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Abstract

We consider in this paper the dynamics of the self-sustained electromechanical system with

multiple functions, consisting of an electrical Rayleigh-Duffing oscillator, magnetically coupled

with linear mechanical oscillators. The averaging and the balance harmonic method are used to

find the amplitudes of the oscillatory states respectively in the autonomous and non-autonomous

cases, and analyze the condition in which the quenching of self-sustained oscillations appears.

The effects of the number of linear mechanical oscillators on the behavior of the model are

discussed. Various bifurcation structures, the stability chart and the variation of the Lyapunov

exponent are obtained, using numerical simulations of the equations of motion.
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1 Introduction

The dynamics of self-excited coupled systems (including Van der Pol and Rayleigh equation)

has received much attention over the last years [Parlitz et al., 1987; Szemplińska-Stupnicka

and Rudowki, 1994; Venkastesan and Lukshmanan, 1997; Camacho et al., 2004; Yamapi and

Bowong, 2005]. This is due to the fact that such systems serve as a basic model of self-excited

oscillation in physics, electronics, biology, neurology and many other disciplines.

In the context of self-excited coupled systems, we studied recently the dynamics of the

self-sustained electromechanical system (including the Rayleigh-Duffing equation) [Yamapi and

Bowong, 2005], consisting of an electrical Rayleigh-Duffing oscillator coupled magnetically and

parametrically to a linear mechanical oscillator. Using the well-known analytical method, the

behavior of the model has analyzed without discontinuous parameters before taking into account

the effects of the discontinuous parameters. Various types of bifurcation structures were reported

using numerical simulations of the equations of motion. An adaptive Lyapunov control strategy

has enabled us to drive the system from the chaotic states to a targetting periodic orbit. In this

paper, we extendn our study by considering the dynamics of the self-sustained electromechanical

system with multiple functions, but without discontinuous parameters, which consist of an

electrical Rayleigh-Duffing oscillator coupled magnetically to n linear mechanical oscillators.

In this paper, we undertake an investigation of the dynamics of the self-sustained electrome-

chanical system with multiple functions. We first analyze the behavior of the autonomous model

before taking into account the effects of the external excitation. The paper is organized as fol-

lows. After presenting the physical model and giving the equations of motion in section 2, we

consider in section 3 the behavior of the autonomous self-sustained model. The amplitudes of

the oscillatory states and their stability are derived using the Averaging method [Nayfeh and

Mook, 1979; Hayashi, 1964], and we analyze its behavior when the parameters of the system

vary. In section 4, we consider the forced self-sustained electromechanical system and analyze

the interaction of the external excitation with the amplitude of the limit cycle solution. We

use the harmonic balance method [Nayfeh and Mook, 1979; Hayashi, 1964] to derive the ampli-

tudes of the harmonic oscillatory states and illustrate the effects of the number of mechanical

oscillators. The phase difference between the linear mechanical oscillators is analyzed. We also

analyze the bifurcation structures which appear in the model, and provide a stability chart,

using numerical simulations based on the equations of motion. We note that all the numerical

simulations are used the Runge-Kutta algorithm. The conclusion is given in the last section.

2 Description and equations of motion

The model shown in Fig. 1 is the self-sustained electromechanical system with multiple

functions, consisting of interacting electrical part (Rayleigh-Duffing oscillator) and mechanical

part (linear oscillators). Both parts are coupled by the electromagnetic force developed by
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a permanent magnet. As a result, the Laplace force acts on the mechanical part, and the

electromotive Lorenz force occurs in the electrical circuit. The electrical part of the system

consists of a nonlinear resistor R, a nonlinear condenser C and an inductor L, all connected in

series. One can consider the electromechanical model with the nonlinear electrical part obeying

to the Rayleigh-Duffing equation. For this purpose, one makes use of two types of nonlinear

components. The first type is the nonlinear capacitor with plate voltage Vc depending cubically

on the charge q as

Vc =
1

Co

q + a3q
3, (1)

where Co is the linear part of the capacitive characteristic and the parameter a3 defines nonlin-

earity of the capacitor and depends on its type. This is typical of nonlinear reactance components

such as varactor diodes widely used in many areas of electrical engineering to design, for instance,

parametric amplifiers, up-converters, mixers, low-power microwave oscillators, etc. [Oksasoglu

and Vavriv, 1994] In the second type, the current voltage characteristic of a resistor [Chedjou

et al. 2001] is also defined as

VRo
= Roio

{

−
{

i

io

}

+

{

i

io

}3
}

, (2)

where Ro and io are, respectively, the normalization resistance and current. i is the value of

current corresponding to the limit resistor voltage. In this case, the model has the property to

exhibit self-excited oscillations. This is due to the presence of a nonlinear resistor where current-

voltage characteristic curve shows a negative slope, and to the fact that the model incorporates

through its nonlinear resistance a dissipative mechanism to damp oscillations that grow too large

and a source of energy to pump up those that become small. Because of this particular behavior,

we can qualify our model as a self-sustained electromechanical model. This nonlinear resistor

can be realized using a block consisting of two transistors [Hasler, 1987]. The mechanical part is

composed of mobile beams which can move respectively along the ~zi (i=1,...,n) axis on both sides.

The rods Ti are bounded to mobile beams with springs of constants ki. The electromechanical

system with multiple functions obeys to the following n+ 1 differential equations

L
d2q

dτ2
−Ro

{

1 − 1

i2o

{

dq

dτ

}2
}

dq

dτ
+

q

Co

+ a3q
3 +

n
∑

i=1

lBi

dz

dτ
= 0

m
d2z1
dτ2

+ λ1dz1
dτ

+ k1z1 − lB1
dq

dτ
= 0

...
...

...

m
d2zi
dτ2

+ λidzi
dτ

+ kizi − lBi

dq

dτ
= 0

...
...

...

m
d2zn
dτ2

+ λndzn
dτ

+ knzn − lBn

dq

dτ
= 0 (3)

where L and Ro are, respectively, inductance and active resistance in the electrical part, l is the

length of the section of interaction of the magnetic field of intensity Bi with n moving rods to
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which a body of each mass mi is attached, ki is the coefficient of spring elastic stiffness, λi is

the viscous friction coefficient, and q̇ is the current in the electrical circuit. Considering Qo as

the reference charge of the condenser, and the following dimensionless variables

q = xQo, zi = lxi, t = weτ, w2
e =

1

LCo

,

β =
a3Q

3
o

Lw2
e

, w2
im =

ki

mi

, wi =
wm

we

, µ =
Ro

Lwe

,

λi =
l2Bi

LQowe

, λi1 =
BiQo

miwe

, γi =
λi

miwe

. α0 =
Q2

ow
2
e

i2o

the n+ 1 differential equations yield to the following non-dimensional equations

ẍ− µ(1 − α0ẋ
2)ẋ+ x+ βx3 +

n
∑

i=1

λiẋi = 0,

ẍ1 + γ1ẋ1 + w2
1x1 − λ11ẋ = 0,

...
...

ẍi + γiẋi + w2
i xi − λi1ẋ = 0.

...
...

ẍn + γnẋn + w2
nxn − λn1ẋ = 0. (4)

where x and xi are respectively, the dimensionless electric charge in the condenser and the dis-

placement of each mobile beam. α0 is the positive coefficient. For mathematical convenience,

we set α0 = 1 in the rest of the paper. Thus, the equations of motion of the self-sustained elec-

tromechanical system with multiple functions consist of an electrical Rayleigh-Duffing oscillator

coupled to linear mechanical oscillators.

3 The resonant oscillatory states

3.1 The resonant oscillatory states and quenching phenomena

The amplitudes of the resonant oscillatory states of equations (4) can be found using the

averaging method [Nayfeh and Mook, 1979; Hayashi, 1964]. Following this method, we find that

the amplitudes A and Ai of x and xi, and the phase ψi = φi − φ between x and xi satisfy the

following set of first-order differential equations

Ȧ = −1

2
µA(1 − 3

4
A2) +

1

2

n
∑

i=1

λiwiAi cosψi

Ȧ1 = −1

2
γ1A1 +

λ11A

2w1
cosψ1

...
...

Ȧi = −1

2
γiAn +

λi1A

2wi

cosψi

...
...
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Ȧn = −1

2
γnAn +

λn1A

2wn

cosψn

ψ̇1 = −3

8
βA2 +

{

λ11A

2w1A1
− λ1w1A1

2A

}

sinψ1

...
...

ψ̇i = −3

8
βA2 +

{

λi1A

2wiAi

− λiwiAi

2A

}

sinψi

...
...

ψ̇n = −3

8
βA2 +

{

λn1A

2wnAn

− λnwnAn

2A

}

sinψn. (5)

In the stationary state, the amplitudes A and Ai satisfy the following nonlinear equations

µAas(1 − 3

4
A2

as) =
n

∑

i=1

λiwiAi(as)

√

√

√

√1 −
9β2w2

iA
2
i(as)A

4
as

16(λi1A2
as − λiw

2
iA

2
i(as))

2
,

A2
i(as) = MiA

2
as(4 − 3A2

as),

Mi =
µλi1

4nγ1λiw
2
i

. (6)

When the n linear mechanical oscillators are identical, equations (6) become

µ2A2
as(1 − 3

4A
2
as)

n2λ2
1w

2
1A

2
1(as)

+

9
16β

2w2
1A

6
asA

2
1(as)

(λ11A2
as − λ1w2

1A
2
1(as))

2
− 1 = 0,

A2
i(as) = MiA

2
as(4 − 3A2

as).. (7)

Equations (7) can be solved using the Newton-Raphson algorithm or Mathematica code with

the chosen set of parameters: λ11 = 0.4;λ1 := 0.08;µ = 0.1;β = 0.5;w1 = 1.0. Fig.2 shows

the analytical and numerical response-curves when the damping coefficient γ1 is varied. One

finds that in the region of γ1 defined as γ1 ∈]0.251; 0.321[, a complete quenching phenomena of

oscillations occurs, In this state, the model can serve as an electromechanical vibration absorber

[Korenev and Reznikav, 1989] of undesirable self-excited vibrations in mechanical systems. The

quenching of self-excited oscillations had also been reported in refs.[Chedjou et al. 2001; Asfar,

1989]. Here, the quenching of mechanical self-excited oscillations could be insured by an ap-

propriate choice of the system parameters of an electrical circuit (assuming that the mechanical

oscillator is described by the nonlinear oscillator and the electrical circuit by the linear oscilla-

tor). Analyzing the effects of the number n of the linear mechanical oscillators on the resonant

oscillatory state solutions, we find that when the number n evolves, the resonant oscillatory

state amplitude could not change as it appears in Fig. 2. This is not surprising because the

self-sustained electromechanical system has a similar behavior like that of a Van der Pol model,

and therefore generates the limit cycle solution which does not depend on the number of linear

mechanical oscillators. It is important to note that this limit cycle solution, is known to be a

fairly strong attractor since it attracts all trajectories except the one initiated from the trivial

fixed point.
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3.2 Stability analysis

The stability of the resonant oscillatory state motions can be determined by investigating

the nature of the stationary oscillatory state solutions of equations (5). To accomplish this, we

let

A = Aas + δA,

Ai = Ai(as) + δAi,

ψi = ψis + δψi, (8)

where Aas and Ai(as) are the amplitudes of the stationary oscillatory state solutions and ψis its

phases (see equations eqs.(6)). Substituting the expressions (8) into equations (5), expanding

for small δA, δAi and δψi and keeping linear terms in δA, δAi and δψi, one obtains the following

2n+ 1 set of first order differential equations

(δA)′ = −1

2
µ(1 − 3

4
A2

as)δA+
1

2

n
∑

i=1

λiwi(δAi cosψi − δψiAi(as) sinψi)

(δA1)
′ = −1

2
γ1δA1 +

λ11

2w1
{δA cosψ1 − δψ1Aas sinψ1}

...
...

...
...

(δAi)
′ = −1

2
γiδAi +

λi1

2wi

{δA cosψi − δψiAas sinψi}
...

...
...

...

(δAn)′ = −1

2
γnδAn +

λn1

2wn

{δA cosψn − δψnAas sinψn}

(δψ1)
′ =

{

λ11

2w1A1(as)
+
λ1w1A1(as)

2Aas

}

sinψ1sδA

−3

4
βAasδA−

{

λ11Aas

2w1A1(as)
+
λ1w1

2Aas

}

sinψ1sδA1

+

{

λ11Aas

2w1A1(as)
−
λ1w1A1(as)

2Aas

}

cosψ1sδψi

...
...

...
...

(δψi)
′ =

{

λi1

2wiA1(as)
+
λiwiAi(as)

2Aas

}

sinψisδA

−3

4
βAasδA−

{

λi1Aas

2wiAi(as)
+
λiwi

2Aas

}

sinψisδAi

+

{

λi1Aas

2wiAi(as)
−
λiwiAi(as)

2Aas

}

cosψisδψi

...
...

...
...

(δψn)′ =

{

λn1

2wnAn(as)
+
λnwnAn(as)

2Aas

}

sinψnsδA

−3

4
βAasδA−

{

λn1Aas

2wnAn(as)
+
λnwn

2Aas

}

sinψnsδAn
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+

{

λn1Aas

2wnAn(as)
−
λnwnAn(as)

2Aas

}

cosψnsδψn (9)

The stability of the stationary oscillatory state solutions depends on the eigenvalues S of the

coefficient matrix on the right-hand sides of equations (8). But due to the order of the Jacobian

matrix (2n+ 1× 2n+ 1), its difficult to find the eigenvalue equation, we restrict our analyzis to

the case of one function (n = 1) and equations (9) become

(δA)′ = Γ11δA+ Γ12δA1 + Γ13δψ1,

(δA1)
′ = Γ21δA+ Γ22δA1,

(δψ1)
′ = Γ31δA+ Γ32δA1 + Γ33δψ1, (10)

where the parameters Γij are the elements of the Jacobian matrix (Γ) and are given by

Γ11 = −1

2
µ(1 − 9

8
A2

as), Γ12 =
1

2
λ1w1 cosψ1s,

Γ13 =
1

2
λ1w1Aas sinψ1s, Γ21 =

λ11

2w1
cosψ1s, Γ22 = −1

2
γ1,

Γ31 = −3

4
βAas +

{

λ11

2w1A1(as)
+
λ1w1A1(as)

2Aas

}

sinψ1s,

Γ32 = −
{

λ11Aas

2w1A1(as)
+
λ1w1

2Aas

}

sinψ1s,

Γ33 =

{

λ11Aas

2w1A1(as)
−
λ1w1A1(as)

2Aas

}

cosψ1s

Due to the Routh-Hurwitz, if the real parts of the roots of the characteristic equation of system

(10) are negative, the corresponding stationary oscillatory state solutions is stable, if at least

one root has a positive real part, the oscillatory state solution is unstable. The characteristic

equation may be written as

S3 +Q1S
2 +Q2S +Q3 = 0, (11)

where the coefficients Qi are given as follows

Q1 = −Γ11 − Γ22 − Γ33

Q2 = Γ11Γ22 + Γ33(Γ11 + Γ22) − Γ13Γ31 − Γ23Γ32 − Γ21Γ12,

Q3 = −Γ11Γ22Γ33 − Γ21Γ32Γ13 − Γ31Γ12Γ23 + Γ13Γ31Γ22

+Γ23Γ31Γ11 + Γ12Γ21Γ33.

The determination of signs of the real parts of the root S may be carried out by making use of

the Routh-Hurwitz criterion [Hayashi, 1964]. In applying this criterion, we find that the real

parts of the roots are negative if we have

Qi > 0, (i = 1, 2, 3),

Q1Q2 −Q3 > 0,

Q3(Q1Q2 −Q3) > 0, (12)
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Additionally, the eigenvalues S of the Jacobian (Γ) are functions of the parameters of the system.

Let us evaluate the trace tr(Γ) and the determinant det(Γ) of Λ as

tr(Γ) = Q1,

det(Γ) = Γ11Γ22Γ33 − Γ21Γ12Γ33 +

Γ21Γ32Γ13 − Γ31Γ13Γ22, (13)

Considering the special case where at some parameters values µ = µ0, one finds, through the

Hopf theory, that the eigenvalue of the Jacobian matrix (Γ) is purely imaginary under the

following transversally condition

tr(Γ) = 0,

det(Γ) > 0 (14)

The two above conditions (12) and (14) are used to find the value of the µ0 coefficient in which

the eigenvalues S are purely imaginary and then define the curves (see Fig. 3) in which the

amplitude oscillations (limit cycle) exists. Though the Hopf theory guarantees the existence of

such periodic orbits for µ = µo, it does not guarantees the existence of the oscillations for the

point µ furthest away from the point µ0. Often, however, the periodic orbit persists and grows

in amplitude as |µ− µo| increases.

4 The forced self-sustained electromechanical model

With the external force, the equations of motion become

ẍ− µ(1 − ẋ2)ẋ+ x+ βx3 +
n

∑

i=1

λiẋi = E0 coswt,

ẍ1 + γ1ẋ1 + w2
1x1 − λ11ẋ = 0,

...
...

ẍi + γiẋi + w2
i xi − λi1ẋ = 0.

...
...

ẍn + γnẋn + w2
nxn − λn1ẋ = 0. (15)

where w and E0 are respectively the frequency and amplitude of the external excitation. Our aim

is to study the interaction of the external excitation with the amplitude of the limit cycle solution

and find various bifurcation structures which appear in the self-sustained electromechanical

system.

4.1 The amplitude of harmonic oscillatory states

We derive in this subsection the amplitudes of the harmonic oscillatory states of the equations

of motion (15). For this purpose, we suppose that the fundamental component of the solutions
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has a period of the sinusoidal voltage source. The harmonic balance method [Nayfeh and Mook,

1979; Hayashi, 1964] enables us to find the solutions x and xi in the form

x = a1 cosωt+ a2 sinωt,

xi = bi1 cosωt+ bi2 sinωt, (16)

Inserting equations (16) into equations (15) and equating the coefficients of sinωt and cosωt

separately to zero (assuming that the terms due to higher frequencies can be neglected), we

obtain

{

1 − ω2 +
3

4
βA2

}

a1 − µω

{

1 − ω2

4
A2

}

a2 +
n

∑

i=1

λiωibi2 = E0

µω

{

1 − ω2

4
A2

}

a1 +

{

1 − ω2 +
3

4
A2

}

a2 −
n

∑

i=1

λiωibi1 = 0,

(ω2
1 − ω2)b11 + γ1ωb12 − λ11ωa2 = 0,

−ωγ1b11 + (ω2
1 − ω2)b12 + λ11ωa1 = 0,

...
...

...

(ω2
i − ω2)bi1 + γiωbi2 − λi1ωa2 = 0,

−ωγibi1 + (ω2
i − ω2)bi2 + λi1ωa1 = 0,

...
...

...

(ω2
n − ω2)bn1 + γnωbn2 − λn1ωa2 = 0,

−ωγnbn1 + (ω2
n − ω2)bn2 + λn1ωa1 = 0

(17)

It comes after some algebraic manipulations that the amplitudes of the harmonic oscillatory

states satisfy the following nonlinear equations

9

16
β2A6 +

3

2
βFnA

4 + (F 2
n +G2

n)A2 −E2
0 = 0,

Ai =
ωiλi1√
Di

A, (18)

where

A2 = a2
1 + a2

2, A2
i = b2i1 + b2i2,

Di = (ω2
i − ω2)2 + ω2γ2

i ,

Fn = 1 − ω2 −
n

∑

i=1

λiλi1(ω
2
i − ω2)

Di

,

Gn = −µω +
n

∑

i=1

λiλi1γiω
3

Di

,

In the presence of the external excitation, we provide in Fig.3 the frequency-response curves

for several different values of the number of the linear mechanical oscillators. It appears that
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the curves show antiresonance and resonance peaks, and the hysteresis phenomenon for some

values of n. It is important to note that around the resonance peaks, the amplitudes and

the accumulate energies of the self-sustained electromechanical device are higher than those

received in any oscillations. In this case, the self-sustained model can give more interesting

applications in electromechanical engineering, particularly when the model is used as a perforator

electromechanical device, but the model with high energies is very dangerous since it can give rise

to catastrophe damage. In the antiresonance peaks, the self-sustained electromechanical device

vibrates with small amplitude and accumulates energy. This phenomena is of particular interest

when the model is used as an electromechanical vibration absorber [Oksasoglu and Vavriv,

1994]. In this figure 3, the effects of a number of linear mechanical oscillators are observed

and the curves also show the resonance and antiresonance peaks, and hysteresis phenomena

when the number n increases. We note that the multiplicity of the response curves due to

cubic nonlinearity has a significant impact from the physical point of view because it leads to

jump and hysteresis phenomena with two stable amplitudes. Consequently, the self-sustained

electromechanical device can vibrate in these domains with two different amplitudes of the

harmonic oscillations depending on the initial conditions. Fig. 4 provide the amplitudes-response

curves A(E0) and Ai(E0) for several values of n. This figure illustrates the effects of the number

n of the linear mechanical oscillators on the behavior of the self-sustained electromechanical

system. The following findings are observed. In the case of the model with one function,

A(E0) and Ai(E0) show the jump phenomena, which disappear for the increasing of the number

n of linear mechanical oscillators. For instance, with the parameters of Figs. 3 and 4, the

disappearance of the jump phenomenon is obtained when the number n increases, in this case it

is interesting to see that a further increase of the number n can absorb the jump phenomenon.

Fig.5 shows the comparison between analytical and numerical frequency-response curves.

4.2 Phase difference between the mechanical oscillators

In practical engineering use, it is important to analyze the phase difference between the

linear mechanical oscillators. To this aim, we find through eqs.(16) and (17) that the phases φi

and φi+1 of the ith and (i+ 1)th linear mechanical oscillators are given by

tanφi =
bi2
bi1

=
(w2

i −w2)(Fi + 3
4βA

2) + γiw
2(Gi + 1

4µw
3A2)

(w2
i − w2)(Gi + 1

4µw
3A2) − wγi(Fi + 3

4βA
2)
,

tanφi+1 =
b(i+1)2

b(i+1)1
=

(w2
i+1 − w2)(Fi+1 + 3

4βA
2) + γi+1w

2(Gi+1 + 1
4µw

3A2)

(w2
i+1 − w2)(Gi+1 + 1

4µw
3A2) − wγi+1(Fi+1 + 3

4βA
2)

(19)

The phase difference is then defined as

Θi,i+1 =
φi − φi+1

w
(20)
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Our aim is to find the conditions in which all the linear mechanical oscillators vibrate in phase

(phase-locked). One finds that all the linear mechanical oscillators are phase-locked in the

following two situations:

• When all the n+1 oscillators (electrical and n linear mechanical oscillator) enter in resonance

(internal resonance wi = 1) and for a fixed frequency w, Θi,i+1 remains constant as the others

parameters of the system vary.

• When all the n+ 1 oscillators enter in internal (wi = 1) and external (wi = 1) resonance, all

the ith and (i+ 1)th linear mechanical oscillator vibrate in phase and we have

tanφi = tanφi+1 =
w(Gi + 1

4µw
3A2)

Fi + 3
4βA

2
. (21)

4.3 Bifurcation structures and stability chart

The aim of this subsection is to find some bifurcation structures and derive the stability chart

in the forced self-sustained electromechanical model as the parameters of the system evolve. For

this purpose, we numerically solve the equations of motion (15) and plot the resulting bifurcation

diagrams as the amplitude of the external excitation E0 varies. The stroboscopic time period

used to map various transitions which appear in the model is T = 2π/w. With the following

set of parameters µ = 2; γ1 = 0.1;λ1 = 0.4;λ11 = 0.2;w1 = 1;β = 0.8;w = 1;n = 25, our

investigations show that the model exhibits chaotic behavior at E0 = 13.0 and the chaotic phase

portrait of the model is shown in Fig. 6. Figure 7 shows a representative bifurcation diagram

and the variation of the corresponding Lyapunov exponent as the amplitude E0 varies. These

curves are obtained by numerically solving equations (15) and the corresponding variational

equations. The one dimensional Lyapunov exponent is defined by

Lya = lim
t∞

In(dn+1(t))

t
(22)

with

dn+1(t) =

√

√

√

√dx2 + dẋ2 +
n

∑

i=1

dx2
i +

n
∑

i=1

dẋ2
i ; n = 25

where dx, dẋ, dxi and dẋi are respectively the variations of x, ẋ, xi and ẋi. As the amplitude

E0 increases from zero, the amplitude of the quasi-periodic oscillations exists until E0 = 9.6

where a period-3 orbit takes place. At E0 = 10.5, the system bifurcates from a period-3 orbit

to a chaotic orbit until E0 = 15.8 where the period-7 orbit appears. From E0 = 18.0, we have

another region of chaotic motion. At E0 = 18.8, the system passes from the chaotic orbit to the

period-3 orbit and remains until E0 = 20.5 where the quasi-periodic motion takes place before

bifurcates to the period-1 orbit at E0 = 20.5. The other bifurcation mechanisms which appear in

the system are shown in Figs. 8 and 9 for respectively µ = 4 and µ = 5. In Fig.10, we derive the

stability chart using numerical simulations of the equations of motion (15) as well as the above

transitions. The chart shown in the (µ,E0) plane is traced out by using the bifurcation diagram

12



when the amplitude E0 varies for a fixed µ coefficient. One observes that as the amplitude

E0 increases, the forced self-sustained electromechanical system exhibits quasi-periodic, and

period-m oscillations, and chaotic motions within a range of the µ coefficient (see Fig. 10). For

example, for µ = 4, we have the quasi-periodic oscillations for E0 ∈ [0.0; 10.6] ∪ [12.3; 18.6],

chaotic motions for E0 ∈ [10.6; 13] ∪ [14.2; 17.2], period-7 orbit for E0 ∈ [14.2; 17.2], period-3

orbit for E0 ∈ [20.2; 22]. Fig. 11 shows various phase portraits for several different values of

E0 chosen on the above mentioned domains, with the parameters of Fig. 6. The effects of the

number of linear mechanical oscillators on the bifurcation structures are analyzed in Fig. 12

and it indicated that the bifurcation structures are affected with the increase of the number of

linear mechanical oscillators.

5 Conclusion

In this paper, we have studied the dynamics of the self-sustained electromechanical sys-

tem with multiple functions, consisting of an electrical Rayleigh-Duffing oscillator magnetically

coupled to linear mechanical oscillators. In the autonomous case, the amplitude of oscillatory

states and their stability have been derived using the averaging method and it appears that the

quenching of oscillations occurs for some sets of parameters. For the non-autonomous case, the

harmonic balance method has enabled us to derive the amplitude of harmonic oscillations. The

effects of the number of linear mechanical oscillators on the behaviors of the model have been an-

alyzed. Our analytical results have been confirmed by numerical simulation. Various bifurcation

structures showing different types of transitions from quasi-periodic motions to multi-periodic

and chaotic motions have been drawn and the results have been presented in the stability chart.

Acknowledgments

Part of this work was done during the visit of R. Yamapi to the Abdus Salam International

Centre for Theoretical Physics for a short visit (21 June 21-5 August, 2005) in the Condensed

Matter and Statistical Physics research group. He would like to thank the Head of this research

group for the invitation, hospitality and financial support.

13



References

Asfar K. R., [1989] Quenching of self-excited vibrations,Trans. ASME, Journal of Vibra-

tion and Acoustics, Stress and Reliability in Design, 121, 130-133

Camacho E, Rand R. and Howland H. [2004] Dynamics of two Van der Pol oscillators

coupled via bath, Int. J. of Solids and Structures, 41, 2133-2143

Chedjou J. C., Woafo P. and Domngang S., [2001] Shilnikov chaos and dynamics

of a self-sustained electromechanical transducer, Journal of vibtations and Acoustics, 123,

170-174

Hasler M. J., [1987] Electrical circuits with chaotic behavior Proc. IEEE, 75, 1009-1021

Hayashi C., [1964] Nonlinear Oscillations in Physical Systems, New-York: Mc-Graw-Hill.

Korenev B. G., and Reznikav L. M., [1989] Dynamics vibration absorbers, Willey, New

york.

Nayfeh, A. H. and Mook, D. T., [1979] Nonlinear Oscillations, Wiley-Interscience, New

York.

Oksasoglu A. and Vavriv D. [1994] Interaction of low- and High-frequency oscillations

in a nonlinear RLC circuit, IEEE Trans. Circ. Syst-I 41, 669-672

Parlitz U. [1987] Werber Lauterborn, Period-doubling cascades and devil’s staircases of

the drvuen Van der Pol oscillator, Phys. Rev. A, 36(3), 1428-1434

Venkatesan A. and Lukshmanan M., [1997] Bifurcation and chaos in the double-well

Duffing-Van der Pol oscillator; Numerical and analytical studies, Phys. Rev. E, 56(6), 6321-

6330
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