
Basic Guidelines for Simulating SysML Models:
An Experience Report

Mara Nikolaidou, George-Dimitrios Kapos, Vassilis Dalakas and Dimosthenis Anagnostopoulos
Department of Informatics and Telematics

Harokopio University of Athens
70 El. Venizelou St, Kallithea, 17671, Athens, GREECE

email: {mara, gdkapos, vdalakas, dimosthe}@hua.gr

Abstract—Though there are numerous efforts for simulating
SysML models, the automated generation of executable simu-
lation code for specific simulation environments without any
interference by the system engineer is still an issue attracting
the researchers’ attention. To become efficient and easy to use,
such an activity should be explored using standardized methods
and tools, such as the utilization of MDA concepts for model
transformation. In this paper, we identified some basic guidelines
for the generation of executable simulation code based on existing
SysML system models and the selection of related methods and
tools for simulation and model transformation purposes. The
proposed guidelines are incorporated in a three-step methodology
that can be applied independently of the simulation framework
selected. In the paper, we discuss our experience applying it,
based on examples from different system domains, where DEVS
framework was chosen for simulation purposes. The reasons
for its selection and the potential drawbacks and difficulties
drawn from its adoption are also discussed, to comment on
the characteristics a simulation framework and language should
obtain to be effectively applied for SysML model simulation.

I. INTRODUCTION

Systems Modeling Language (SysML) is the emerging stan-
dard for model-based system engineering [1]. It is a general-
purpose graphical modeling language, for systems engineering
applications and supports the specification, analysis, design,
verification and validation of a broad range of systems and
systems-of-systems. These systems may include hardware,
software, information, processes, personnel, and facilities. It
is defined as a profile of Unified Modeling Language (UML),
the standard for modeling software intensive systems.

Using SysML the system engineer should perform all en-
gineering activities based on a common model, according to
Model Driven Architecture (MDA) concepts [2]. The common
system model should be general enough to cover all engi-
neering activities, while it should also be specialized to serve
specific engineering activities, such as system validation.

Model-based system design is served by numerous method-
ologies adopting SysML as a modeling language. To vali-
date the proposed system architectures, quantitative methods
are usually applied, focusing on system performance. Thus,
system validation is often performed using simulation. Since
most simulation methodologies are model-based, such an
approach is suitable for model-based system engineering. This
justifies the increased interest in integrating SysML modeling
environments and simulation tools. To this end, there are

numerous efforts to simulate SysML models (for example
[3], [4]). Most of them aim at transforming SysML system
models to simulation models, executed in a specific simulation
environment, as for example PetriNets [4] or ModelicaML [5].

Prominent efforts in this area include the definition of a
SysML4Modelica profile endorsed by OMG [6] and the cor-
responding transformations to convert SysML system models,
using the profile, to executable Modelica simulation code with
standard MDA methods, as QVT language. The authors are
working on a similar approach [7] targeting at transforming
SysML models to executable DEVS simulation models [8].
A corresponding SysML DEVS profile and SysML-to-DEVS
metamodel transformation in QVT have been implemented and
tested using different system examples.

Though there are numerous efforts for simulating SysML
models, automated generation of executable simulation code
for specific simulation environments without any interference
by the system engineer is still an open issue. To become
efficient and easy to use, such an activity should be explored
using standardized methods and tools, utilizing MDA concepts
for model transformation. Furthermore, a variety of simulation
methods and tools should be supported, depending on the
systems under study. Either continuous or discrete simulation
may be applied, while model libraries could be used instead
of writing simulation code for all system entities. Though the
simulation tools and system requirements may differ, model
transformation tools and the process of integrating simulation-
specific characteristics into SysML models may be standard-
ized. Towards this direction, basic guidelines for the generation
of executable simulation code based on existing SysML system
models and the selection of related methods and tools for
simulation and model transformation are identified. These
guidelines, based on the authors experience, are analytically
explained in the paper, based on specific examples. The pro-
posed guidelines are incorporated in a three-step methodology
that can be applied independently of the simulation framework
selected. In the paper, we will discuss our experience applying
it, based on examples from different system domains, where
DEVS framework was chosen for simulation purposes. The
reasons for its selection and the potential drawbacks and
difficulties drawn from its adoption will also be discussed, to
comment on the characteristics, a simulation framework and
language should have to be effectively used for SysML model

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357603351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

simulation.
The paper is structured as follows: In the section II a short

review of SysML model simulation is given. The proposed
guidelines and the related benefits and potential considerations
are discussed in section III. In section IV the three-step
methodology for SysML model simulation is presented. An
example applying the proposed methodology when simulating
SysML models using DEVS is described in section V. Con-
clusions and Future work reside in section VI.

II. RELATED WORK

There are a lot of efforts from both research and industrial
communities to simulate SysML models [9], [10]. Apparently
SysML supports a variety of diagrams describing system
structure and states, necessary to perform simulation, which
are utilized by different approaches. In most cases, SysML
models defined within a modeling tool are exported in XML
format and, consequently, transformed into simulator specific
models and forwarded to the simulation environment.

Depending on the nature and specific characteristics of
systems under study, there is a diversity of ways proposed to
simulate SysML models, utilizing different diagrams. In [11],
a method for simulating the behavior of continuous systems
using mathematical simulation is presented, utilizing SysML
parametric diagrams, which allow the description of complex
mathematical equations. System models are simulated using
composable objects (COBs) [12]. It should be noted that in
any case SysML models should include simulation-specific
information, which facilitates simulating them [13]. These
approaches are better suited for systems with continuous
behavior.

Simulation of discrete event systems is utilized, based on
system behavior described in SysML activity, sequence or
state diagrams. In [3], system models defined in SysML are
translated to be simulated using Arena simulation software.
SysML models are not enriched with simulation-specific prop-
erties, while emphasis is given to system structure rather than
system behavior. Model Driven Architecture (MDA) concepts
are applied to export SysML models from a SysML modeling
tool and, consequently, transformed into Arena simulation
models, which should be enriched with behavioral character-
istics before becoming executable. In [4], the utilization of
Colored Petri Nets is proposed to simulate SysML models. If
the system behavior is described using activity and sequence
diagrams in SysML, it may be consequently simulated using
discrete event simulation via Petri Nets.

To enable the construction of executable simulation models,
simulation capabilities should be embedded within SysML
models utilizing profile mechanism. The formal method, pro-
posed by OMG to extent or to restrict UML and consequently
SysML models, is the definition of a profile, emphasizing the
properties of a specific world or domain, a simulation method-
ology or tool in this case. SysML profiles contain stereotype
definitions, which facilitate the formal extension/restriction
of UML entity semantics. In [14], simulation is performed
using Modelica [15]. To ensure that a complete and accurate

Modelica model is constructed using SysML, a corresponding
profile is proposed to enrich SysML models with Modelica-
specific properties, utilizing ModelicaML.

Ideally, the simulation models extracted from SysML mod-
els should become executable without any additional pro-
gramming effort from the system engineer, while SysML
models should be easily transformed to executable simulation
models. Both, [3] and [10] utilize MDA concepts for model
transformation.

Furthermore, the simulation methodology adopted should be
popular and facilitate the execution of simulation models on
a variety of simulators, while the existence of model libraries
may also enhance the capabilities of the system engineer to
produce simulation code.

The SysML4Modelica profile endorsed by OMG [6] enable
the transformation of SysML models to executable Modelica
simulation code. The relevant standard also proposes the
transformation of SysML models, defined using the profile, to
executable Modelica models using standard MDA methods, as
QVT language. The authors are working on a similar approach
[7] targeting at transforming SysML models to executable
DEVS simulation models [8]. A corresponding SysML DEVS
profile and SysML-to-DEVS metamodel transformation in
QVT have been implemented and tested using different system
examples.

Since SysML profiles are based on formal UML extension
mechanisms, they can be implemented in any standard UML
modeling tool, such as Rational Modeler [16] or MagicDraw
[17], enabling the integration of simulation tools with any of
them.

In the following, we try to identify the requirements for
effectively simulating SysML models, independently of the
simulation method applied, and suggest some basic guidelines
for selecting the methods and tools to use.

III. GUIDELINES

The proposed guidelines are suggested to enable engineers
facing the challenge of evaluating existing SysML system
models via simulation to choose the proper simulation and
model transformation methods and tools. Issues concerning
SysML model enrichment with simulation specific information
and the generation of simulation models are addressed. Model
enrichment must be based on appropriate SysML profiles,
while, in order to generate simulation models, a reference
meta-model for the corresponding simulation framework must
be defined or selected, if one already exists. Each guideline
is analyzed and justified, while open issues that may affect
applicability of the guidelines are also discussed.

A. SysML profiles with simulation-specific properties

As already identified in the literature, to simulate a
SysML system model the system engineer should incorporate
simulation-specific properties in it. This task corresponds to
the specialization of the common model to serve a specific
engineering activity, in this case system validation using sim-
ulation. The appropriate way to achieve this, is by defining and

using simulation-related SysML profiles, related to a specific
simulation methodology, as for example SysML4Modelica [6]
or DEVS-SysML [18]. Such profiles should be applied in
modeling tools (e.g, MagicDraw) and enable the validation
of simulation-enriched SysML models prior to their transfor-
mation to simulation code.

Benefits:
• Definition and use of appropriate profiles allow the ad-

dition of simulation-specific properties in the common
model, instead of redefining the simulation model.

• The adoption of such formal methods, offers credibility
and the possibility to learn, extend, restrict and employ
modeling tools, without specialized knowledge about
specific simulation environments.

• Model validation is supported.
• Focus remains on analysis/design of the system.
Considerations:
• Definition of a SysML simulation-related profile is not a

trivial procedure. Required simulation-specific attributes
must be identified and positioned in the appropriate
elements of the system model.

• Structural correlation between SysML and simulation
models does not suffice for the definition of a profile.
Semantics of the simulation formalism and those of
SysML should also be taken into account.

• There are no SysML profiles available, for the majority
of the simulation environments.

• The profiles should be applied and tested in the majority
of well known modeling tools.

B. Complete enrichment of SysML models

It is more efficient to include all simulation-related informa-
tion within the SysML model and automatically produce fully
executable simulation code, since in this case the simulation
method becomes transparent to the system engineer. There is
no need to write simulation code or learn the specifics of
the simulation environment. The engineer only uses SysML
notation to describe the system model and its simulation-
specific behavior. This feature is not supported by most
of the approaches recorded in the literature, that focus on
transforming system structure to the simulation model and not
simulation-related system behavior.

Benefits:
• Successful incorporation of simulation behavioral (be-

sides structural) aspects in the central model enables
automated generation of executable simulation models.

• Such an approach enhances credibility and offers trans-
parency and usability on the whole process.

Considerations:
• Although models may be validated against a profile,

conceptual completeness of the profile itself in regard to
the simulation framework cannot be easily proved.

• Defining simulation model behavior in a precise, yet
generic manner is a challenging task.

1

C. Generating simulation models from system models

Transformation of SysML to simulation-specific models
should be accomplished in a standardized fashion based on
MDA concepts, using existing languages and tools, as QVT
[2]. Such languages offer high-level mapping constructs that
create simple and maintainable transformations that can be
executed in several environments. To facilitate such a transfor-
mation, the existence and acceptance of a MOF meta-model
for the applied simulation methodology is essential. Such a
standardized meta-model for a specific simulation domain is
of greater value, when the same simulation methodology can
be applied using different tools, e.g., DEVS methodology.

Benefits:
• Simpler transformation definition, in comparison to cus-

tom code writing.
• Enhanced credibility, transparency and (re-)usability on

the whole process.
Considerations:
• Completeness of such transformations is not always easy

to check.
• Such an approach introduces overhead that is, however,

overridden by the benefits, as the complexity of system
models rises.

D. Reference meta-models

In the case where there is a variety of different simulators
supporting the same simulation methodology, the simulation-
specific MOF meta-model may serve as the basis for platform-
independent models (PIMs) towards two directions: a) enable
SysML to simulation-specific model transformation, and b)
enhance interoperability between different simulators indepen-
dently of the language they use (e.g. C++, Java) and the way
they are executed (centrally or distributed). The progressive
development of such MOF meta-models for different simu-
lation environments may further contribute to interoperability
and exploitation of a common SysML profile, serving all of
them.

Benefits:
• The existence of reference meta-models enables QVT-

based transformations.
• Interoperability between different simulation tools within

a specific simulation framework is promoted.
Considerations:
• Currently, there are not many simulation-specific refer-

ence meta-models available.
• Reference meta-models are fully utilized once they have

become widely accepted standards. However, this stan-
dardization may be a long-lasting procedure.

IV. A METHODOLOGY FOR SYSML SYSTEM MODEL
SIMULATION

Having these issues in mind, a three-step methodology is
proposed for SysML model simulation independently of the
simulation framework or language adopted, as depicted in
Fig. 1. The system engineer should specify the system model

using SysML via a modeling tool and receive valid simulation
results from the execution of the corresponding system model
in an appropriate simulation environment. As shown in the
figure, the three discrete steps are:

Step 1: Constructing a simulation-specific profile to enrich
SysML system models with simulation capabilities. The system
engineer should enrich system models with simulation infor-
mation. This should be performed during system modeling,
within the SysML modeling tool, according to the specific
profile. The simulation-specific profile must consist of both
a set of stereotypes and constraints. Stereotypes are used to
characterize specific SysML model elements, while constraints

specify how valid simulation models should be created.

Step 2: Transforming SysML system models (usually rep-
resented in XMI) to simulation-specific system models. All
standard modeling tools facilitate exporting SysML models
in XMI format. It is considered as a standard platform-
independent representation of UML/SysML models. To enable
model transformation in a standardized fashion, a platform-
independent MOF 2.0 meta-model for the corresponding sim-
ulation environment should be available. Provided that such
a meta-model is available, OMG’s Query/View/Transform
(QVT) language can be used for model transformation using
existing transformation tools [7].

Simulation Model

(based on MOF Metamodel)

Model

Transformation

(QVT)

Simulation

Environment

Code Generation

...

Visual Paradigm

...

MagicDraw

Modeling Tool

Model Specification (XMI)

System Model

(based on SysML and

Simulation Profiles)

Simulation ResultsVisual Model Definition

with Simulation Specs

PIM

PSM

Step 1:

Enrich SysML

model with

simulation

capabilities,

using a

simulation-

specific profile

Step 2:

Transform

SysML to

simulation

model

Step 3:

Execute

simulation

code

...

System Engineer

Fig. 1. A methodology for simulating SysML models

Fig. 2. Enriching SysML models using the DEVS-SysML profile in MagicDraw

Step 3: Creating executable simulation code. The trans-
formation of simulation-specific MOF models to executable
simulation code constitutes the last step of the proposed
approach. This transformation heavily depends on the target
simulation environment. We argue that the maturity of a
simulation community, in providing required tools that enable
such transformations and defining a MOF meta model, plays a
significant role in selecting it. After all, using SysML is closely
related to the utilization of existing standards and tools and
simulation frameworks should move towards their integration
in model-driven engineering frameworks.

V. SIMULATING SYSML MODELS WITH DEVS

Based on the presented methodology, the automated DEVS
executable simulation code generation from enriched SysML
models has been realized [7]. DEVS was selected as the target
simulation framework for a series of reasons. DEVS is a for-
malism allowing a hierarchical and modular description of the
models, which lacks a standardized and easy-to-use interface.
The authors have identified similarities between DEVS and
SysML [18]. Combining alternative SysML diagrams to define
all aspects of coupled and atomic DEVS models facilitated
the definition of a SysML profile. Moreover, employment of
proper stereotypes and constraints have made enrichment of
SysML models feasible.

There are several simulation environments for DEVS, as
well as attempts to provide generic representations of DEVS
models, mainly targeting DEVS simulators interoperability.
Many of them, as the one presented in [19], are based on
XML representation of DEVS entities. These efforts provided
the foundations for the definition of a reference DEVS meta-
model in XMI [7].

A SysML profile and corresponding constraints for DEVS
simulation framework have been defined and implemented in
MagicDraw [17] modelling tool, enabling proper enrichment
of SysML system models (step 1). This required to locate
the exact parts of the SysML models, where DEVS-specific
attributes should be added. Also, specification of behavioral
details in a generic, yet precise manner has been a difficult
task, in contrary to structural aspects. Fig. 2 illustrates a screen
shot of a state machine diagram defining an aspect of the
DEVS simulation model for a regiment component in a battle
simulation example.

3,4 A MOF 2.0 meta-model for DEVS models has been
defined, based on previous attempts to standardize DEVS
model representations in XML format and mainly [20]. The
meta-model is a central element in the overall approach
and needs to be finalized first. Changes on the meta-model
would affect both the transformation from system models
to DEVS models and from DEVS models to executable
format. Additionally, a QVT transformation that generates
DEVS models from enriched SysML models has been defined
(step 2). The definition of the whole set of QVT relations,
constituting the transformation, required an effort investment
that is not returned for few, simple models. However, applying
the transformation in larger, complex models justifies such an

 <DEVS_ATOMIC>

 <MODEL_NAME text="regiment"/>

 <INPUTS>...</INPUTS>

 <OUTPUTS>...</OUTPUTS>

 <STATES>

 <STATE_SET>

 <STATE_SET_NAME text="STATE SET"/>

 <STATE_SET_VALUES>

 <STATE_SET_VALUE text="idle" initial="true"/>

 <STATE_SET_VALUE text="attackingWithInfantry"/>

 <STATE_SET_VALUE text="attacking"/>

 <STATE_SET_VALUE text="attakingWithArtillery"/>

 <STATE_SET_VALUE text="waiting"/>

 <STATE_SET_VALUE text="waitingArtillery"/>

 </STATE_SET_VALUES>

 </STATE_SET>

 <STATE_VARIABLES>...</STATE_VARIABLES>

 </STATES>

 <INTERNAL_TRANSITION_FUNCTION>

 <CONDITIONAL_FUNCTION>

 <STATE_CONDITION text="attacking"/>

 <TRANSITION_FUNCTION>

 <NEW_STATE text="waiting"/>

 <STATE_VARIABLE_UPDATES/>

 </TRANSITION_FUNCTION>

 </CONDITIONAL_FUNCTION>

 ...

 </INTERNAL_TRANSITION_FUNCTION>

 <OUTPUT_FUNCTION>

 <CONDITIONAL_OUTPUT_FUNCTION state="attacking">

 <PORT_OUTPUTS>

 <SEND port="InfantryAttack">

 <VALUE type="Integer" value="1"/>

 </SEND>

 <SEND port="ArtilleryAttack">

 <VALUE type="Integer" value="1"/>

 </SEND>

 </PORT_OUTPUTS>

 </CONDITIONAL_OUTPUT_FUNCTION>

 ...

 </OUTPUT_FUNCTION>

 <TIME_ADVANCE_FUNCTION>

 <CONDITIONAL_TIME_ADVANCE>

 <STATE_CONDITION text="attacking"/>

 <TIME_ADVANCE>

 <VALUE type="Real" value="0.1"/>

 </TIME_ADVANCE>

 </CONDITIONAL_TIME_ADVANCE>

 ...

 </TIME_ADVANCE_FUNCTION>

 <EXTERNAL_TRANSITION_FUNCTION>

 ...

 </EXTERNAL_TRANSITION_FUNCTION>

 </DEVS_ATOMIC>

Fig. 3. DEVS model, derived from the enriched SysML model

approach. Enriched system models have been extracted from
MagicDraw in XMI format and transformed to the respective
DEVS models. Fig. 3 presents a part of the DEVS model that
is generated from the SysML model shown in Fig. 2.

In order to implement the third step of the methodology, the
approach presented in [21] has been utilized. This approach
was selected, since it supports an XML-based language, named
XLSC, for describing DEVS models that can be executed into
a DEVSJava simulator, promoting model transformation. An
XSL transformation from DEVS models in XMI format to
executable XLSC simulation models in XML format has also
been defined and tested. Fig. 4 presents a part of the regiment
model in XLSC (executable) format.

 <atomicModel name="regiment">

 <statePart>

 ...

 </statePart>

 <propertiesPart/>

 <portsPart>

 ...

 </portsPart>

 <functionsPart>

 ...

 <internalTransitionFunction>

 <action>

 <if>

 <condition>

 <equal>

 <retrieve state="phase"/>

 <string>attacking</string>

 </equal>

 </condition>

 <then>

 <update state="phase">

 <string>waiting</string>

 </update>

 </then>

 </if>

 ...

 </internalTransitionFunction>

 </functionsPart>

 </atomicModel>

Fig. 4. DEVS executable model in XLSC format

VI. CONCLUSIONS

Following the proposed guidelines and the three-step
methodology, tools of simulating SysML models with DEVS
have been successfully applied and implemented. The DEVS-
SysML profile and DEVS MOF meta-model were proven
to the fundamental elements of the approach, enabling in
practice automated code generation. The choice of DEVS
as a simulation methodology also derived from the proposed
guidelines. Standard model transformation languages, such as
QVT, also proved to be efficient, provided that corresponding
XML-based tools are available for simulation. Furthermore,
they promote interoperability between different simulation
methodologies, provided corresponding MOF meta-models are
defined.

Future work include the application of tools developed in
different domains, such as military and information system
simulation, and the support of simulation model libraries. The
integration of the proposed DEVS-SysML profile with system
design profiles is also under investigation. The definition MOF
metamodels for different simulation environments and the
exploitation of a common SysML profile, serving all of them,
will also be addressed.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Nicolas Meseth, Patrick
Kirchhof, and Thomas Witte for their valuable help. Not only
they provided us with their XLSC prototype interpreter, but
also they eagerly answered every question we posed.

REFERENCES

[1] OMG, “Systems Modeling Language (SysML) Specification. Version
1.0,” September 2007.

[2] ——, “Model Driven Architecture. Version 1.0.1,” Available online via
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf, June 2003.

[3] L. McGinnis and V. Ustun, “A simple example of SysML-driven
simulation,” in Winter Simulation Conference (WSC), Proceedings of
the 2009. IEEE, 2009, pp. 1703–1710.

[4] R. Wang and C. Dagli, “An executable system architecture approach
to discrete events system modeling using SysML in conjunction with
colored petri nets,” in IEEE Systems Conference 2008. Montreal: IEEE
Computer Press, April 2008, pp. 1–8.

[5] W. Schamai, “Modelica Modeling Language (ModelicaML): A
UML Profile for Modelica,” Tech. Rep., 2009. [Online]. Available:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-20553

[6] OMG, SysML and Modelica Integration, Dec. 2008. [Online].
Available: http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-
modelica:sysml and modelica integration

[7] G. D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos, “An
integrated framework for automated simulation of SysML models using
DEVS,” 2012, under Submission.

[8] B. P. Zeigler, H. Praehofer, and T. Kim, Theory of Modeling and
Simulation, 2nd ed. Academic Press, 2000.

[9] E. Huang, R. Ramamurthy, and L. F. McGinnis, “System and simulation
modeling using SysML,” in WSC ’07: Proceedings of the 39th confer-
ence on Winter simulation. Piscataway, NJ, USA: IEEE Press, 2007,
pp. 796–803.

[10] O. Schonherr and O. Rose, “First steps towards a general SysML model
for discrete processes in production systems,” in Proceedings of the 2009
Winter Simulation Conference, Austin, TE, USA, December 2009, pp.
1711–1718.

[11] R. Peak, R. Burkhart, S. Friedenthal, M. Wilson, M. Bajaj, and I. Kim,
“Simulation-based design using SysML part 1: A parametrics primer,”
in INCOSE Intl. Symposium, San Diego, CA, USA, 2007, pp. 1–20.

[12] R. Peak, C. J. Paredis, and D. R. Tamburini, “The composable object
(COB) knowledge representation: Enabling advanced collaborative engi-
neering environments (CEEs), COB requirements & objectives (v1.0),”
Georgia Institute of Technology, Atlanta, GA, Technical Report, Oct.
2005.

[13] D. R. Tamburini, “Defining executable design & simulation models using
SysML,” Available online via http://www.pslm.gatech.edu/topics/sysml/,
March 2006.

[14] A. A. Kerzhner, J. M. Jobe, and C. J. J. Paredis, “A formal framework
for capturing knowledge to transform structural models into analysis
models,” Journal of Simulation, vol. 5, no. 3, pp. 202–216, 2011.

[15] Modelica, The Modelica Language Specification Version 3.2, revision
1 ed., February 2012.

[16] IBM, “Rational Software Modeler,” Available online via
http://www.ibm.com/developerworks/rational, 2010.

[17] MG, SysML Plugin for Magic Draw, 2007.
[18] M. Nikolaidou, V. Dalakas, L. Mitsi, G.-D. Kapos, and D. Anagnos-

topoulos, “A SysML profile for classical DEVS simulators,” in Pro-
ceedings of the Third International Conference on Software Engineering
Advances (ICSEA 2008). Malta: IEEE Computer Society, October 2008,
pp. 445–450.

[19] S. Mittal, J. L. Risco-Martı́n, and B. P. Zeigler, “DEVSML: Automating
DEVS execution over SOA towards transparent simulators,” in DEVS
Symposium, Spring Simulation Multiconference. ACIMS Publications,
March 2007, pp. 287–295.

[20] J. Martı́n, S. Mittal, M. López-Peña, and J. De la Cruz, “A W3C
XML schema for DEVS scenarios,” in Proceedings of the 2007 spring
simulation multiconference-Volume 2. Society for Computer Simulation
International, 2007, pp. 279–286.

[21] N. Meseth, P. Kirchhof, and T. Witte, “XML-based DEVS modeling and
interpretation,” in SpringSim ’09: Proceedings of the 2009 Spring Sim-
ulation Multiconference. San Diego, CA, USA: Society for Computer
Simulation International, 2009, pp. 1–9.

