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1. Abstract

This paper is concerned with the development of metamodels specifically tailored for mixed variables, in particular

continuous and categorical variables. Practically, we propose a surrogate model based on multiple kernel regres-

sion, and apply it to six benchmark test functions and a rigid frame structural analysis. When compared to other

metamodels (support vector regression, ordinary least squares), the numerical results show the efficiency of the

method, related to the flexible selection of different types of kernel functions. Further work will include the use

of these metamodels for mixed-variable surrogate-based optimization involving computationally expensive simu-

lations.

2. Keywords: surrogate models, support vector regression, multiple kernel regression, mixed variables, categori-

cal variables.

3. Introduction

Metamodel-assisted optimization has greatly improved the design of mechanical components and civil engineering

structures, due to their capacity to address physically complex problems through the use of inexpensive interpola-

tion or regression models [1]. However, a majority of existing surrogate models encountered in the literature focus

on continuous inputs, viz. they do not take explicitly into account discrete, integer, or categorical values, although

versatile practical engineering problems also involve non-continuous parameters. In particular, categorical vari-

ables can represent any non-numerical data, like a performance assessment (’low’, ’medium’, ’high’), or the choice

of a material (’steel’, ’titanium’, ’aluminum’); in the former case, they are said to be ordered (ordinal variables),

while they are unordered (nominal variables) in the latter case [2, 3].

Preliminary studies by the authors [4, 5]–based on the development of moving least squares adapted to mixed

(continuous and nominal) variables–have demonstrated their efficiency for a low number of nominal variables and

a limited number of attributes (i.e. the possible values for the nominal variables). However, these approaches do

not infer any a priori relationship between the inputs (e.g. in a structural design problem, the geometry of a beam

cross-section: ’square’, ’circle’, ’I’,...) and the outputs (e.g. the maximum deflection of the beam at mid-span): all

attributes are implicitly considered as equally distant in the design space, while in practice clusters of attributes

could be determined according to their corresponding influence on the outputs.

Therefore, the aim of this work is to propose a multiple kernel regression (MKr) alternative to develop efficient

surrogate models which can handle continuous and categorical variables by a number of mapping functions com-

bined. Common kernel-based learning methods use an implicit mapping of the input data into a high dimensional

feature space defined by a kernel function, i.e., a function returning the inner product 〈φ(x), φ(x′)〉 between the

images of two data points x, x′ in the feature space. Since two distinct types of variables (i.e. continuous and

categorical) have to be taken into account, the intuition dictates that different kernel functions might provide a

more flexible and adequate way to model the inherent behavior of the variables according to their nature. This idea

is explored in this study.

4. Multiple kernel regression

The use of kernel methods [6] lends itself well to the problem of data integration as it enables multiple distinct types

of data to be converted into a common usable format. For example, the available data met in engineering catalogs

of technological parameters like the choice of a material are typically categorical, while the geometrical variables

(e.g. diameter, length) are generally continuous. If the interest of the study is the establishment of predictive models

with respect to a set of inputs, the information from all of the sources should be utilized to allow for well informed

and balanced predictions. By applying appropriate kernel functions it should be possible to generate individual

kernel matrices for the different types of data.
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Kernel selection in multiple kernel regression (MKr) is very important because its choice is highly dependent

on the nature of the input data, and has a significant impact on the accuracy of predictions [7]. However, the

determination of the most suitable kernel is a delicate task, and a poor choice can degrade the approximation.

Instead of focusing on a single kernel, an optimal combination of a set of candidate kernels could be searched

for, where each of the kernels represents a different type of data. The proposal is thus to apply appropriate kernel

functions to generate individual kernel matrices for the different variable types; these kernels can be combined

eventually with a weighted summation and used as training data for a classical support vector regression (SVR)

[8].

Before describing the MKr approach for mixed variables, a few basic notions about SVR will be recalled. The

key characteristic of SVR is that it allows to specify a margin, ε, within which errors in the sample data are accepted

without affecting the quality of the prediction. The SVR predictor is defined by the points lying outside the region

defined by the band of size ±ε around the regression (see Eq.(1)). Those vectors are the so-called support vectors.

f̂(x) = b+
n
∑

i=1

ωiφ(x, xi) (1)

Considering a linear regression f̂(x) = b +w
T
x, the goal is to find a function with at most deviates ε from

the observed output for the regression at the same time that minimizes the model complexity (see Eq.(2)).

min
1

2
||w||2

subject to yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉+ b− yi ≤ ε

(2)

The constraints in Eq.(2) enforce that f̂(x) exists for all yi with precision ±ε. Nevertheless, the solution may

actually not exist; moreover, it is often possible to achieve better predictions by allowing outliers. Consequently,

slack variables ξ+ and ξ− are included such that:

ξ+ = f(xi)− y(xi) > ε (3)

ξ− = y(xi)− f(xi) > ε (4)

and the objective function and constraints for SVR are formulated as follows:

min
w,b

1

2
||w||2 + C

1

n

n
∑

i=1

(ξ+i + ξ−i )

subject to yi − 〈w, xi〉 − b ≤ ε+ ξ+i ,

〈w, xi〉+ b− yi ≤ ε+ ξ−i ,

ξ+i , ξ
−
i ≥ 0 i = 1, . . . , n

(5)

where n is the number of training patterns and C is a parameter which gives a trade-off between model complexity

and training error. As mentioned earlier, ξ+ and ξ− are slack variables allowing for exceeding the target value by

more than ε and for being below the target value by more than ε, respectively. This method of tolerating errors is

known as ε-insensitive [6].

The SVR method uses a single mapping function φ, and hence a single kernel function K . If a dataset has a

locally varying distribution, using a single kernel may not catch up correctly the varying distribution. Kernel fusion

can help to deal with this problem. Recent applications and developments based on support vector machines have

shown that using multiple kernels instead of a single one can enhance interpretation of the decision function and

improve classifier performance. Analogously, we make here the hypothesis that by the use of different kernels we

can tackle problems with different data types.

The kernel fusion is straightforward using several mapping functions combined instead of one single mapping

function. Assuming a basis of kernels:

Φ(x) = [φ1(x), φ2(x), . . . , φM (x)] (6)

we adopt the weighted sum fusion with the following mapping functions:

Φ(x) = [
√
µ1φ1(x),

√
µ2φ2(x), . . . ,

√
µMφM (x)] (7)
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Figure 1: Representation of a categorical variable with three attributes in the 2D space by a standard regular

simplex

where µ1, µ2, . . . , µM are weights of component functions. Now, the regression problem includes the optimiza-

tion of two parts. One part is the regression hyperplane f(x) and the other part is the weight vector µ =
[µ1, µ2, . . . , µM ]. The idea is to approach these two parts of the optimization process in one step, based on the

parametric dependence idea.

The resulting multi-kernel is expressed by Eq.(8):

K̃(xi, xj) = < Φ(xi), Φ(xj) >

= µ1 < φ1(xi), φ1(xj) > +µ2 < φ2(xi), φ2(xj) > + . . .

+ µM < φM (xi), φM (xj) >

= µ1K1(xi, xj) + µ2K2(xi, xj) + . . .+ µMKM (xi, xj)

=

M
∑

s=1

µsKs(xi, xj)

(8)

We can solve the regression hyperplane by plugging this multi-kernel on the equation defining the SVR regression

surface, as Eq.(9) shows.

f̂(x) = b+

n
∑

i=1

(α+
i − α−

i )K̃(xi,x) (9)

The specific nature of mixed variables has not been dealt with explicitly yet. In practice, regression models

with mixed variables are often addressed by storing all the variables in a real design vector, including a conversion

of the categorical inputs into (ordered) integers. While this conversion is straightforward for numerical and for

ordinal parameters, nominal variables cannot be directly incorporated into a real vector representation without any

loss of consistency. In order to avoid this issue, versatile methods employed to vectorizing these categorical cases

have been proposed [9].

The regular simplex method is one of the simplest approaches to perform the conversion from categories to

numbers. The basic idea is to assume that any two distinct levels of a categorical variable are separated by the

same distance. To achieve this, each level of an n-level variable is associated with a distinct vertex of a regular

simplex in (n − 1) dimensional space [3]. For simplicity, the distance between levels is assumed to be 1. For

example, if xcateg can take value in a set of nattr = 3 possible attributes {� ;� ;�}, these attributes can be drawn

in a (nattr − 1) space in such a way that each attribute is converted to the vertex coordinates of a standard regular

simplex. By construction, all potential values are thus equally distant [4].

In a rather similar way, dummy coding converts a variable into (n − 1) binary variables, equal to 0 except for

the value of the categorical variable, if n is the total number of possible values. For the example described earlier,

the conversion would be as follows: {�} → (1, 0); {�} → (0, 1); {�} → (0, 0). We should note that the implicit

choice of a reference attribute (the vector conformed by all its components equal to zero) is a peculiarity of dummy

coding that we should take into account in order to control undesirable effects in its use.

Anyway, despite making the correct conversions to vector of categorical variables, it still consist in data struc-

tured in some different way that the directly continuous inputs. Therefore, the proposal is to maintain the memory

about this distinction by applying different kernel matrices depending on the nature of the variables. Thus, for

straight numeric data, the Gaussian family of kernels usually fits better than others; nevertheless, for data resulting
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from a conversion to numerics, other types of kernels (based on polynomials) present more accurate results. Table

1 summarizes some instances of kernels. The case of MKr is of special interest because it allows to separate via

different kernels the straight numeric data and the converted nominal data.

Table 1: Short list of different kernel functions
Name Expression

Gaussian K(x, y) = exp
(

− ||x−y||2
2σ2

)

ANOVA K(x, y) =
∑

exp
(

−σ(xk − yk)2
)d

Linear K(x, y) = xT y + c

Polynomial K(x, y) = (αxT y + c)d

Rational Quadratic K(x, y) = 1− ||x−y||2
||x−y||2+c

Other kernels specific for structures such as trees, strings, and graphs, among others, have been proposed in the

literature, but will not be considered in this paper, where only the most general-purpose kernels are investigated,

and where the main concern is to address the vector conversion of categorical input and its posterior influence in

the kernel selection for MKr modeling.

5. Numerical results

5.1 Analytical benchmark functions

The MKr for mixed variables approach is tested first on a set of six mixed-variable benchmark functions, with

ordinal variables. The design variables consist of nz continuous and nc discrete variables (for all examples:

nz = nc). The complete definition of the benchmarks is furnished in Table 2.

To analyze the evolution of the approximation/interpolation efficiency with respect to the dimension of the

problem, the number of design variables ranges from nz = nc = 2 to nz = nc = 20. In all cases the data are

composed of 5000 samples: 4000 for training, and 1000 reserved for the validation. In order to add statistical

significance, each experiment is repeated 20 times.

Table 2: Definition of the six analytical benchmarks with mixed variables

Output

fEllipsoid,MV =

nz
∑

i=1

(

β
i−1

nz−1 zi

)

+

nc
∑

i=1

(

β
i−1

nc−1 ci

)

(β = 5)

fAckley,MV = −20e
−0.2

√

1
nz

∑

nz

i=1
z2
i − e

1
nz

∑

i=1 cos(2πzi)

−20e
0.2

√

1
nc

∑

nc

i=1
c2
i − e

1
nc

∑

i=1 cos(2πci) + 20 + e

fRastrigin,MV = 10(nz + nc) +
∑

nz

i=1

[

z2
i
− 10cos(2πz2

i
)
]

+
∑

nc

i=1

[

c2
i
− 10cos(2πc2

i
)
]

fRosenbrock,MV =
∑

nz−1
i=1

[

100(zi+1 − z2
i
)2 + (zi − 1)2

]

+
∑

nc−1
i=1

[

100(ci+1 − c2
i
)2 + (ci − 1)2

]

fSphere,MV =

nz
∑

i=1

z
2
i
+

nz
∑

i=1

c
2
i

fGriewank,MV =
1

400

nz
∑

i=1

z
2
i
−

nz
∏

i=1

cos

(

zi√
i

)

+
1

400

nc
∑

i=1

c
2
i
−

nc
∏

i=1

cos

(

ci√
i

)

Input

Cont. vars. zi = 10−3xcont

i
, xcont

i
∈ [−300, 700] for i = 1, . . . , nz

Categ. vars. ci ∈ [−3,−2, . . . , 7] for i = 1, . . . , nc

The six functions defined are coded by direct numeric conversion of their ordinal inputs; indeed, their direct

numeric conversion has shown to work better than dummy coding, which is related to the inherent ranking of

the ordinary inputs. A comparison between MKr and SVR based on RMSE (with respect to the number of input

variables) is depicted in Figures 2 to 4; additionally, second-order ordinary least squares serve as reference method.

Gaussian kernel has been implemented in SVR models. In the case of MKr, a Gaussian kernel is selected for the

continuous kernels, while the categorical variables are modeled either by Polynomial (in Ellipsoid, Griewank, and

Sphere functions) or by Rational Quadratic functions (in Ackley, Rastrigin, and Rosenbrock functions). These

kernels were selected within a number of possible choices summarized in Table 1; the RMSEs of part of their

possible combinations are shown in Table 3. This table is furnished by averaging the results obtained for all values

of nz = nc = 2, 5, 10, 15, 20 and for each function and combination of kernels (Pol. stands for Polynomial, Gauss.

for Gaussian, and R. Q. for Rational Quadratic).

From Figures 2 to 4, the following statements can be done. First, the special error behavior in Ellipsoid and
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Table 3: RMSE (average for all nz = nc) for some kernel combinations in MKr

MKr composition Ellipsoid Ackley Rastrigin Rosenbrock Sphere Griewank

Pol. + Gauss. 0.0035 0.0174 0.0263 0.0623 0.1831 0.0270

R. Q. + Gauss. 0.0038 0.0137 0.0182 0.0525 0.2413 0.0667

Gauss. + Gauss. 0.0045 0.0229 0.0139 0.0683 0.1828 0.0504

Pol. + Pol. 0.0172 0.0431 0.0258 0.0744 0.2483 0.0435

R. Q. + R. Q. 0.0212 0.0398 0.0209 0.0697 0.3122 0.0494

Sphere functions are due to this similar construction to second order OLS expressions (e.g. theoretically, OLS can

fit exactly the Ellipsoid function through a second-order polynomial). In the rest of the examples, OLS usually

fits worst than the others, and MKr provides competitive results. We note that MKr is better than SVR in 4 over 5

cases, and in the sixth case (Sphere), both offer similar results. In the 4 cases in which MKr beats SVR, the models

reveal a parallel trend in their behavior. The difference that separates both can be attributed to the choice of the

kernel associated with the categorical input. In order to measure this difference we propose to use the ratio between

the cumulative sum of RMSESV R over RMSEMKr. As a result we see that MKr represents a gain–with respect

to SVR–of 1.30, 1.69, 1.36, and 1.97 in the cases of Ellipsoid, Ackley, Rosenbrock, and Griewank functions,

respectively. Finally, we also should note that if we choose Gaussian for both kernels in MKr we obtain similar

(not exactly the same due to the parameter choices) results as SVR (see Table 3).
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Figure 2: Comparison of regression models by the RMSE of the benchmark functions (Ackley & Rosenbrock)
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Figure 3: Comparison of regression models by the RMSE of the benchmark functions (Griewank & Rastrigin)

5.2 Structural analysis of a rigid frame

The second example is based on the structural design analysis of a 3D rigid frame [10] (see Figure 5). The loads

of the structure are derived from Eurocode 3 [11], and consist in:

• the dead load of the beams and columns;
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Figure 4: Comparison of regression models by the RMSE of the benchmark functions (Ellipsoid & Sphere)
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Figure 5: Rigid frame: geometrical configuration

• the gravity load on the floors (19.16 kPa);

• the lateral load due to the wind (110 kN).

The beams and columns are classified in five groups of common cross-sections. The quantities of interest are

the total mass of the structure and the strain energy, the latter being assessed through a geometrically non-linear

finite element analysis [12]. Seven design variables are necessary for the parametrization:

• for each of the five groups of profiles, a categorical variable defines the cross-section geometry among seven

attributes { � ; � ; � ; � ; � ; � ; � };

• for all groups of profile, two continuous bounded variables define the maximum length l of the cross-section

(either height or diameter), and the thickness t, with 0.09 m ≤ l ≤ 0.11 m and 0.00225 m ≤ t ≤ 0.00275

m. For the rectangular cross-section, the width is defined as half of the height; for the �-section, the width

is equal to the height.

The geometry of the cross-section is typically a nominal variable, since no ordering of the available cross-

section types can be made a priori. The choice of the cross-section has a direct impact on the calculation of the

quantities (area, moments of inertia) necessary to get the normal efforts, shear forces, and bending moments. The

data are composed by 5000 samples: 4000 for training and validating and 1000 reserved for test.
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Figure 6: Observed quantity of interest vs. MKr prediction for the first 100 values of the validation database (left:

mass; right: strain energy

For both quantities of interest (mass and strain energy), the direct numeric conversion is not consistent to

represent the nominal (unordered) information of the database. Dummy coding is a more accurate proposal as

demonstrated in Table 5.

Table 4: Dummy codes for the structural design case-study

� → (1, 0, 0, 0, 0, 0)

� → (0, 1, 0, 0, 0, 0)

� → (0, 0, 1, 0, 0, 0)

� → (0, 0, 0, 1, 0, 0)

� → (0, 0, 0, 0, 1, 0)

� → (0, 0, 0, 0, 0, 1)

� → (0, 0, 0, 0, 0, 0)

Table 5: RMSE for total mass and strain energy predictive models

Model OLS SVR MKr OLS SVR MKr

Output Total mass Strain energy

RMSE (dummy coding) 0.0661 0.0625 0.0440 0.1442 0.1081 0.0889

RMSE (effect coding) 0.0682 0.0649 0.0539 0.1442 0.1128 0.0904

RMSE (real number conversion) 0.1001 0.0824 0.0588 0.1752 0.1604 0.1212

Figure 6 (left) shows the first 100 predictions respect the observed values of the total mass of the structure

studied. A good agreement is observed, especially for lower values of the mass.

A parallel analysis has been carried out to predict the strain energy (see Figure 6, right). The results with the

dummy coding, the effect coding, and the real number conversion are shown in Table 5. The MKr approach is the

better predictive model again. We should note that other codings than dummy coding do not offer high variations

with respect to the RMSE associated with MKr.

6. Conclusion

In this paper, a multiple kernel regression (MKr) method has been developed for continuous and categorical vari-

ables. MKr approaches attempt to improve the usual kernel methods in order to achieve a better adaptation to

problems involving mixed-variable data.

From the numerical results obtained, it is demonstrated that MKr outperforms other methods in the struc-

tural design case study, and also provides promising results in the mixed-variable benchmark functions. MKr is
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computationally more efficient than SVR, in terms of execution time, iterations, and number of support vectors.

Additionally, in the numeric conversion from categorical nominal variables, dummy coding performs better than

direct real number conversion for nominal inputs.

Future prospects include the application of these metamodels to surrogate-based optimization with mixed vari-

ables.
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