741

−50 1.786
0 1.855

50 1.959
100 2.036
150 2.106
200 2.169
250 2.230
300 2.282
350 2.327
400 2.372
450 2.414
500 2.454
550 2.490
600 2.523
650 2.551
700 2.576
750 2.597
800 2.614
850 2.628
900 2.640

1000 2.655
1100 2.664
1200 2.668
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mum and the maximum values were fitted in order to give a
good match for experimental properties. Clearly, our choice
of parameters is not unique. There is a range of variables
within the combination of the Lennard-Jones and the Cou-
lombic parts that provide an acceptable accuracy. This is
true, in particular, for the minimum value of the Lennard-
Jones size parameter �.

In Fig. 3 we present the distributions of dipoles in three
phases. In hexagonal ice the distribution is narrower than in
the liquid phase and its expectation value is higher. This is in
accordance with the measurement and the quantum chemical
computational evidence. In the case of the gas phase the
minimum accessible value of the polarization function �see
Fig. 1� influences the place of the sharp maximum of the
distribution. In addition to this big peak, there is a smaller
one at fairly high dipole moment values which indicates
some kind of closeness of a small amount of molecules.

In Fig. 4 we show the distribution of the Lennard-Jones
� parameter for the hexagonal ice and liquid water at
273.15 K. In the ice phase most of the molecules have the
highest possible � value of the distribution with a long but
quickly diminishing tail towards lower values. In the case of
water roughly 40% of the �-s can be found at the maximum

value. The rest is relatively evenly distributed in the avail-
able range of � with an artificial peak at the lowest possible
value of 2.9 Å. Roughly 10% of the molecules have this size
parameter.

In Fig. 5 we present the partial pair-correlation functions
of ambient water. Our curves are in very good agreement
with the experimental ones,31 in particular, the overlap of the
O–O distributions is remarkable.

In Table III we present the results of our simulations for
ice polymorphs. The agreement in densities is excellent in
the case of ice Ih, ice III, and ice VII. For the other phases
the agreement is poorer. In this respect the results obtained
by the TIP4P-2005 rigid model are somewhat better than our
results.4 It might be an interesting question to answer why
our approximate polarization scheme adapts selectively to
crystal structures. In order to compare the energy data to the
theoretical calculations of Handa et al.32 we show the results
at 5 K too. It seems that the energy of the high pressure
polymorphs �ice VII and VIII� is still to high.

We also carried out simulations for identifying the den-
sity maximum of water. Our result was 272±3 K which is a
reasonable estimation. Due to the labor intensive character
we have not identified the melting temperature of the model
yet. However, it seems certain that in this respect the ENCS
model will provide a much better performance than most of
the water models. The rigid TIP4P-ice model33 was param-
eterized to produce the correct melting temperature for hex-

TABLE III. Ice phase densities and internal energies with the ENCS potential model. N is the number of
particles in the simulation. T and P are the temperatures and pressures, respectively, at which the structure
determination of the phase were carried out �Ref. 44�. The numbers in parentheses mark the difference from the
measurement values. The last two columns refers to simulation results applying the same pressure but at 5 K.

Ice N
T

�K�
P

�GPa�
−U

�kJ/mol�
Density
�g/cm3�

−U
�kJ/mol�

Density
�g/cm3�

Ih 432 250 0.0001 49.4 0.919�1� 58.2 0.985
Ic 216 78 0.0001 54.8 0.962�31� 57.8 0.981
III 324 250 0.28 46.5 1.161�4� 53.6 1.199
VI 270 225 1.10 46.7 1.407�34� 51.4 1.444
VII 432 295 2.4 42.4 1.600�1� 48.1 1.663
VIII 216 10 2.4 47.0 1.671�43� 47.1 1.673
IX 324 165 0.28 50.8 1.169�25� 55.8 1.208
XI 432 5 0.0001 58.3 0.987�53� 58.3 0.987
XII 192 260 0.50 45.4 1.344�52� 50.7 1.377

FIG. 4. Size distribution of water molecules �in arbitrary units� at 273.15 K
in water �top� and hexagonal ice �bottom�.

FIG. 5. Partial pair correlation functions for ambient water. �Solid lines: our
calculation; dotted line: from the measurement of Soper et al. �Ref. 30��.
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agonal ice. The model has a relatively high dipole moment
�2.425 D� and very poor liquid-vapor and vapor property
prediction ability.34 The larger dipole moment provides a
larger cohesive energy of hexagonal ice �and an incorrectly
high density� which prevents the crystal to melt 30–60 K
below its correct melting temperature as it is done by the rest
of the rigid models.33 There is no need to increase the dipole
moment to very high values in our case because for the
ENCS model the average dipole moment of the hexagonal
phase is larger than that in the liquid �see Fig. 3�. A similar
conclusion was demonstrated recently by Nicholson et al.35

These authors could obtain the correct melting temperature
for hexagonal ice by increasing the Lennard-Jones � param-
eter of the TIP4P-FQ interaction model.36

Our estimation for our heat of melting is reasonable as it
can be seen from Table IV. The internal energy difference
between the ice and liquid phase at 273.15 K is 5.1 kJ/mol
instead of the correct value of 6.0 kJ/mol. The estimates of
other energies and densities have acceptable quality too.

In Table V we present additional properties calculated
for ambient water. With the exception of the isothermal com-
pressibility the agreement is satisfactory. Especially, the di-
electric behavior is promising because as it is shown by
Lamoureux et al.20 the relative permittivity is typically over-
estimated by the polarizable models and underestimated by
the rigid models �see Fig. 5 in Ref. 20.�

IV. CONCLUSIONS

We presented a new approach to develop a classical po-
larizable water model for computer simulations. The model
intends to cover the entire phase diagram from the gas to the
high pressure solid phases. We created a nonlinear polariz-
ability function describing the response of the water mol-
ecule to the impact of the varying electric field. In addition to
polarizability, we introduced the size dependence for the
model by varying the magnitude of the Lennard-Jones � pa-
rameter as a function of the dipole moment of the molecule.

Such a way, we intended to increase the ability of the mol-
ecule to adapt to all possible changes of the surroundings and
state variables.

Despite that the presented results represent the first pa-
rameter sets of the ENCS �rigid geometry but enlargeable
charges� model, the results have a reasonably good quality.
As for comparison with probably the best rigid model in the
liquid-solid region, the TIP4P-2005 gives somewhat better
results for ice densities.4,5 This points to the need of further
parameter refining of the ENCS model in order to overcome
the disadvantage of polarizable models by having water mol-
ecules with higher dipole moments in the ice phases than in
the liquid. Nevertheless, the TIP4P-2005 model is also un-
able to decrease the internal energy of high-pressure ice
phases;4 its melting temperature is �250 K and its relative
permittivity is �60.4 The gas phase properties of the TIP4P-
2005 are poor.5 This is true for all rigid, nonpolarizable
models.5,6 In the present paper, the simplest manifestation of
this is the calculated dimer energies shown in Table I.

The polarizable model of Lamoreux et al.,20 termed as
SWM4-DP, develops an interaction system fitting its param-
eters to the gas and certain liquid properties simultaneously
ensuring reasonably good estimates for the coefficients they
calculated. Nevertheless, it seems probable that the model
will give fairly inaccurate estimates for ice properties be-
cause the enhanced dipole moment tends to contract the sys-
tem and increase its energy and density. This should be true
for all polarizable models.

As we emphasized previously,5 water molecules in the
hydration shells of ions or highly polar parts of molecules
experience an energy density corresponding to the pressure
of 10–200 GPa. This is the region where dense ice phases
exist. Clearly, the environment of a hydrating molecule in
aqueous solution is different from that in a crystal. Neverthe-
less, the knowledge of the deformation and polarization of
water under high pressure in ice can provide information
valuable in aqueous solutions as well.

As a summary, we believe that the basic approach of our
interaction model is promising. Applying further refinement
of the parameters and removing unnecessary simplifications,
the model might be able to cover the entire phase diagram of
water with acceptable accuracy.
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TABLE IV. Several simulation properties for liquid and hexagonal ice. Experimental data taken from Ref. 9.

T �K� Phase
−U �calc.�
�kJ/mol�

−U �Expt.�
�kJ/mol�

Density �calc.�
�g/cm3�

Density �Expt.�
�g/cm3�

273.15 Hexagonal
ice

48.6±0.1 48.8 0.911±0.001 0.917

273.15 Water 43.5±0.3 42.8 1.002±0.003 1.000
298.15 Water 42.0±0.1 41.5 1.001±0.005 1.000

TABLE V. Several properties calculated for ambient water. Cp is the isobar
heat capacity, �p is the isobar heat expansion, �T is the isotherm compress-
ibility, and � is the relative permittivity.

Property Calculated Experimentala

Cp �kJ mol−1 K−1� 83.4 75.2
�p �K−1� 3.06�10−4 2.56�10−4

�T �MPa−1� 24.0�10−5 46.0�10−5

� 80.0 78.4

aReference 9.
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