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Abstract 

The Linear Discriminant Analysis (LDA) has been widely 
used to derive the data-driven temporal filtering of speech 
feature vectors. In this paper, we proposed that the Principal 
Component Analysis (PCA) can also be used in the 
optimization process just as LDA to obtain the temporal 
filters, and detailed comparative analysis between these two 
approaches are presented and discussed. It's found that the 
PCA-derived temporal filters significantly improve the 
recognition performance of the original MFCC features as 
LDA-derived filters do. Also, while PCA/LDA filters are 
combined with the conventional temporal filters, RASTA or 
CMS, the recognition performance will be further improved 
regardless the training and testing environments are matched 
or mismatched, compressed or noise corrupted. 

1. Introduction 
One of the most challenging problems in automatic speech 
recognition (ASR) is to derive a robust speech feature 
representation for speech signals so that it is less sensitive to 
the various corrupting acoustic conditions, such as additive 
noise and channel distortion. The Cepstral Mean Subtraction 
(CMS) [1] and the Relative Spectral (RASTA) [2] techniques 
are typical examples in performing filtering on the time 
trajectories of speech features in order to alleviate harmful 
effects of various distortions and corruptions. Such processing 
approaches have been widely proved to be able to improve 
the performance of the ASR systems efficiently. 
The RASTA approach tries to filter out relatively slow and 
relatively fast changes in the trajectories of a critical 
logarithmic short-time spectral component of speech [2,4]. 
The initial form of the RASTA filter was originally optimized 
on a relatively small series of ASR experiments with noisy 
telephone digits, and there was no guarantee that these 
solutions are also optimal to other ASR tasks and 
environments. It is therefore desirable to obtain optimal sets 
of time filtering coefficients for a specific given ASR task and 
environment, which have to be obtained data-driven 
according to some optimization criterion. Linear Discriminant 
Analysis (LDA) has been widely applied [3,4,5] in such 
approaches in the optimization process to yield the time 
trajectory filters. Since LDA is a stochastic technique that 
optimizes linear discriminability between classes, and 
therefore the speech features must be labeled into different 

classes before the LDA is performed. Such data-driven LDA-
derived temporal filters were reported to yield better 
recognition performance than the conventional RASTA filters 
[3].  
In this paper, the Principal Component Analysis (PCA) 
instead of LDA is used in the optimization process in 
obtaining these temporal filters, and comparative analysis 
between PCA and LDA approaches is presented. It will be 
shown that the PCA-derived temporal filters have quite 
different frequency responses from those of either the CMS, 
original RASTA or the data-driven LDA-derived filters. 
Experimental results also showed that the data-driven 
approaches, including both the PCA and LDA methods, not 
only outperform the conventional CMS or RASTA 
approaches in most cases, but also can be properly combined 
with these conventional approaches to give a better 
recognition accuracy. On the other hand, the proposed data-
driven PCA approach, though significantly easier to 
implement than LDA, gives a comparable performance as 
LDA does and sometimes better in recognition. 
The remainder of the paper is organized into 5 sections. In 
section 2, the approach to derive the data-driven temporal 
filters using the Principal Component Analysis (PCA) is 
proposed. Then section 3 introduces the experimental setup 
and shows the frequency responses of the resulted temporal 
filters, as well as the comparison with the LDA, RASTA and 
CMS filters. In section 4, experimental results are presented 
and discussed. Section 5 briefly compares the PCA and LDA 
temporal filters. Finally, a short conclusion is given in section 
6. 

2. Temporal Filter Design Using Principal 
Component Analysis (PCA) 

Given an ordered sequence of K-dimensional feature vectors 
x(n), n=1, ……,N,  
x(n)=[x(n,1) x(n,2), …, x(n,k), …, x(n,K)]T,                          (1) 
where x(n,k) is the k-th component of the feature vector at time 
n, then the k-th time trajectory of x(n) is the sequence  
[x(1,k)  x(2,k) …… x(N,k)],  
denoted as yk(m); m=1,2, …. N,                                            (2) 
where yk(n)=x(n,k). This is illustrated in Figure 1. 
Now we'd like to design an L-point FIR-filter which is 
performed on the time trajectory yk(m), m=1…N, with PCA 
technique. First, an L-point rectangular window is shifted 
along the sequence yk(m), m=1…N, to obtain the sequences of 
L-dimensional vectors zk(n), n=1 … N-L+1, where 
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Figure 1. The representation of the time trajectories of feature 
sequences  
 
zk(n)=[ yk(n) yk(n+1) yk(n+2) …… yk(n+L-1)]T.             (3) 
So zk(n) is the windowed vector of yk(m) started at the time 
index n, on which the L-point FIR filter is applied, as depicted 
in Figure 2. Then, these L-dimensional vectors zk(n) are 
viewed as the samples of the random vector zk and hence the 
mean and the covariance of zk may be calculated, 
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Figure 2. The procedure to extract the L-dimensional vectors 
zk(n) from the time trajectory yk(n) 
 
Next, with the procedure of PCA, we calculate the first 
eigenvector wk corresponding to the largest eigenvalue of the 
covariance

kz� . The components of this eigenvector are then 

taken as the coefficients of the L-point filter, which maps these 
L-dimensional vectors zk(n), n=1 … N-L+1, onto a one-
dimensional output space. According to PCA, the filter wk is 
optimal because it maximizes the variance of the output 
sequence among all possible L-point filters. Such a PCA 
process above is carried out for each time trajectory yk(m), 
k=1,2, …K, thus yielding a separate FIR filter for each time 
trajectory.  
In practice, the above is first performed on the original 
acoustic feature vectors of the training speech database to 
obtain the desired FIR filters. These filters are then applied to 
the time trajectories of the feature vectors of both training and 
testing database to obtain the new feature vectors. These new 
feature vectors are finally used for model training and testing 
following normal ASR procedures. 

3. Experimental Setup 
 The speech database for the initial experiments included 8000 
Mandarin digit strings produced by 50 male and 50 female 
speakers, taken from the database NUM-100A provided by the 
Association for Computational Linguistics and Chinese 
Language Processing at Taipei. The speech signal was 
recorded in normal laboratory environment at 8 kHz sampling 
rate and encoded with 16-bit linear PCM. The 8000 digit 
strings included 1000 each for 2, 3, 4, 5, 6 and 7-digit strings 
respectively plus 2000 single digit utterances. Among the 
8000 Mandarin digital strings, 7520 were used in training, 
while the other 480 in testing. A 32ms Hamming window 
shifted with 16ms steps and a pre-emphasis factor of 0.95 were 

used to evaluate 15 mel-frequency cepstral coefficients 
(MFCCs). The time trajectories for the MFCC vectors in the 
training database were then processed by the PCA-derived FIR 
filters as described previously. The Length L of the FIR filter 
was preliminarily set to be 10.  
Figure 3 shows the frequency responses of the 15 PCA-
derived FIR filters. The 15 filters are very close, and the 
differences among them are almost unobservable in the figure, 
although they were derived from different trajectories of the 
original MFCC vectors. On the other hand, the 15 LDA-
derived temporal filters were also constructed as described 
below for comparison. In the training database, the 7520 
Mandarin digital strings were first segmented into 11 classes, 
i.e., the digits, 0-9, plus the silence. Then for each time 
trajectory of the feature vectors, the between-class matrix and 
the within-class matrix were calculated and used to obtain the 
LDA temporal filter coefficients [3]. The frequency responses 
of the resulted 15 LDA-derived FIR filters are shown in Figure 
4. From Figures 3 and 4 we see that both the PCA-derived 
filters and LDA-derived filters don't attenuate the low 
modulation frequency components while having many 
sidelobes in their higher modulation frequency responses, 
which are significantly different from the frequency responses 
of the RASTA filter and CMS filter shown in Figure 5. 
Furthermore, the 15 LDA temporal filters, although similar in 
shape, are not very close to one another, and have higher 
sidelobes than the PCA temporal filters.  

 
Figure 3. The frequency responses of the 15 PCA-derived 
temporal filters 

 
Figure 4. The frequency responses of the 15 LDA-derived 
temporal filters 

  
Figure 5. The frequency responses of the RASTA filter (left) 
and the CMS filter (right)  
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4. Experimental Results 
The PCA-derived FIR filters were first individually performed 
on the time trajectories of the MFCC vectors for the 7520-
string training database. The resulted 15-dimensional new 
features plus their time-derivatives are the components in the 
finally used 30-dimensional feature vectors. With these new 
feature vectors two versions of HMM's for each digit with 5 
states were trained, with 2 and 4 mixtures per state 
respectively. Similarly, the LDA-, CMS- and RASTA-derived 
features from MFCC's along with their derivatives were used 
to train their individual HMM's for comparison. On the other 
hand, the 480 clean speech testing digit strings were processed 
by RealAudio compression algorithm and/or manually added 
with white noise at different levels to produce the compressed 
and/or noise corrupted speech data. The settings for the 
RealAudio compression data were “single rate” in file type, 
6500 in bit rate, “6.5 Kbps Voice” for the codec and “56K 
Modem” for the target audience. These clean and compressed 
and/or noise corrupted speech data were first converted to 
MFCC's, then individually processed by the above four time 
filtering approaches to form four sets of feature vectors for 
testing. 
Table 1 and Table 2 list the recognition results for 4 mixtures. 
Table 1 is for mismatched condition, i.e., the speech models 
were trained with clean speech, while the testing speech were 
compressed and/or noise corrupted. In this table, the left half 
shows the results for noise corrupted speech, and the right half 
shows the results for RealAudio compressed and noise 
corrupted speech. The upper half compares the results of the 
four filtering approaches: CMS, RASTA, LDA and PCA with 
those of plain MFCC (Here, MFCC denotes the 15-
dimensional MFCC feature vector plus its 15-dimensional 
time-derivative vector). It can be found that for clean 
uncompressed speech, CMS, RASTA and LDA are slightly 
worse than MFCC, while PCA is better, as in the first column. 
When the speech is noise corrupted, PCA performs close to 
CMS, RASTA and LDA, sometimes better and sometimes 
slightly worse. However, when the speech is RealAudio 
compressed in the right half of Table 1, PCA performs the best 
for clean speech and better than CMS and RASTA for noisy 
speech, probably because the PCA processing somehow 
complements the RealAudio compression. LDA performs not 
very well for clean speech but obviously better for noisy 
speech. An interesting phenomenon is that, while comparing 
the results for the uncompressed and RealAudio compressed 
data at the same noise level, we note that the latter very often 
outperform the former when PCA, LDA or plain MFCC are 
used. Probably the RealAudio compression somehow 
alleviates the noise effect in the speech signal and thus the 
mismatch between the model and test data is reduced. Plain 
MFCC, PCA and LDA happened to take this advantage, but 
CMS and RASTA didn’t. The lower half of the table shows 
the additivity for the four filtering approaches. It can be found 
that PCA plus CMS is always significantly better than CMS 
alone, and very often better than PCA alone as well. Similar 
situation occurs for PCA plus RASTA. But CMS plus RASTA 
performs always between CMS alone and RASTA alone. So 
PCA is additive to either CMS or RASTA, but CMS and 
RASTA are not additive to each other. Similarly, it can be also 
found that LDA is additive to CMS or RASTA under noisy 
conditions. To briefly sum up, PCA plus CMS almost gives 
the best performance while the SNR is medium (20dB) or high 

(clean, 30dB), while LDA plus RASTA performs the best 
while the SNR is low (10dB). Similar trends can be observed 
for 2 mixtures, but left out here for lack of space. 
 

RealAudio CompressedSNR clean 30dB 20dB 10dB clean 30dB 20dB 10dB
MFCC 92.63 78.99 53.25 22.22 87.45 74.55 56.94 25.16
CMS 92.00 77.72 58.72 30.11 88.20 74.09 53.83 20.43

RASTA 88.95 77.20 61.60 35.23 81.12 69.89 57.97 33.85
LDA 91.54 75.65 58.43 31.32 86.53 77.09 62.06 38.80
PCA 94.19 77.61 60.51 29.82 92.69 76.91 62.35 35.18

LDA+CMS 90.56 81.35 70.58 41.74 88.14 78.07 68.85 44.33
PCA+CMS 93.61 82.67 71.96 41.80 90.85 81.17 69.49 39.72
LDA+rasta 90.33 80.20 70.41 45.54 86.01 78.18 69.89 47.55
PCA+rasta 92.11 80.25 65.52 37.77 88.95 79.68 66.90 33.62
CMS+rasta 90.85 76.97 60.16 32.64 85.90 71.50 57.40 27.58
Table 1. The digit recognition rates for different versions of 
HMM’s with 5 states and 4 mixtures per state under 
mismatched conditions 

RealAudio CompressedSNR clean 30dB 20dB 10dB clean 30dB 20dB 10dB
MFCC 92.86 90.73 85.90 81.52 87.45 82.15 75.13 64.88
CMS 92.00 87.05 83.42 79.80 88.20 81.23 74.96 61.72

RASTA 88.95 86.30 83.42 76.11 81.12 71.79 67.47 56.53
LDA 91.54 89.58 85.55 80.25 86.53 82.56 80.31 71.51
PCA 94.19 89.69 87.16 82.38 92.69 82.79 79.56 70.52

LDA+CMS 90.56 87.80 85.32 77.95 88.14 82.96 79.56 73.11
PCA+CMS 91.36 89.46 87.33 81.75 90.85 85.03 81.23 75.65
LDA+rasta 90.33 85.84 81.87 75.19 86.01 81.92 77.43 72.19
PCA+rasta 92.11 87.45 84.80 78.41 88.95 83.13 79.97 72.37
CMS+rasta 90.85 87.22 83.19 76.63 85.90 76.51 69.31 57.51
Table 2. The digit recognition rates for different versions of 
HMM’s with 5 states and 4 mixtures per state under matched 
noisy conditions 
 
Table 2 is for matched noisy condition, i.e., the speech models 
were trained with noisy speech at the same noise level as the 
testing speech, but the training speech was not RealAudio 
compressed. So all of the 7520 clean speech digit strings in the 
training database were first manually added with white noise 
at different levels to produce the noise corrupted speech data. 
Then they were converted to MFCC and individually 
processed by the above four time filtering approaches plus 
their combinations to form ten sets of training feature vectors. 
Therefore for each noisy environment, ten sets of HMM's were 
trained and used to recognize the ten sets of testing features 
under matched noisy condition. The arrangements of data in 
Table 2 are the same as those in Table 1. The matched noisy 
conditions provide the opportunities to observe the real 
discriminating capabilities, instead of the robustness with 
respect to noise, of the various features. The upper left half of 
the table shows PCA almost always provide feature parameters 
with significantly higher discriminating capabilities than 
MFCC, CMS, RASTA and LDA, i.e., PCA very often 
performs the best. CMS, RASTA and LDA, on the other hand, 
may slightly degrade the discriminating functions of MFCC, 
since they often perform slightly worse than MFCC. Also, by 
comparing the results listed in the left half and the right half of 
Table 2, we see that RealAudio compressed data always give 
worse results than the uncompressed data for all filtering 
approaches. However, such performance degradation is 

model

model



smaller for PCA and LDA than for CMS and RASTA.  The 
lower half of the table shows that PCA and LDA are not 
additive to either CMS or RASTA in terms of discriminating 
capabilities in general. Such additivity only happens when the 
testing data is RealAudio compressed. Similar trends can be 
observed for 2 mixtures as well. 
In conclusion, the above results indicated that CMS, RASTA 
and LDA may slightly reduce the discriminating capabilities of 
MFCC features, but they can efficiently reduce the mismatch 
between training and testing environments at noisy conditions. 
However, the proposed PCA approach not only keeps or 
enhances the discriminating capabilities of MFCC, but can 
reduce the influence caused by mismatched conditions. It 
performs specially well with RealAudio compressed speech 
too. LDA performs almost as well as PCA, and sometimes 
better than PCA under noisy conditions, but worse for clean 
speech. Also, either PCA or LDA approach can be used 
together with the RASTA or CMS to further reduce the 
mismatch caused by compression or additive noise. This is 
probably because the frequency responses of PCA and LDA 
filters are quite different from those of CMS and RASTA, and 
thus PCA, LDA and CMS, RASTA more or less emphasizes 
different components of the time trajectories. However, since 
the frequency responses of RASTA and CMS filters are more 
similar especially in low frequency region, thus combining 
them won't be very helpful.  

5. Further Comparison Between PCA and 
LDA Temporal Filtering 

Here, we’d like to further compare the PCA/LDA-derived 
temporal filters. For the k-th time trajectory yk(m) of the 
features x(n), the LDA process maximizes the ratio  

wk
TSBwk/wk

TSWwk                                                                 (6) 

with respect to the filter coefficients wk, while the PCA 
process maximizes the value  

wk
T(SB+SW)wk                                                                      (7) 

with respect to the filter coefficients wk, where SB and SW are 
the between-class covariance and the within-class covariance 
of the the k-th time trajectory of the features x(n). These two 
optimization criteria seem inconsistent and quite different. For 
example, maximizing equation (7) may reduce the ratio in 
equation (6) since the resulted within-class variance wk

TSWwk 
is also amplified. On the other hand, the goal of maximizing 
equation (6) is to reduce the within-class variance wk

TSWwk 
and increase the between-class variance wk

TSBwk 
simultaneously, thus making the models more discriminant. 
However, when we use the PCA-derived filter wk-PCA to 
evaluate the desired ratio (wk

TSBwk /wk
TSWwk) for LDA in 

equation (6), we found that such ratios are very close to those 
obtained by the optimal LDA-derived filter wk-LDA, slightly 
lower though, as depicted in Figure 6 for the 15 time 
trajectories. Thus the PCA-derived temporal filters actually 
offer very similar linear discriminability as LDA even under 
LDA’s criterion, i.e., the ratio (wk

TSBwk /wk
TSWwk), although 

the PCA filters are derived from a different criterion. On the 
other hand, if we assume all classes are Gaussian and evaluate 
the model discriminability of PCA and LDA approaches using 
a different criterion, the average KL2-distance between each 
pair of the 11 classes here for all time trajectories, the result is 

13.86 for PCA and 13.60 for LDA, i.e., PCA is even slightly 
better than LDA under this criterion. Furthermore, for PCA 
process the training database doesn’t need to be labeled into 
different classes in order to obtain the between-class/within-
class covariance matrices, which is necessary for LDA. 
Therefore implementing PCA is usually much easier than LDA, 
which is a major advantage of PCA- derived filters. 

 
Figure 6 The ratio (wk

TSBwk /wk
TSWwk) obtained by PCA-

derived wk-PCA filter LDA-derived filter wk-LDA respectively for 
the 15 time trajectories of speech features 

6. Conclusion and Future Work 

In this paper, we proposed a new temporal filtering approach 
using the principal component analysis (PCA), and 
comparative analysis with LDA-derived filtering approach is 
presented. Significant improvements in recognition accuracy 
under different conditions show the effectiveness of the PCA 
filtering approach. The PCA temporal filtering may efficiently 
alleviate the mismatch caused by noise corruption and/or 
RealAudio compression. It can also be easily combined with 
other temporal filtering methods to provide further 
improvements. When compared with LDA-derived filters, 
PCA is better under some conditions while LDA is better 
under other conditions. The two approaches actually 
complements each other. 
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