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Abstract
The purpose of the project was to attempt an interpretation of the nature of dig-

ital quantum information from a geometrical perspective. This lead to designing an
algorithm for building the equivalents of Platonic solids in a 2n dimensional Hilbert
space, structures called uniform Hilbertian polytopes. The long-term goal was to
better understand quantum entanglement, and possibly find a measure for its degree
in a given state.

1 Introduction

The motivation behind the need to find new approaches for the study of quantum information

has a lot to do with the nature of the Hilbert space Hn for n qubits. This is a complex,

2n-dimensional vector space; any state in the space can be written as:

|Ψ〉 =
2n−1X
i=0

αi |i〉 (1)

where the state |i〉 can be expressed:

|i〉 =
b0O

bj=bn−1

bj = bn−1 ⊗ bn−2 ⊗ · · · ⊗ b1 ⊗ b0

and bn−1bn−2 · · · b1b0 represents the binary notation for the value i (i = b0 · 20 + b1 · 21 + · · ·+
bn−1 · 2n−1). In equation (1), the complex coefficients αi have to satisfy the normalization
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condition, which imposes that:
n−1X
i=0

|αi|2 = 1

In addition to this, the arbitrariness of the overall phase removes yet another constraint from

the system. Hence, an n-qubit state can be parameterized by exactly 22n−2 real coefficients

- still a very large number!

The continuous structure of the space, combined with the necessity of achieving reliable

computation, make it very hard to design and implement circuits operating on qubits. When

one thinks of its classical counterpart - the configuration space for n bits - one realizes that

the discrete nature is an essential ingredient in being able to not only reliably distinguish,

but also manipulate the states of the system. i

Therefore, when trying to design, implement, test and optimize a simple quantum com-

puting circuit, it would be useful to first limit ourselves to a number of discrete states, which

we can characterize and manipulate in an easier fashion. This simplification does seem to

come at a high price, because we lose an element that seemed necessary for the long-sought

exponential speedup in quantum algorithms: the continuous nature of Hn! But the situation

is not all that disastrous! Discrete sets of states have already provided marvellous results in

the field of quantum error correction codes [Got97] and it seems that limiting the number

of states and the number of operations performable on those states does not lead to losing

generality.

The solution for this type of geometric approach was initially proposed by Michel Devoret

and Chad Rigetti [DevRig03] - it involves searching for sets of states (dubbed Hilbertian

polytopes) that form structures equivalent to the Platonic solids. The purpose of the current

project was to find a way to implement the search algorithm, which would allow a complete

automation of the process and would provide the first step in designing a quantum compiler

for the language of generalized π/2 rotations.

2 Theoretical framework

For the purposes of both consistency and coherence, I shall first present the theoretical

framework developed in [DevRig03], and then introduce the algorithms that achieve the

desired behavior.

iIf our classical bit had several stable states - let alone a continuum of them! - then we would not only
have to change all the circuits implementing it or operations on it, but we would be forced to rethink the
very algebra that we use in analyzing and designing these circuits!
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2.1 The 1-qubit scenario

It is very interesting to examine the case of 1-qubit, because we have a clear understanding

of the attached geometric representation of the Hilbert space H1. The states to consider are

sketched in Figure 1; they represent the 6 intersections of the Bloch sphere with the Ox,

Oy and Oz axes. Let the set of these states be denoted byii D1

Z

Y

X

Figure 1: Important states on the Bloch sphere

|+z〉 = |0〉
|−z〉 = |1〉
|+x〉 =

|0〉+ |1〉√
2

|−x〉 =
|0〉 − |1〉√

2

|+y〉 =
|0〉+ i |1〉√

2

|−y〉 =
|0〉 − i |1〉√

2

It can be noticed that these states construct an octahedron inscribed in the Bloch sphere,

iiD for Discrete
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denoted h1 and representing the Uniform Hilbertian Polytope for the 1-qubit Hilbert space.

Figure 2: The Uniform Hilbertian Polytope of order 1 - octahedron

What is interesting is that starting with any of these states, all the others are accessible

via a sequence of standard NMR pulses performing π/2 rotations. Therefore, in the spirit of

stabilizer theory, it has been suggested [DevRig03] that instead of studying the set of states,

it would be more instructive to focus on the transformations that leave h1 invariant.

The beautiful part about this theory is that the geometrical description provides a very

clear intuition of what these transformations might be. Instead of thinking about the qubits

and their states, we can simply discuss the geometrical features of the octahedron. Therefore,

the transformations that leave the set D1 invariant are the same transformations that leave

the octahedron invariant: any sequence of π/2 rotations around Ox, Oy or Oz.

2.2 Identification and description of the uniform Hilbertian poly-

tope Hn

Similar to the 1-qubit scenario, the discrete set Dn is formed by the eigenstates of the gen-

eralized Pauli matrices. These matrices are members of the Pauli group Gn, which contains

all the tensor products of n Pauli matrices with multiplicative factors ±1,±i.

Gn =

(
n−1O
k=0

Σk, Σk ∈ {I, X, Y, Z} ⊗ {±1,±i}
)
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I =

�
1 0

0 1

�
X =

�
0 1

1 0

�
Y =

�
0 −i

i 0

�
Z =

�
1 0

0 −1

�
However, since for n > 1, the Pauli matrices have degenerate eigenvalues, additional

explanations are required. The trick that has been employed in [DevRig03] was to lift the

degeneracy by choosing the states as the common eigenvectors of sets of mutually commuting

generalized Pauli matrices.iii

Let Sn be the set of 4n linearly independent generalized Pauli matrices on n qubits Σj

satisfying the following properties:

Σ†
j = Σj

Σ2
j = I

Tr(Σ†
jΣk) = 2nδjk

It can be seen that Sn ⊂ Gn. iv In this set, we can distinguish all the maximal subsets

sa
n of mutually commuting elements from Sn.

hn, as described in [DevRig03], has the following properties:

1. It contains all the states |bn−1bn−2 . . . b1b0〉 corresponding to classical bit configurations

2. Each state (”vertex”) in hn is geometrically equivalent to all the others

3. There is the concept of the distance between the states, defined as djk = 2·arccos 〈Ψj|Ψk〉

4. It is the largest set satisfying 1-3

Therefore, in order to meet all the above criteria, [DevRig03] concludes that we have to

adopt the following construction rule:

Each vertex of hn is a common eigenvector of a maximal subset sa
n ⊂ Sn of 2n mutually-

commuting generalized Pauli matrices on n qubits. That is, if Σj is a generalized Pauli

matrix on n qubits belonging to the subset sa
n, |Ψj〉 is an n-qubit state vector, and λj is an

eigenvalue of Σj belonging to the vector |Ψj〉,

|Ψj〉 ∈ hn ⇐⇒ Σj |Ψj〉 = λj |Ψj〉 , ∀Σj ∈ sa
n

Some of the conclusions that result from this are [DevRig03]:

iiiThe theory is very similar to the stabilizer theory. There is, however, a slight difference between the sets
(of matrices) that we are considering and the stabilizers. The latter are proper groups (i.e. closed under
matrix multiplication), whereas this restriction is not imposed on the former.

ivIn addition, Gn allows each n-fold tensor product to contain the multiplicative factors ±1,±i, which are
suppressed here.
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1. For each sa
n with 2n− 1 elements different from the identity, 2n different discrete states

separated by a distance of π can be found. Each state corresponds to a unique pattern

of λj = ±1.

2. Any two states of hn are equivalent - i.e. there exists a transformation that can associate

the 2n − 1 eigenvectors of 2 neighboring groups sa
n and sb

n.

3. The set Sn contains exactly s =
Qn−1

k=0 (2n−k + 1) maximal mutually commuting subsets

sa
n ⊂ Sn. Since each subset contributes exactly 2n (distinct) eigenvectors to hn, then

the uniform Hilbertian polytope on n qubits has exactly

Vn = 2n ·
n−1Y
k=0

(2n−k + 1)

vertices (states).

2.3 The 1-qubit case

By reanalyzing the 1-qubit scenario, we get a very good intuition of what these results mean.

The standard 2× 2 Pauli matrices are:

σw = σ0 = I =

�
1 0

0 1

�
σx = σ2 = X =

�
0 1

1 0

�
σy = σ3 = Y =

�
0 −i

i 0

�
σz = σ1 = Z =

�
1 0

0 −1

�
The commutation relations between these matrices are:

σxσy = −σyσx = iσz

σyσz = −σzσy = iσx

σzσx = −σxσz = iσy

σkσw = σk,∀k ∈ {w, x, y, z}
σ2

x = σ2
y = σ2

z = σw

The maximal sets sa
n of mutually commuting matrices are represented in Table 1. It can

be seen that each of these sets contributes exactly 2 states to h1. To obtain these states,

we need to simultaneously diagonalize all the matrices in each subset sa
n, one subset at a

time. However, since in this simple example, each sa
n only contains 2 matrices, one of which

is the identity, the process of simultaneous diagonalization becomes banal: simply take the

eigenvectors of σx,σy,and σz!

6



Set Matrices States that the set is contributing
s1
1 {σw, σz} {|+z〉 = |0〉 , |−z〉 = |1〉}

s2
1 {σw, σx} {|+x〉 = |0〉+|1〉√

2
, |−x〉 = |0〉−|1〉√

2
}

s3
1 {σw, σy} {|+y〉 = |0〉+i|1〉√

2
, |−y〉 = |0〉−i|1〉√

2
}

Table 1: Commuting sets and the vertices that they contribute to h1

In [DevRig03], it had been suggested that a more general method would be to diagonalize

the ’seeds’ of h1. These seeds are:

Σ1
01 = 1√

2
(σ0 + iσ1)

Σ2
02 = 1√

2
(σ0 + iσ2)

Σ3
03 = 1√

2
(σ0 + iσ3)

2.4 The n-qubit case

The natural question that emerges is how to extend this simple algorithm for an arbitrary

number of qubits - n. The same source [DevRig03] suggests that for h2, we can simply form

a mixed linear combination of the first two non-identity matrices in each subset sa
2.

Σa
kl =

1√
2
(Σk + iΣl); {Σk, Σl} ⊂ sa

2; σ⊗2
w /∈ {Σk, Σl}

Upon diagonalizing these combinations, we obtain all the vertices of the polytope h2. How-

ever, the problem is that the method is not immediately generalizable to n qubits. Simply

forming linear combinations of the first 2 non-identity matrices would not yield enough infor-

mation to generate all the eigenvectors (some of the eigenvalues are going to be degenerate).

The solution would be to reconsider the type of linear combination that we are using.

The first thing that comes to mind is to take a linear combination of all the matrices in the

set, with coefficients in a geometric progression.v

sa
n = {Σ0, Σ1, ..., Σ2n−1}

Σall =
2n−1X
i=0

ci · Σi, c = ct.

The solution does work - the degeneracy of the eigenvalues is lifted, and when we diagonalize

Σall, we obtain all the eigenvectors that contribute to the polytope hn.

However, this construction contains a lot of redundant information. Intuitively, n non-

identity matrices properly chosen from the set sa
n should be enough: a linear combination of

vThe reason for this geometric progression is to maintain a certain distance between the matrices. In-
cluding the identity among them only shifts the spectrum with a constant amount, without changing the
eigenvectors, which are what we really care about.

7



these would represent the proper seed for the hn. The problem is that not any n matrices

work!

The answer comes - yet again - from the theory of stabilizers. If we allow our set to

accommodate ±1,±i factors, we obtain the corresponding Pauli group.

ga
n = sa

n ⊗ {±1,±i}

We can then apply the theory of stabilizers to this group: its entire structure is described by

its generators. Therefore, if we choose a linear combination of generators for the set sa
n, then

this would contain sufficient information and would also be minimal (i.e. minimum number

of terms).

This result gives us a very simple rule for forming the linear combination, once we have

the maximally commuting subset sa
n: simply choose n non-identity matrices that do not form

a sub-sub set in sa
n (that is to say, if we allowed ±1,±i, the resulting sub-subset formed by

the n matrices would not be closed under matrix multiplication).

3 Implementation

With this theoretical framework, we have set out to implement the algorithms that would

be able to automatize the process of finding the vertices of hn. Only a brief overview of the

algorithm is included, with some considerations of performance; the code will be pasted in

the end, for perusal.

The first task was to generate the maximally commuting subsets sa
n for a given n (the

number of qubits). Since we need all the possible solutions, the only algorithm that can be

employed is a version of optimized backtracking, building one solution from the previous one.

This was implemented in C language, in order to achieve a reasonable speed of execution.vi

Afterwards, for each maximally commuting subset sa
b we formed a linear combination

of matrices, according to the formula above (including only the generators as terms). The

resulting matrix contains all the information needed from the respective set: upon diagonal-

ization, it yields all 2n vertices that sa
n is contributing to the Hilbertian polytope.

For testing purposes, these last two stages were implemented in Mathematica, both due to

its flexibility with tensor product operations, but also due to its ability to extract eigenvalues

and eigenvectors in a symbolic form. Implementation in C would be much faster, but several

problems would first have to be overcome:

• The lack of the imaginary symbol i

viTranslating the code into assembler would surely speed up the execution even further, but the task is
cumbersome, due to the dynamical allocation of the memory for all the matrices, and the multiple procedure
calls.
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• The lack of a diagonalization operation

• The lack of symbolic evaluation of expressions

Simply building data-structures for complex numbers and operating on them would surely

work, but the amount of memory allocated to each subset would then be huge, and the

algorithm will become unstable for a very small n.

3.1 Performance of the algorithms

The backtracking-based implementation of the search for commuting subsets has proven to

be quite costly. Table 2 represents the average execution times obtained when running our

algorithm for different numbers of qubits.vii The exponential characteristic can be easily

noticed. Furthermore, the demands on the memory are colossal. A test run for 15 qubits

has completely blown the system (segmentation fault reported while allocating memory for

the matrices). It is interesting that considering even such a small number of discrete states

can put such tremendous computational pressure!

Average runtime Number of qubits
69.7 µs 2
53.61 s 3
1069 s 4
1.5 days 5

Table 2: Average execution times for different configurations

Several improvements that could be brought would be to ease the requirements of the

backtracking algorithm, asking it only to determine the matrices that are needed for our

linear combination: the n generators, as opposed to the whole subset sa
n.

One more thing that should be said about the C implementation: one of the key opera-

tions in the algorithm was to decide whether 2 generalized Pauli matrices commute. Each

was specified as an array of coefficients from the set {0, 1, 2, 3}viii. For instance:

Σ1 = [102103] when Σ1 = Z ⊗ I ⊗X ⊗ Z ⊗ I ⊗ Y

Σ2 = [013131] when Σ2 = I ⊗ Z ⊗ Y ⊗ Z ⊗ Y ⊗ Z

In deciding whether they commute, the algorithm simply computed the coefficient:

g =
n−1Y
i=0

gi, gi =

8<: +1, [Σ1[i], Σ2[i]] = 0

−1, {Σ1[i], Σ2[i]} = 0

viiThe tests have been run on the rattlesnake, scorpion, viper, hare and leopard machines in the ”ZOO”-3rd
floor AKW. Each is a dual-processor, Pentium IV machine, with 1GB of RAM.

viiiAccording to the Gottesman notation, 0 was used for I, 1 for Z, 2 for X and 3 for Y .

9



A result g = 1 would mean that Σ1 and Σ2 commute. This solution was chosen for reasons

of simplicity, as well as to ease memory and computational requirements.

A much more elegant solution would have been to represent the two matrices using the

check matrix [ChuNie00]. In this language, our two matrices would become:

Σ1 =⇒ r1 = [001001| 100101]

Σ2 =⇒ r2 = [001010| 011111]

Then, the test for commutation simply becomes

r1 · Λ · rT
2 = 0, Λ =

�
0 I

I 0

�
Although mathematically more interesting and convenient, this would have been more ex-

pensive to implement in terms of memory (all generalized Pauli matrices would have required

arrays of size 2n), and the operations would have been of roughly the same complexity.

However, one big advantage of the check matrix is that it only needs bits (i.e. 0 and 1)

- so we could use binary number representations, instead of arrays, to store the n needed

generators. Furthermore, the operation of matrix multiplication (with the exception of

±1,±i factors) becomes extremely simple in the check-matrix notation: an addition of the

2 check-matrix representations modulo 2!

With these considerations, the check-matrix representation might be much easier to im-

plement on a vector machine, and - with a proper chip coding the transition operations -

might be the key feature in building a quantum compiler.

4 Conclusion

A quantum computer that operates only on states of the uniform Hilbertian polytope is not

universal. In fact, even if we allow π/4 rotationsix, we still do not harness all the true of

quantum information processing. According to the Gottesman-Knill theorem, any quantum

computer using only the H, S,C−NOT and T gates, with preparations in the computational

basis and measurements of observables in the Pauli group, can be simulated on a classical

computer!x

The correct way to interpret this result is that digital quantum computation can be

simulated on a classical machine. Genuine quantum algorithms, which achieve the long-

sought exponential speedup (like Shor’s factoring), seem to require the continuous structure

ixAllowing π/4 rotations means achieving the set of Hadamard, phase, C-NOT and π/8 gates, which is
enough to simulate any unitary transformation to an arbitrary precision.

xThe way to achieve this is simply to track the generators of the stabilizer, as the different operations are
performed in the computation.
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of the Hilbert space Hn.

However, even with this in mind, digital quantum computing on the Hilbertian polytope

still has a lot to offer! The entire plethora of error-correction is achievable by operating

only on this discrete subset of states. Furthermore, since much of the processing power of

quantum computation seems to lie hidden in the phenomenon of entanglement, we do not

lose much with a digital framework: the polytope still contains entangled states, and - in

addition - provides a better chance to measure and describe the degree of entanglement.

Ultimately, beyond the theoretical considerations, a digital framework for quantum com-

puting simplifies the existence of the experimentalist: from designing and implementing

gates, all the way to testing for errors and adding control.
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6 Code

/* PROGRAM THAT GENERATES THE MAXIMAL MUTUALLY COMMUTING */

/* SUBSETS OF GENERALIZED PAULI MATRICES ON N QUBITS */

/* Dan Andrei Iancu ; Class of 2004 */

/* --Senior Project-- */

/* Adviser: Professor Michel Devoret */

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#include<sys/time.h>

/* GOTTESMAN’S BINARY DIGIT NOTATION */

/* sigmaW = (identity) =sigma0 */

/* sigmaZ = sigma1 */

/* sigmaX = sigma2 */

/* sigmaY = sigma3 */
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/* A generalized Pauli matrix on N qubits = tensor product */

/* of N Pauli matrices; the notation for a generalized Pauli */

/* matrix is: */

/* Sigma_number, where "number" is a concatenation of N strings,*/

/* each representing one Pauli matrix - 2 bits for each */

void generateMatrices(int N, long NumMatrices, int **Space);

/* function that generates all the generalized Sigma Pauli matrices */

/* for N qubits and stores the result in the pre-allocated "Space" */

/* "NumMatrices" is the number of such matrices (already computed as 4^N) */

long generateGottesmanString(int N, int *SigmaMatrix);

/* generates the Gottesman string code corresponding to the generalized */

/* N-qubit Pauli polymatrix specified by the array SigmMatrix */

void generateMaximalSets(int N, long NumMatrices, int **PoliMatrices);

/* generates all the maximal, mutually commuting sets of polymatrices */

void printTensorProductForm(int solutionSize, int *solution, int

N, int NumMatrices, int **Polymatrices);

/* we have a solution of size ’solutionSize’, stored in ’solution’ */

/* using the values in solution, we print the tensor product corresponding */

/* to each value based on the matrices stored in ’PolyMatrices’ */

void printGottForm(int solutionSize, int *solution);

/* prints the solution by writing the Gottesman value corresponding to each */

/* matrix */

void printLetterForm(int solutionSize, int *solution, int N, int

NumMatrices, int **Polymatrices);

/* just like the ’printTensorProductForm’, just that it prints letters, not */

numbers */

void printNeededCommSubgroups(int solutionSize, int *solution, int

N, int NumMatrices, int **Polymatrices);

/* this prints only as many matrices as are needed to compute the combination */

/* that, when diagonalized, yields all the eigenvectors that characterize our */

/* particular commuting set; simplest way to achieve this is to pick 2 poly- */
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/* matrices at random, compute their product and then include another N-2 */

/* polymatrices, making sure that we do not include the product of the first */

/* two. All matrices are printed in tensor product form -- just as the */

/* procedure printTensorProductForm() does */

void init(long index, int *Stack);

/* initializes the position "index" in the stack "Stack" with a value */

int validate(long index, int *stack, int N, int **PoliMatrices);

/* validate the new element inserted at position "index" in the "stack" */

/* "N" = number of qubits; "PoliMatrices" = matrix w/ the Pauli Polimatrices */

void dumpMatrices(int N, long NumMatrices, int **PoliMatrices);

/* print all the Pauli Polimatrices in the array, with the associated */

/* Gottesman value */

int main(int argc, char **argv) {

int n;

int **PauliMatrices; /* the matrix containing the generalized Pauli */

/* matrices, one per row, given as numbers */

/* from 0 to 3, using Gottesman’s convention */

int i;

long noM; /* the number of generalized Sigma matrices */

if (argc!=2) {

fprintf(stderr,"Error in number of input arguments.\nPlease retry...\n");

exit(1);

}

sscanf(argv[1],"%d",&n); /* read the number of qubits */

/* the matrix of Pauli matrices contains 4^N matrices */

noM=(long)pow(4,n);

PauliMatrices=(int**)malloc(noM*sizeof(int*));

for(i=0;i<noM;i++)

PauliMatrices[i]=(int*)malloc((n+1)*sizeof(int));

/* generate all the 4^N matrices using an iterative algorithm */

generateMatrices(n,noM,PauliMatrices);
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/* generate all the maximal mutually commuting sets */

generateMaximalSets(n,noM,PauliMatrices);

return 0;

}

void generateMatrices(int n, long noM, int **matrix) {

/* the first position in the each row of the **matrix will be the */

/* Gottesman number corresp. to the respective matrix - this makes */

/* comparing the matrices a lot simpler! */

int *index; /* array with the indices corresponding */

/* to each Pauli matrix in the tensor product */

int i,j,k,c,aux;

index=(int*)malloc(n*sizeof(int));

for(i=0;i<=n;i++)

index[i]=0;

/* simulate succesive additions of 1 in the least significant position */

/* and adjust the carry at each step; stop when carry is 0 or running */

/* index=-1 */

c=0;

for(k=0;c==0;) {

/* storing the solution */

/* as mentioned, first position is the Gottesman value */

matrix[k][0]=generateGottesmanString(n,index);

for(j=0;j<n;j++)

matrix[k][j+1]=index[j];

k++;

/* generating new solution */

c=1;

for(j=n-1;(j>=0)&&(c!=0);j--) {

aux=index[j]+c;

index[j]=aux%4;

c=aux/4;

}
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}

}

long generateGottesmanString(int n, int *sigma) {

long value; /* value of the code */

long powerof2; /* running power of 2 */

int i;

for(i=n-1,value=0,powerof2=1;i>=0;i--) {

value=value+(sigma[i]%2)*powerof2+(sigma[i]/2)*powerof2*2;

powerof2*=4;

}

return value;

}

void printTensorProductForm(int k, int *stack, int n, int noM, int

**matrices) {

/* solution is an array with numbers, each denoting polymatrices */

/* each number is converted into a tensor product of ’n’ Sigma */

/* Pauli matrices, based on the Gottesman binary representation */

/* ’k’ - number of polymatrices contained in the stack */

/* ’stack’ - Gottesman numbers corresponding to each matrix */

/* ’n’ - number of qubits */

/* ’noM’ - total number of matrices (all contained in ’matrices’) */

/* ’matrices’ - containes all the generalized polymatrices */

int i,j;

for(i=0;i<k;i++) { /* for each polymatrix in the solution */

/* ’j’ goes across all the pauli matrices that give the product */

/* printf("("); */

for(j=1;j<=n;j++)

printf("%d ",matrices[stack[i]][j]);

/* printf(") "); */

}

printf("\n");

}

void printGottForm(int k, int *stack) {
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/* prints the array of numbers corresponding to a subgroup */

/* i.e. does NOT convert to tensor product form */

int i;

for(i=0;i<k;i++)

printf("%d ",stack[i]);

printf("\n");

}

void printLetterForm(int k, int *stack, int n, int noM, int

**matrices) {

int i,j;

for(i=0;i<k;i++) { /* for each polymatrix in the solution */

/* ’j’ goes across all the pauli matrices that give the product */

for(j=1;j<=n;j++)

switch(matrices[stack[i]][j]) {

case 0: printf("w "); break;

case 1: printf("z "); break;

case 2: printf("x "); break;

case 3: printf("y "); break;

}

printf(", ");

}

printf("\n");

}

void printNeededCommSubgroups(int k, int *stack, int n, int noM,

int **matrices) {

int *productOfFirstTwo; /* the product of the first two polymatrices */

int i,j,sum,np;

/* some simple rules to compute product : (might change later) */

/* if m1(i)=m2(i) -> (m1*m2)(i)=0 */

/* else if m1(i)+m2(i)<=3 -> (m1*m2)(i)= m1(i)+m2(i) */

/* else (m1*m2)(i)=6-m1(i)-m2(i) */

productOfFirstTwo=(int*)malloc(n*sizeof(int));
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/* this computes the product of the first two NON- */

for(i=1;i<=n;i++) /* IDENTITY Poly-matrices */

if(matrices[stack[1]][i]==matrices[stack[2]][i])

productOfFirstTwo[i-1]=0;

else {

sum=matrices[stack[1]][i]+matrices[stack[2]][i];

if(sum<=3)

productOfFirstTwo[i-1]=sum;

else

productOfFirstTwo[i-1]=6-sum;

}

/* compute the Gottesman string associated with the */

/* polymatrix ’productOfFirstTwo’ & store in ’sum’ */

sum=generateGottesmanString(n,productOfFirstTwo);

/* counter ’np’ keeps track of how many matrices we */

/* have already printed, so that we do not cross n */

for(i=1,np=0;(i<k)&&(np<n);i++)

if(matrices[stack[i]][0]!=sum) { /* avoid the product of first 2*/

np++;

for(j=1;j<=n;j++)

printf("%d ",matrices[stack[i]][j]);

}

printf("\n");

}

void generateMaximalSets(int n, long noM, int **matrices) {

/* Each maximally commuting subset has 2^N polymatrices */

/* Currently using a backtracking algorithm, because we */

/* have to find all the solutions */

/* the index 0 will be excluded from all solutions; hence, a */

/* solution is reached when 2^N-1 non-identity matrices are */

/* found. To this, we add the identity matrix. */

/* st = stack that contains indices corresponding to Pauli */
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/* generalized matrices; each index specifies a row in the */

/* matrix "**matrices" */

/* k = index in the stack; when a solution is generated, k will */

/* be equal to 2^N-2, and all 2^N-1 matrices in "st" commute */

/* solSize = 2^N-1 (computed only once) */

long solSize,k,numSol; /* solSize = 2^N (size of the solution) */

int *st; /* the stack in which we store the solution */

int ok; /* numSol = the number of total solutions */

solSize=(long)pow(2,n);

st=(int*)malloc((solSize)*sizeof(int));

numSol=0;

st[0]=0;

k=1;

st[1]=0;

printf("%d\n",n); /* print the number of qubits on the first line */

while(k>=1) {

ok=0;

while((st[k]<noM-1)&&(!ok)) {

st[k]++; /* try value one unit larger */

ok=validate(k,st,n,matrices); /* validate value i */

}

if(!ok) {

k--;

} else if (k==solSize-1) {

/* we have a solution */

/* which we print in tensor product form */

/* printLetterForm(k+1,st,n,noM,matrices); */

/* printGottForm(k+1,st); */

printNeededCommSubgroups(k+1,st,n,noM,matrices);

/* printTensorProductForm(k+1,st,n,noM,matrices); */

numSol++;
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} else {

k++;

st[k]=st[k-1];

}

}

printf("%ld solutions total.\n",numSol);

}

int validate(long k, int *st, int n, int **PoliMatrices) {

/* validate a new element inserted in the stack */

/* Conditions that must be met: */

/* 1) the matrix at the row st[k] in **PoliMatrices must commute */

/* with all the matrices at rows st[0]..st[k-1]; */

/* 2) the matrix at row st[k] must be different from all the */

/* other matrices */

int ok,i,j,g;

/* ok = 1 when the new matrix commutes with all the previous */

/* matrices, and is different from them; 0 otherwise */

ok=1;

if(k>0)

if(st[k]<=st[k-1]) /* cannot allow combinations to repeat; hence all */

return 0; /* the matrix numbers must be increasing in stack */

for(i=0,g=1;i<k;i++) {

if(PoliMatrices[st[i]][0]==PoliMatrices[st[k]][0]) {

ok=0; /* the new matrix is equal to another one in the set */

break;

}

else {

/* we have to check if the matrices given by rows # st[i] and st[k]*/

/* commute */

for(j=1;j<=n;j++)

if((PoliMatrices[st[i]][j]==PoliMatrices[st[k]][j])||

((PoliMatrices[st[i]][j]*PoliMatrices[st[k]][j])==0))

;

19



else

g*=-1;

if(g==-1) {

ok=0;

break;

}

}

}

return ok;

}

void dumpMatrices(int N, long noM, int **PauliMatrices) {

/* printing all Pauli matrices with associated Gottesman value */

int i,j;

for(i=0;i<noM;i++) {

for(j=0;j<=N;j++)

printf("%d ",PauliMatrices[i][j]);

printf("\n");

}

}
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