
Triple Graph Grammars or Triple Graph
Transformation Systems??

A Case Study from Software Configuration Management

Thomas Buchmann, Alexander Dotor, and Bernhard Westfechtel

Angewandte Informatik 1, Universität Bayreuth
D-95440 Bayreuth

firstname.lastname@uni-bayreuth.de

Abstract. Triple graph grammars have been used to specify consistency mainte-
nance between inter-dependent and evolving models at a high level of abstraction.
On a lower level, consistency maintenance may be specified by a triple graph
transformation system, which takes care of all operational details required for
executing consistency maintenance operations. This paper presents a case study
from software configuration management in which we decided to hand-craft a
triple graph transformation system rather than to generate it from a triple graph
grammar. The case study demonstrates some limitations concerning the kinds of
consistency maintenance problems which can be handled by triple graph gram-
mars.

1 Introduction

Model transformations play a key role in model-driven engineering. In the most simple
case, a transformation of some source model s into some target model t may be per-
formed automatically by a model compiler. If there is no need to edit t, model evolution
(of s) may be handled by simply compiling s once more. However, in general it may
not be possible to generate t from s completely automatically, both s and t may evolve,
and changes may have to be propagated in both directions (consider, e.g., round-trip
engineering between a requirements model and a design model).

In principle, model transformations may be programmed in an ordinary program-
ming language such as Java. This approach is still followed frequently, but clearly a
more high-level approach is desired: Model-driven engineering should be applied not
only to the target process to be supported, but also to the process of developing model
transformations itself.

Many formalisms have been proposed for defining model transformations, includ-
ing e.g. QVT [1] in the context of object-oriented modeling. In this paper, we focus on
graph transformations: Graphs may represent models in a natural way; graph transfor-
mation rules describe modifications of graph structures in a declarative way. Further-
more, there is a comprehensive body of theories, languages, tools, and applications (see
e.g. the handbook series on graph grammars [2–4]).
? Proceedings 1st International Workshop on Model Co-Evolution and Consistency Manage-

ment (MCCM 2008), Toulouse, France

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357603608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


For maintaining consistency between interdependent and evolving models, a graph
transformation system is required which deals with at least two graphs, namely the
source graph s and the target graph t1. For incremental change propagation, a cor-
respondence graph c is placed in between s and t for maintaining traceability links.
This results in a triple graph transformation system (TGTS), the rules of which define
source-to-target and target-to-source transformations as well as actions for checking
consistency and repairing inconsistencies.

Developing a TGTS is still a tedious and laborious task: First, in addition to the
generation of graphs, modifications and deletions have to be specified explicitly. Sec-
ond, each direction of transformation has to be specified explicitly - as well as rules for
checking consistency and establishing correspondences. Therefore, triple graph gram-
mars (TGG) [5, 6] have been proposed to make the task of specifying inter-model con-
sistency maintenance easier. From a high-level TGG dealing only with the synchronous
generation of graphs, a more low-level TGTS for inter-model consistency maintenance
may be generated.

In this paper, we explore the alternatives of hand-crafting a TGTS versus defining
a TGG and generating a TGTS from the TGG. To this end, we present a case study
which we performed in the MOD2-SCM project (MODel-Driven MODular Software
Configuration Management System [7]). The project employs Fujaba [8] as modeling
language and tool, but the discussion in this paper is not specific to Fujaba. The case
study deals with a recurring problem in SCM, namely the synchronization of reposito-
ries and workspaces, which involves bidirectional incremental propagation of changes.
We present a hand-crafted TGTS for this application and discuss the alternative of gen-
erating the TGTS from the TGG.

2 Background

A directed, typed, attributed graph consists of typed nodes which are decorated with at-
tributes and are connected by typed, directed, binary edges. In terms of object-oriented
modeling, a node corresponds to an object, and an edge corresponds to a binary link
with distinguishable ends. A graph grammar is composed of a graph schema, which
defines types of nodes, edges, and attributes, a start graph, and a set of productions
which are used to generate a set of graphs forming a graph language. Thus, a graph
grammar is concerned only with the generation of graphs. In contrast, a graph trans-
formation system is made up of a set of graph transformation rules, which describe
arbitrary graph transformations including deletions and modifications.

The TGG approach is illustrated in Figure 1. A triple graph consists of a source
graph s, a target graph t, and a correspondence graph c. The nodes of c, which are
called link nodes, are connected to nodes of s and t, respectively. A triple graph gram-
mar (TGG) declaratively specifies consistency relationships between source and tar-
get graph. The TGG designer need only define generative triple rules which describe
synchronous extensions of source, target, and correspondence graph. From each syn-
chronous triple rule, three directed rules may be generated (if required): A forward

1 For the sake of simplicity, our notation does not distinguish between a model and its graph for
its representation.



GG for s GG for t

Design TGG 
rules

TGG

Generate 
forward rules

Generate corres-
pondence rules

Generate 
backward rules

Forward
rules

Correspon-
dence rules

Backward
rules

Generic rules*

* For consistency checks 
and repair actions

Compose

TGTS

Fig. 1. The TGG approach

rule assumes that s has been extended, and extends c and t accordingly; likewise for
backward rules. A correspondence rule extends c after s and t have been extended with
corresponding graph structures. Like triple rules, directed rules are monotonic, i.e., they
describe graph extensions. Directed rules are required when s, t, and c have not been
changed synchronously (e.g., when different users concurrently edit s and t).

A triple graph transformation system (TGTS) is composed of a set of triple graph
transformation rules for inter-model consistency maintenance. These rules describe not
only extensions, but also deletions and modifications. A TGTS may be hand-crafted,
i.e., created manually by a TGTS designer. However, in the TGG approach the TGTS
is generated from the TGG. In addition to the directed rules explained above, further
rules are needed which deal with modifications and deletions having been performed in
s and t. To this end, generic rules are required which perform consistency checks and
repair actions. Generic rules and generated directed rules jointly constitute the overall
TGTS. The TGTS may also include a control structure for efficient graph traversal in
order to speed up the execution of the consistency maintenance algorithm.

The following alternatives are discussed in this paper: a) hand-crafting a TGTS, and
b) generating a TGTS from a TGG. Of course, hand-crafting a TGTS pays off only
when generation from a TGG does not work appropriately. This raises the question to
which classes of problems the TGG approach may be applied successfully. The case
study presented below contributes to answering this question.

3 Case Study

In this section, we present a case study which we explored in the context of the MOD2-
SCM project [7]. The overall goal of this project is to develop a model-driven product
line for software configuration management (SCM). The project was motivated by the



following shortcomings of state-of-the art systems: First, development of an SCM sys-
tem is a laborious task, which may be leveraged by model-driven development. Second,
the underlying models are implicit and hard-wired into SCM systems, which are diffi-
cult to adapt and to change. Finally, SCM systems share similar and recurring concepts;
thus, a product-line approach promises to further reduced development effort.

In the context of developing SCM systems, a recurring problem to be solved con-
sists in the synchronization between repositories and workspaces: Versioned software
objects are archived in a repository. Software engineers check versions out into a work-
space, change them, and check the changed versions back into the repository. Thus,
synchronization between repositories and workspaces involves bidirectional and incre-
mental change propagation.

The case study was inspired by open source SCM systems such as Subversion [9]
or CVS [10]. In both systems, a repository stores versions of files which are organized
into directories. A workspace consists of a tree of directories and files. In a workspace,
changes are performed by overriding. In contrast, when a changed file is committed into
the repository, a new version of the file is created.

In the model we built, both files and directories are versioned in a uniform way. The
version history of each file system object is represented by a version tree. A version of a
directory uniquely determines the versions of its components. While file system objects
are organized into strict hierarchies (trees), the hierarchy of file system object versions
allows for sharing.

Synchronization between repositories and workspaces is supported by the following
commands which, when applied to directories, are propagated to all components: add
prepares a file system object for a commit into the repository. commit commits a file
system object into the repository. For an added file system object, an initial version is
created in the repository. For a changed versioned file system object, a successor version
is created. checkout creates a fresh copy of some file system object version in the file
system. update propagates changes from the repository into the workspace. Unmodified
copies of outdated versions are replaced with copies of new versions; modified copies
are not updated to prevent the loss of local changes. Finally, checkStatus analyzes the
consistency between repository and workspace. File system objects are marked as cre-
ated, deleted, modified, moved, or out of date.

An example is given in Figure 2. The scenario starts with a repository which is
initially empty and a small file system hierarchy (a). In step 1, add is applied to the
hierarchy rooted at d1. All objects (files or directories) of this hierarchy are scheduled
for commit. Adding is implemented by creating link objects and attaching them to the
file system objects. In step 2, commit is used to import the file hierarchy into the repos-
itory. For each file system object, both a versioned object and its initial version are
created. Furthermore, the hierarchy is mirrored in the repository both at the object and
the version level. In step 3, a part of the hierarchy (with root d2) is exported into another
workspace with checkout. In ws2, the text content of f2 is updated, and the name of f3
is changed into f4. Finally, in step 4 the changes in ws2 are committed. This causes new
versions of both files to be created. Please note that the file names of different versions
may differ. Furthermore, a new version of the directory d2 is created which includes the
new versions of the changed files. An update propagates the changes from the reposi-



repository

repository

ws2

ws1

repository

d2

ws1
d1

f1
text1 d2

f2
text2

f3
text3

repository
(initially
empty)

1
add d1

ws1
d1

f1
text1 d2

f2
text2

f3
text3

repository
(initially
empty)

2

commit
d1

d1

f1
text1 d2

f2
text2

f3
text3

3

d1
1 : d1

1 : d2f1 1 : f1
text1

f3 1 : f3
text3

f2 1 : f2
text2

checkout
d2 into ws2;
modify ws2

d2

d1
1 : d1

1 : d2f1 1 : f1
text1

f3 1 : f3
text3

f2 1 : f2
text2

d2

f2
text4

f4
text3

ws1

4

commit
d2 (ws2);

update ws1

d2

d1
1 : d1

1 : d2f1 1 : f1
text1

f3 1 : f3
text3

f2 1 : f2
text2

...
(unm

odified)
ws1

d1

f1
text1 d2

f2
text4

f4
text3

ws2
d2

f2
text4

f4
text32 : d2

2 : f2
text4

2 : f4
text3

d1 directory f1
text1

file with
text content

link between
file/directory
and version

hierarchy history source/target
of link

a b

c

d

e

version no : name
text content

ws1 workspace repository d1 versioned
object

1 : f2
text2

Fig. 2. Example



Product
Space

Version
Space

Repository

Workspace
Management

<<import>>

<<import>>

<<import>>

number of classes and interfaces 24

number of attributes 27

number of methods 83

lines of generated Java code 13291

Fig. 3. Package diagram (left) and model size (right)

tory to ws2; all files and directories now refer to the current versions. Please note that
due to the lack of space we have not shown structural variations caused by moves and
deletes.

4 A Triple Graph Transformation System

In this section, we present the approach which we decided to follow in our case study.
Synchronization of repositories and workspaces is modeled with the help of a hand-
crafted TGTS. Generating a TGTS from a TGG is discussed in the next section.

4.1 Modeling Language

The TGTS was created with the help of the object-oriented modeling language and en-
vironment Fujaba [8]. In Fujaba, nodes and edges are represented as objects and links,
respectively. Types of nodes and edges are defined by class diagrams. The behavior of
objects and links may be modeled by story patterns and story diagrams (see below).
Models written in Fujaba are executable (compiled into Java code).

Story patterns are UML-like communication diagrams which can be used to rep-
resent graph transformation rules. A story pattern consists of a graph of objects and
links. A graph transformation rule is expressed by marking graph elements as deleted
or created. Furthermore, conditions may be defined for attribute values, and the values
of attributes may be modified. Finally, methods may be called on objects of the story
patterns. Thus, story patterns constitute a uniform language construct for defining graph
queries, graph transformations, and method calls.

Programming with story patterns is supported by story diagrams, which correspond
to interaction overview diagrams in UML 2.0. A story diagram consists of story patterns
which are arranged into a control flow graph. Story patterns appear in-line in nodes of
the control flow graph. Each story diagram is used to implement a method defined in
the class diagram.

4.2 Model Architecture

Figure 3 shows a package diagram on the left and lists data on the overall model size
on the right. Each package contains one class diagram and a set of story diagrams for



the methods introduced in the classes of the package. A dashed line labeled with import
denotes an import relationship. An unlabeled dashed line represents a dependency (the
dependent package may have to be modified if the target package is changed).

Using the terminology of [11], we distinguish between a product space, which is
composed of the elements to be submitted to version control, and a version space, where
the evolution of these elements is represented. In the context of this paper, the prod-
uct space consists of the file system hierarchy. The package VersionSpace introduces
classes for managing the evolution of versioned objects. In the version model of the case
study, the versions of a versioned object are organized into a history tree. The package
Repository provides classes for versioned files and directories, based on the packages
ProductSpace and VersionSpace. Composition hierarchies are defined on both object
and version level. The packages mentioned so far will not be discussed further. Rather,
we will focus on the package WorkspaceManagement (for the synchronization between
the repository and workspaces, see next subsection).

It is important to note that we use import relationships in a much more restricted
way than permitted in the UML standard. According to the standard, an import merely
extends the set of elements visible in the importing package and allows for modifica-
tions of imported elements (see [12], p. 143). In our model, imported packages are used
rather than modified: In the TGTS (i.e., in the package WorkspaceManagement), we
merely add associations to imported classes (which is needed to represent traceability
relationships). We avoid defining subclasses of imported classes; otherwise, applica-
tions operating on the imported data structures might have to modified. Furthermore,
change operations are realized by calling the methods of imported classes rather than
by directly modifying the respective graphs (which might result in consistency viola-
tions).

4.3 Class diagram

Figure 4 shows the class diagram for the package Workspace Management. Classes im-
ported from other packages are displayed with collapsed attributes and methods sections
(left-hand and right-hand side). The class WorkspaceManager provides the external in-
terface of methods for synchronizing repositories and workspaces (facade pattern). The
interface includes those commands which were explained in Section 3.

Synchronization between repositories and workspaces is realized with the help of
a correspondence graph, which is composed of link objects being connected to one
source object and one target version, respectively. The abstract class Link provides a set
of methods corresponding to the exported methods of WorkspaceManager, and a set
of auxiliary methods. Furthermore, each link object carries a set of boolean attributes
indicating the state of the link: In state created, the target of the link does not yet exist.
In state deleted, the source of the link has been destroyed. In state modified, both source
and target exist, and the source has been modified in the workspace. In state moved,
the source has been moved to a different location. In state outOfDate, a new version of
the target is available. Finally, in state updated, the source has been updated to a new
version of the target, but this change has not been committed yet at the next higher
level. Please note that these attributes are not mutually exclusive (e.g., a link object can
be both out of date and modified).



0..n

0..1

contains 

Void : )String:name (init
FileSystemObject : )FileSystemObject:object (update

FileSystemObject : )Directory:targetDir, FileSystemObjectVersion:version (checkout
FileSystemObjectVersion : )FileSystemObject:object (commit

Boolean : )FileSystemObject:object (add
Void : )FileSystemObject:object (checkStatus

String : name

WorkspaceManager

«JavaBean»

0..10..n

toTarget 0..1 0..1

toSource 

0..n

0..1

contains 

FileSystemObject : )Directory:targetDir (checkout
Void : ) (checkStatus

FileSystemObject : ) (update
FileSystemObjectVersion : ) (commitModify
FileSystemObjectVersion : ) (commitCreate

AtomicLink

«JavaBean»

FileSystemObject : ) (update

FileSystemObject : )Directory:targetDir (checkout
Void : ) (checkStatus

Void : ) (delete

FileSystemObjectVersion : ) (commitCreate

Void : ) (commitDelete
FileSystemObjectVersion : ) (commitModify

FileSystemObjectVersion : ) (commitCreateOrModify

Void : ) (reset

Void : ) (add

CompositeLink

«JavaBean»

Void : ) (reset
FileSystemObject : ) (update

FileSystemObjectVersion : ) (commit
FileSystemObject : )Directory:targetDir (checkout

Void : ) (checkStatus

Void : ) (delete
FileSystemObjectVersion : ) (commitModify
Void : ) (commitDelete
FileSystemObjectVersion : ) (commitCreate

Void : ) (add

String : type
false = Boolean : updated

false = Boolean : outOfDate
false = Boolean : moved

false = Boolean : modified
false = Boolean : deleted

Boolean : created

Link

«JavaBean»

0..n

0..n

contains 

collapsed

DirectoryVersion

«JavaBean»

collapsed

collapsed

FileVersion

«JavaBean»

collapsed

collapsed

FileSystemObjectVersion

«JavaBean»

0..n

0..1

contains 

collapsed

Directory

«JavaBean»

collapsed

collapsed

File

«JavaBean»

collapsed

collapsed

FileSystemObject

«JavaBean»

Fig. 4. Class diagram for the package Workspace Management

Link objects are organized into a composition hierarchy in a similar way as file
system objects (composite pattern). When the workspace is consistent with the repos-
itory, the composition tree for the link objects agrees with the composition tree of the
file system objects in the workspace. The algorithms for synchronizing repositories and
workspaces traverse the composition hierarchy. Since they are attached to the class Link
and its subclasses, the classes of the imported packages need not be extended or modi-
fied.

4.4 Operations

To illustrate the style of modeling adopted in the TGTS, we present three examples
of methods for synchronizing repositories and workspaces. All sample methods are at-



]failure[

Link::commitCreate (): FileSystemObjectVersion

]success[

parent*.root

toSource 

contains 

FileSystemObject:fso
true==created

this

VersionedFileSystemObjects:vfsoWorkspaceManager:wsm

null

vfso.createVersionedObject(fso.getName(), fso.getType())) VersionedFileSystemObject(:= nvo

nvo.createRootVersion()) FileSystemObjectVersion(:= nvthis «create» toTarget 

1: rename(fso.getName()) 2: changeOwner(fso.getOwner())

nv

Fig. 5. Story diagram for committing a creation

]success[

]failure[

Link::commitModify (): FileSystemObjectVersion

toTarget 

true==modified

this
FileSystemObjectVersion:fsovFileSystemObject:fso toSource 

«create» toTarget this fsov.derive()) FileSystemObjectVersion(:= nv

1: changeOwner(fso.getOwner())

2: rename(fso.getName())

null

nv

Fig. 6. Story diagram for committing a modification

tached to the class Link and perform only those parts of the synchronization which can
be handled at this general level. The methods are redefined in the subclasses. Further-
more, all methods presented below assume that the values of state attributes are up to
date (i.e., a status check must have been run before performing the synchronization).

Figure 5 shows the story diagram for committing the creation of a new file system
object. The first story pattern checks the state of the link object and locates the root of
the repository via the workspace manager. In the second step, a new versioned object
is created. The third step creates the root version of this object, sets its name and its
owner, and connects the new version to the link object.

The story diagram of Figure 6 is invoked when a file system object is already under
version control and has been modified in the workspace. In the first step, the state of
the link object is checked, and both ends are retrieved. In the second step, a successor
version of the old target is created, and the link object is redirected to the new target.



]failure[]success[

toSource 

successor*
«create»

toTarget 
successor*

FileSystemObjectVersion:old«destroy» toTarget 

false==modified
true==outOfDate

this

FileSystemObject:fso

1: setOwner(new.getOwner())

2: rename(new.getName()) FileSystemObjectVersion:new new.getVersionNo()>versionNo

FileSystemObjectVersion:other

null

Link::update (): FileSystemObject

fso

Fig. 7. Story diagram for performing an update

Please note that creation of a new toTarget link implies the deletion of the old link as a
side effect.

The story pattern of Figure 7 handles change propagation from the repository into
the workspace. The link object must be both outOfDate and not modified; the latter
condition prevents that changes in the workspace are overwritten inadvertently. The link
object is redirected to refer to the most recent (transitive) successor of the old target.
This is ensured by the negative application condition (crossed object): There must be
no other successor with a higher version number. In the course of the update, the name
and the owner of the file system object are copied from the new target version.

These examples illustrate the style of modeling: All story diagrams manipulate only
the link objects and their embeddings directly. All changes in the repository and the
workspace are affected by method calls only. As a consequence, the consistency of
the repository and the workspace is maintained by the operations exported from the
respective packages (ProductSpace and Repository).

5 A Triple Graph Grammar?

This section discusses the application of the TGG approach to our case study. To this
end, we modeled some sample TGG rules in Fujaba. In the presentation below, we
describe several conceptual problems which we encountered.

5.1 Synchronous Rules

The first step of the TGG approach — defining a set of triple rules — is illustrated in
Figure 8. The figure displays three rules which handle the creation of a subdirectory2.
Each rule is applied to a complex link both ends of which are already present. All rules
perform the same extensions on the source graph and the correspondence graph: A
subdirectory is created if there is no file system object of the same name; furthermore,
a sublink is created and connected to the new subdirectory. The rules differ with respect

2 The creation of a file in a directory may be handled analogously.



]failure[]success[

«create»
has 

«create»

contains 

«create»
contains 

contains 

has 

«create»
toTarget 

«create»

contains 

«create»
toSource 

contains 
contains 

«create»

contains 

«create»

contains 

toTarget toSource 

VersionedFileSystemObjects:vfsos

«create»
TGGCompositeLink:ncl «create»

2:=nextVersionNo
name:=name

VersionedDirectory:nvd

«create»

1:=versionNo
name:=name

DirectoryVersion:ndv«create»

name:=name

Directory:nd

name==name

FileSystemObjectVersion:v

name==name

FileSystemObject:o

DirectoryVersion:dvthisDirectory:d VersionedDirectory:vd

TGGCompositeLink::syncCreateDirectoryAndInitialVersion (name: String): Boolean

true
false

]failure[

false

]success[

true

TGGCompositeLink::syncCreateDirectoryAndSuccessorVersion (name: String, pred: DirectoryVersion): Boolean

«create»revisionOf 

«create»

has 

has «create»

contains 

«create»
toTarget 

contains contains

name==name

FileSystemObjectVersion:v

name==name

FileSystemObject:o
«create»

contains

«create»
toSource 

«create»

contains 

toTarget toSource 

«create»

vd.nextVersionNo:=versionNo
name:=name

DirectoryVersion:ndv

«create»
TGGCompositeLink:ncl

«create»

name:=name

Directory:nd

nextVersionNo+1:=nextVersionNo

VersionedDirectory:vdDirectoryVersion:dvDirectory:d this

pred

]failure[]success[

contains 

name==name

FileSystemObjectVersion:v contai... 

contains 

«create»
toTarget 

«create»

contains 

«create»

contains 

«create»

contains 

toTarget toSource 

«create»
TGGCompositeLink:ncl

DirectoryVersion:dvthisDirectory:d

name==name

FileSystemObject:o

«create»

name:=name

Directory:nd
«create»

toSource 
name==name

vers

TGGCompositeLink::syncCreateDirectoryAndReuseVersion (name: String, vers: DirectoryVersion): Boolean

true false

Fig. 8. Synchronous rules for creating directories and directory versions



to the target graph. The rule set is designed in such a way that all structures which may
occur in the repository can be generated (version trees for the evolution history, acyclic
graphs for the composition hierarchy).

The style of modeling employed in the TGG is quite different from the style of
the TGTS (see Figures 5–7). The TGG consists of attributed graph productions which
are partially obtained by copying productions from the graph grammars for the source
graphs and the target graphs, respectively. This kind of reuse is called white-box reuse.
In contrast, in the TGTS source and target graph may be read, but they may be updated
only through method calls. This kind of reuse is called grey-box reuse.

The first rule creates a directory in the workspace along with a versioned object
and an initial version in the workspace. The attribute nextVersionNo is a counter which
stores the next available version number at the versioned object. The second rule creates
a successor version, which is assigned the next available version number, and incre-
ments the counter. Using only the first and the second rule, only composition trees may
be created in the repository. In the third rule, a directory is created in the workspace and
related to a reused version which is added to the version of the parent directory.

Unfortunately, the third rule (CreateDirectoryAndReuseVersion) does not operate
correctly. After its execution, the composition hierarchy rooted at the new directory in
the workspace is empty, but this does not necessarily apply to the reused version at
the other end of the link. If the composition hierarchy below the reused version is not
empty, the generation process will “get of out sync”. We will return to this problem in
the next subsection.

5.2 Directed Rules

While synchronization of repositories and workspaces involves bidirectional change
propagation and thus requires forward and backward rules, correspondence rules are
of little use: An analysis tool which discovers correspondences between repositories
and workspaces and extends the correspondence graph accordingly is not required in
our case study. The status check, which analyzes consistency between repository and
workspace, merely determines the status of already existing link objects. Thus, it be-
longs to the category of consistency checks to be discussed in the next subsection.
Please note that the lack of need for correspondence rules is not a serious problem: If
they are not needed, they are simply not generated.

Forward rules are obtained from synchronous triple rules by converting created el-
ements in the source graph into elements of the left-hand side. For the rules of Figure 8,
this means that the directory nd and its composition link have to be moved to the left-
hand side (i.e., they must already be present to apply the rule).

The operational behavior of the generated forward rules does not match the require-
ments of our case study. Since all rules shown in Figure 8 are identical with respect
to the source graph and the correspondence graph, the generated rules are in conflict:
A new subdirectory can be transformed by any of these rules, and applying one rule
invalidates the other choices. Since the rules have different effects, the generated TGTS
is non-deterministic, resulting in an integration tool which requires user interaction. In
contrast, the commands introduced in Section 3 operate in a deterministic way. For a



new file system object, the user may not deliberately choose either to create a new ver-
sioned object and its root version, or to create a successor version, or to reuse an already
existing version. Rather, only the first option is available for a new file system object.
A successor version is created when the file system object has already been linked to
a version in the repository and has been changed locally in the workspace. Finally, a
version is reused when a new version of the parent directory has been created, the child
object is already under version control and has not been changed in the workspace.

Similar problems occur in the generation of backward rules: All backward rules
would create a file system object in the workspace; yet, they differ with respect to their
contexts in the target graph. Again, conflicts may occur (between the rule for reusing
a version and the other rules), but in this case the choice of the backward rule to be
applied does not make any difference. In fact, the generated backward rules should be
consolidated into just one rule which handles the insertion of a file system object into a
workspace; the differing contexts are immaterial.

To conclude this subsection, let us return to the final remark of the previous subsec-
tion: The synchronous rule for reusing a version does not operate correctly (see above).
As already mentioned, the composition hierarchy underneath the reused version is not
mirrored in the workspace after having applied this rule. This problem could be fixed
by calling a method which would populate the workspace with a copy of the hierarchy
stored underneath the reused directory version. Fujaba does allow for method calls in
story patterns (as has been demonstrated in Section 4). However, adding a method call
would break the TGG approach (the rule would no longer be a single graph production;
rather, it would correspond to a programed graph transformation).

This indicates a fundamental problem which we encountered in our case study. The
TGG approach assumes that forward and backward transformations operate symmet-
rically: From a single synchronous rule, both a forward rule and a backward rule are
derived. Using forward rules only, the target can be generated from the source; vice
versa for backward rules. However, forward and backward transformations behave dif-
ferently in our case study. For example, when the content of a file is modified in the
workspace, a new version is created in the repository. In contrast, when the new ver-
sion is propagated into another workspace by running an update command, the file in
the workspace is overridden. Furthermore, composition hierarchies are treated differ-
ently in the workspace (tree) and in the repository (acyclic graph). As a consequence,
an acyclic graph is unfolded into a tree when it is exported into a workspace, and a tree
in the workspace is folded into an acyclic graph when changes are committed into the
repository.

5.3 Consistency Checks and Repair Actions

One of the most important goals of the TGG approach is to relieve the modeler from
the burden of specifying modifications and deletions. Since the TGG rules define only
graph extensions, this abstraction works only when all operations concerning modi-
fications and deletions can be derived automatically. To this end, generic support for
consistency checks and repair actions is required (see Figure 1). Unfortunately, to the
best of our knowledge providing such checks and repair actions in a generic way still
constitutes an open research problem.



In our case study, consistency checks are performed in the checkStatus command.
Some parts of the status checks could be covered by a generic approach, e.g., differ-
ence between values of attributes such as file names and file contents. However, there
are some parts which are highly domain-specific. For example, changes in some file
system object need to be propagated bottom-up to the root such that new versions in
the repository may be created top-down in the course of a commit. Furthermore, the
status check has to recognize updates in the repository that have to be propagated into
the workspace. This is a domain-specific requirement, and there is no triple rule from
which we could derive such a check. Repair actions are performed in the commands for
synchronization, namely update and commit. Again, these repair actions are domain-
specific. For example, when a file in the workspace is deleted, its corresponding version
in the repository is not deleted, as well. Rather, a new version of the parent directory is
created which does not contain this file version.

6 Related Work

The overall goal of the MOD2-SCM project is to provide a model-driven product line
that allows to construct a wide range of customized SCM systems with acceptable ef-
fort. These goals are related to a few research projects which were dedicated to the
development of a uniform version model. Both ICE [13] and UVM [14] proposed rule-
based generalizations of conditional compilation as a low-level, common base mecha-
nism. To date, only a few approaches have been dedicated to model-driven development
of versioning systems [15–17]. However, all of these approaches are confined to struc-
tural models inasmuch as the behavior is hard-coded into the respective system.

Triple graph grammars were introduced as early as 1994 [5]. The QVT standard
[1], which was developed much later, is based on similar concepts. In the context of
this paper, it is interesting to note that QVT defines both a high-level declarative and a
more low-level operational language. Several projects were built upon the concepts of
TGGs, but actually developed a hand-crafted TGTS [18, 19]. Frameworks supporting
code generation for TGGs have emerged only recently [20–22]. Surveys of the current
state-of-the-art in TGGs are given in [6, 23]. In [24], research challenges and open prob-
lems are discussed. Four design principles for TGGs are postulated: completeness, con-
sistency, efficiency, and expressiveness. The case study presented in this paper primarily
challenges the expressiveness of TGGs, particularly because the required forward and
backward transformations do not operate symmetrically.

7 Conclusion

We presented a case study of bidirectional incremental change propagation and consis-
tency maintenance. The case study was performed in the MOD2-SCM project, which
aims at developing a model-driven product line for SCM. In this context, it is impor-
tant to apply model-driven engineering in a systematic way. The model-driven product
line itself may be viewed as a large case study which hopefully contributes to gathering
experiences and improving the current state of model-driven engineering.



a) Alternative processes b) Covered problem domains

4 : Hand-craft
TGTS

1 : Design
TGG

2 : Generate
TGTS

3 : Adapt
TGTS

TGG TGTS

SCM case study

Fig. 9. Triple graph grammars or triple graph transformation systems?

For the synchronization between repositories and workspaces, we discussed the al-
ternatives of hand-crafting a TGTS or generating a TGG (Figure 9a). From a pragmatic
point of view, we look for a shortest path from the problem to the solution. Following
the TGG process sketched in Figure 1, the costs of step 2 would be zero (automatic step)
and step 3 would be obsolete. Unfortunately, generating a TGTS from a TGG did not
work for us, and it turned out that the shortest path leads across step 1 (hand-crafting
a TGTS). In our case study, the TGG is declarative but not useful, while the TGTS is
useful but less declarative.

Hand-crafting a TGTS is more general, but also more low-level than the TGG pro-
cess of Figure 1. The case study belongs to the range of problems which can be han-
dled with a hand-crafted TGTS but is not suited for applying the TGG approach (Fig-
ure 9b). A fundamental assumption underlying TGGs is that transformations are per-
formed symmetrically in both directions. This assumption does not hold in our case
study. The region TGTS \ TGG is not empty. Improvements from theory may reduce
this region further, but more practical case studies are also needed to explore the poten-
tials and limitations of the TGG approach.

References

1. Object Management Group Needham, Massachusetts: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Final adopted specification ptc/07-07-07 edn.
(July 2007)

2. Rozenberg, G., ed.: Handbook on Graph Grammars and Computing by Graph Transforma-
tion: Foundations. Volume 1. World Scientific, Singapore (1997)

3. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph Grammars
and Computing by Graph Transformation: Applications, Languages, and Tools. Volume 2.
World Scientific, Singapore (1999)

4. Rozenberg, G., Ehrig, H., et al., eds.: Handbook on Graph Grammars and Computing by
Graph Transformation 3 (Concurrency). Volume 3. World Scientific, Singapore (1999)

5. Schürr, A.: Specification of graph translators with triple graph grammars. In: Proceedings
of the 20th International Workshop on Graph-Theoretic Concepts in Computer Science (WG
1994). Volume 903 of LNCS., Springer (1995) 151–163

6. Königs, A., Schürr, A.: Tool Integration with Triple Graph Grammars - A Survey. In Heckel,
R., ed.: Proceedings of the SegraVis School on Foundations of Visual Modelling Techniques.
Volume 148 of Electronic Notes in Theoretical Computer Science., Amsterdam, Elsevier
Science (2006) 113–150



7. Buchmann, T., Dotor, A., Westfechtel, B.: MOD2-SCM: Experiences with co-evolving
models when designing a modular SCM system. In: Proceedings of the 1st International
Workshop on Model Co-Evolution and Consistency Management, Toulouse, France (Octo-
ber 2008)

8. Zündorf, A.: Rigorous object oriented software development. Technical report, University
of Paderborn, Germany (2001)

9. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version Control with Subversion.
O’Reilly & Associates, Sebastopol, California (2004)

10. Vesperman, J.: Essential CVS. O’Reilly & Associates, Sebastopol, California (2006)
11. Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM

Computing Surveys 30(2) (June 1998) 232–282
12. Object Management Group Needham, Massachusetts: OMG Unified Modeling Language

(OMG UML), Infrastructure, V 2.1.2. formal/2007-11-04 edn. (November 2007)
13. Zeller, A., Snelting, G.: Unified versioning through feature logic. ACM Transactions on

Software Engineering and Methodology 6(4) (October 1997) 397–440
14. Westfechtel, B., Munch, B.P., Conradi, R.: A layered architecture for uniform version man-

agement. IEEE Transactions on Software Engineering 27(12) (December 2001) 1111–1133
15. Whitehead, E.J., Gordon, D.: Uniform comparison of configuration management data mod-

els. In Westfechtel, B., van der Hoek, A., eds.: Software Configuration Management: ICSE
Workshops SCM 2001 and SCM 2003. Volume 2649 of LNCS., Springer (2003) 70–85

16. Whitehead, E.J., Ge, G., Pan, K.: Automatic generation of hypertext system repositories:
a model driven approach. In: 15th ACM Conference on Hypertext and Hypermedia, Santa
Cruz, CA, ACM Press (August 2004) 205–214

17. Kovŝe, J.: Model-Driven Development of Versioning Systems. PhD thesis, University of
Kaiserslautern, Kaiserslautern, Germany (August 2005)

18. Jahnke, J., Zündorf, A.: Applying graph transformations to database re-engineering. [2]
267–286

19. Cremer, K., Marburger, A., Westfechtel, B.: Graph-based tools for re-engineering. Journal of
Software Maintenance and Evolution: Research and Practice 14(4) (August 2002) 257–292

20. Becker, S.M., Herold, S., Lohmann, S., Westfechtel, B.: A graph-based algorithm for con-
sistency maintenance in incremental and interactive integration tools. Journal of Software
and Systems Modeling 4(2) (2005) 123–140

21. Giese, H., Wagner, R.: Incremental model synchronization with triple graph grammars. In
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: 9th International Conference on Model
Driven Engineering Languages and Systems (MoDELS). Volume 4199 of LNCS., Springer
(October 2006) 543–557

22. Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.: Metamodel-based tool inte-
gration with MOFLON. In: 30th International Conference on Software Engineering, New
York, ACM Press (May 2008) 807–810

23. Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, implementations, and
application scenarios. Technical Report tr-ri-07-284, University of Paderborn, Paderborn,
Germany (June 2007)

24. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars — Research Challenges, New
Contributions, Open Problems. In: 4th International Conference on Graph Transformation.
LNCS, Heidelberg, Springer-Verlag (September 2008) Accepted for publication.


