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Non-genetic cell-to-cell variability and the consequences for
pharmacology
Mario Niepel*, Sabrina L Spencer* and Peter K Sorger
Recent advances in single-cell assays have focused attention

on the fact that even members of a genetically identical group

of cells or organisms in identical environments can exhibit

variability in drug sensitivity, cellular response, and phenotype.

Underlying much of this variability is stochasticity in gene

expression, which can produce unique proteomes even in

genetically identical cells. Here we discuss the consequences

of non-genetic cell-to-cell variability in the cellular response to

drugs and its potential impact for the treatment of human

disease.
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Introduction
It has long been recognized that differences from one

cell to the next can arise through variation in the extra-

cellular environment (e.g. morphogen gradients during

embryogenesis) or from genomic alteration (e.g. genetic

heterogeneity within a tumor). Only recently has it

become clear that intracellular biochemical fluctuations

can also have profound effects on phenotype. These

fluctuations cause genetically identical cells to vary

significantly in their responsiveness to stimuli and drugs

even in a uniform environment [1,2��,3��,4,5�,6,7��,8�].
Such cell-to-cell differences arise from stochasticity in

the biochemical reactions. Gene expression is one of

the best understood of these stochastic processes (see

Box 1), but cytoskeletal rearrangement, protein localiz-

ation, post-translational modification, and formation of

protein complexes are almost certainly also involved in

generating variability. The net result is the creation of

cell populations with the same genome but unique

proteomes.
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Transient heritability is an interesting property of phe-

notypic variability arising from cell-to-cell differences at

the proteome level [5�,9�,10��]. While genetic differences

are stably passed on to progeny and epigenetic modifi-

cations are heritable for 10–105 cell divisions [11], the

state of the proteome is heritable on a much shorter

timescale (one to a few divisions) [5�,9�,10��]. The pro-

teomes of recently born sister cells are similar, owing to

binomial partitioning of abundant cellular components

during cell division [12,13]. The phenotypes of sister cells

are therefore more similar than those of two cells chosen

at random, although stochastic fluctuations cause sister

cells to decorrelate rapidly [5�,8�,10��].

The timescales and mechanisms underlying stochastic,

epigenetic, and genetic variation are distinct, but the

three types of variation interact (Figure 1a). Most

obviously, genetic and epigenetic factors determine the

mean levels or activities of proteins, and stochastic pro-

cesses determine dispersion around the mean. However,

the proteome also influences epigenetic regulation of

gene expression [14,15] and it has been suggested that

the expression levels of certain proteins influence the

probability that mutations will be fixed [16].

The distribution of protein abundance and
resulting variability in phenotype
When the effects of cell size are taken into account, the

concentration distribution for many proteins across a

clonal population of mammalian cells is well-fit by a

log-normal distribution [2��,5�], with a coefficient of

variation (CV, equal to the standard deviation divided

by the mean) of �0.1 to �0.6 [2��,5�,10��]. Log-normal

distributions are long-tailed so that even a tight distri-

bution (CV = 0.25) contains cells in the 95th percentile

that have 2.5 times the abundance of a particular protein

than cells in 5th percentile, and this spread increases

dramatically with increasing CV (Figure 1b). Some distri-

butions are even bimodal, with potentially dramatic

effects on cell fate [17�]. It is not known why distributions

differ [2��,10��,18–20] but regulatory processes may be

involved [19,20]. In mammalian cells, the relative levels

of most proteins do not appear to be highly correlated

[10��], although correlation is observed in the case of cell

cycle regulated genes [18]. On the basis of current obser-

vations, uncorrelated, long-tailed distributions in protein

abundance should be considered the default state; devi-

ations from this probably reflect the operation of active

processes that affect variability (e.g. feedback control on

transcription).
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Box 1 Stochastic gene expression

An early and influential experiment analyzed the sources of noise in

gene expression by tagging two copies of the same promoter with

two different fluorescent proteins in Escherichia coli [46]. The

authors found that both ‘extrinsic noise’ (affecting both gene copies

equally, but varying from cell to cell) and ‘intrinsic noise’ (caused by

the inherent stochasticity in transcription and translation, and

random between gene copies) contributed to cell-to-cell variability.

This intrinsic noise arises in bacteria because proteins are produced

in translational bursts from mRNA transcripts [47] and because

mRNA molecules themselves are produced in transcriptional bursts

[13]. In mammalian cells, however, transcription plays a more

dominant role. Work in Chinese hamster ovary cells showed that

transcriptional bursts are infrequent but long-lasting, caused by

random transitions between inactive and active states of genes.

These bursts produce high variation from cell to cell in mRNA levels

and consequently in protein number [48�].

Network architecture has significant impact on noise propagation in

complex signaling systems. Noise in upstream regulators can

propagate to downstream genes, thus adding to the intrinsic noise in

the gene’s output [49]. Negative feedback can reduce the effects of

noise by compensating for deviations from a set point [50], while

positive feedback can have the opposite effect, amplifying small

fluctuations. Cooperativity helps to maintain a state, buffering it

against small fluctuations, and providing a long-term protein-level

memory [51].
We are accustomed to thinking about phenotypes as

discrete states in which a single genotype maps to a

distinct phenotype. However, the existence of a unique

proteome in each cell means that a single genotype can

give rise to a range of phenotypes, with varying degrees of

overlap (Figure 1c). Whether the phenotypic range is

wide or narrow cannot easily be predicted a priori. For

example, in the case of receptor-mediated apoptosis, the

time between ligand exposure and the commitment to

death is very variable from one cell to the next but the

time between commitment to apoptosis and completion

of caspase-mediated cell killing is not [5�,21–23]. Is

phenotypic variation from one cell to the next simply

the inevitable consequence of building pathways from

imprecise components (e.g. proteins that vary in abun-

dance) or might it actually have adaptive advantage? It

has been proposed that intrinsic variability in otherwise

identical lymphocytes is necessary for correct operation of

the adaptive immune response [24].

In general, the connection between the levels of a set of

interacting proteins and a phenotype depends on the

precise biochemistry of the regulatory process. This is

true for the mean levels of a protein (determined geneti-

cally) and for fluctuations around the mean. We can

approximate the relationship between a protein’s level

and a cellular response by a transfer function. The

phenotype distribution across a population thus depends

on both the heterogeneous protein distribution and the

complexity of the transfer function (Figure 1d). In

some cases, the function is linear, at least over a limited

range, but nonlinear, nonmonotonic relationships, and
www.sciencedirect.com
thresholds are likely more common [1,25]. Moreover,

while some phenotypes are influenced primarily by a

single protein [7��,9�], most are controlled by multiple

factors [2��,5�,26,27], so intuiting cellular phenotype

from unique proteomes is not trivial. Therefore, under-

standing phenotype at a quantitative level requires

methods for measuring variation (see below) and de-

velopment of modeling frameworks that are able to

account both for variation in the proteome and the com-

plexity of transfer functions that determine phenotype

(see Box 2).

Measuring cell-to-cell variation
Linking protein expression levels to phenotype is most

commonly performed using fixed and live-cell micro-

scopy. Only a limited number of cellular events are

visible using bright field or phase-contrast illumination

(e.g. changes in cell size, morphology, motility, cell

division) and fluorescent biosensors are needed to assay

specific biochemical processes. Cell permeable dyes,

such as JC-1 used to measure changes in mitochondrial

membrane potential during apoptosis, can simply be

added to cell growth media, while genetically encoded

reporters have to be actively inserted into cells. When

expressed in cells, activity-sensitive fluorescent biosen-

sors can report on protein–protein association [28],

protein conformation [29], protein cleavage [1], and

protein modifications [30]. The ectopic expression of

fluorescently tagged proteins has also been used to

monitor changes in protein subcellular localization

[31], protein expression and degradation [8�], and

changes in cell cycle phase [32]. One challenge with

these reporters is that expressing them in cells can

perturb the phenomena under study. To minimize this,

fluorescent reporters can be fused to genes at their

normal genomic loci, so that native promoters are

retained [10��,19,20,33]. Libraries of such cell lines have

been used to correlate protein levels and localization in

drug-treated cells with cell fate [7��].

Immunofluorescence-based assays such as flow cytometry

[6,34] and high-throughput immunofluorescence micro-

scopy [35,36] have the advantage that no reporters are

required, and all assays can be carried out in unaltered

cells, often allowing for the transition of an established

assay into new cell lines or even primary tissue samples.

However, these assays do not provide information on

temporal dynamics and are limited by the availability

of specific antibodies. Ultimately, we would like to obtain

data on the complete proteomes of single cells, but this is

not feasible using current technology. High-dimensional

flow cytometry [37,38], improved microdissection [39],

and high-sensitivity mass spectrometry [40] may make

systematic characterization of proteomes at the single-cell

level possible. Until then, the obvious approach is to

measure protein distributions by flow cytometry and

phenotypes by live-cell microscopy.
Current Opinion in Chemical Biology 2009, 13:556–561
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Figure 1

Cell-to-cell variability of the proteome gives rise to phenotypic heterogeneity. (a) Interaction among factors that determine average cellular phenotype

and variance around the average. Combinations of environmental (blue), genomic (red), and proteomic (green) variation can cause heterogeneity in an

initially homogenous population. (b) Probability density functions of three log-normal distributions with different coefficients of variation (CV; standard

deviation divided by the mean). Red bars show the increasing disparity in protein levels between cells in the bottom and the top 5th percentiles. Protein

numbers for the top and bottom 5th percentile and their ratio are shown for each distribution, assuming a mean of 100,000 proteins per cell. (c) Three

hypothetical cases illustrating how the mean phenotype of a population (top row) can arise from different underlying phenotypic distributions (bottom

row) at the single-cell level. (d) Illustration of the effects of various transfer functions linking protein levels to phenotypes. The histograms (red)

represent the distribution of phenotypes in a population generated by applying the univariate transfer functions (blue) to the protein-level probability

density functions (green).
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Box 2 Modeling cell-to-cell variability

The amount and detail of information available about a biochemical

process and the goals of the analysis determine how cell-to-cell

variability should be modeled. The simplest models are conceptual

or diagrammatic and attempt to account for the mean values of key

variables (e.g. rates of physiological processes) and their dispersion

about the mean [3��]. More rigorous are methods based on

stochastic differential equations (SDEs) or the Langevin approach in

which the biochemical reactions are cast as deterministic differential

equations with an added noise term [49]. Finally, the chemical master

equation, which describes the probability that individual molecules

will collide and react in a given time interval, can be approximated

numerically using the Stochastic Simulation Algorithm (SSA) or

Gillespie Algorithm [52].

If the goal is to study the stochastic process in detail, then use of

SDEs or the SSA is necessary, but it is also possible to separate the

causes and consequences of stochasticity. For example, if we want

to understand cell-to-cell variability in phenotype arising from

differences in the levels of relatively abundant proteins, then we can

combine deterministic models with distributions of initial protein

concentrations and arrive at reasonable and useful approximations.

The processes that generate the distribution in parameter values are

stochastic, but given a measured or assumed distribution at the

outset of the simulation, we can then use deterministic differential

equations. This greatly facilitates parameter estimation, simulation,

and model interpretation. Using such a hybrid approach merely

awaits the development of a practical implementation of the

modeling methodology.
Potential implications of cell-to-cell variability
in pharmacology and human disease
How might emerging understanding of non-genetic cell-

to-cell variability impact pharmacology and the treatment

of human disease? A significant problem in cancer is

fractional killing or incomplete growth inhibition of

tumor cells [41]. Multiple explanations of fractional kill-

ing have been proposed including variation in the access

of tumor cells to a drug, genetic heterogeneity, drug

insensitivity during certain cell cycle phases [42,43]

and, most recently the presence of drug-resistant cancer

stem cells [44]. However, natural fluctuations in the

proteome and resulting dispersion in drug responsiveness

of cells [3��,4,5�,7��] are likely to be important but poorly

appreciated factors. For example, protein expression out-

liers in key stem cell markers such as Nanog and Sca-1

have been shown to influence pluripotency and can remix

to repopulate the full distribution of expression levels

[9�,17�]. Similarly, drug-resistant cancer stem cells, rather

than being a static genetically or epigenetically distinct

subfraction, may represent population outliers resulting

from proteomic heterogeneity.

If proteomic fluctuations indeed play a critical role in drug

sensitivity, new approaches for maximizing therapeutic

efficacy may be required. Fractional killing is often com-

bated by dosing patients repeatedly with the idea that

cells that are resistant to the first round of therapy will be

killed in the second round, perhaps because they are in a

different cell cycle phase [42,43]. However, if fluctuations

in the proteome play a significant role in fractional killing,
www.sciencedirect.com
then repeat treatment may not work because outliers in

the dose–response profile will survive to repopulate the

full distribution [5�,10��,45]. Nevertheless, it may be

possible to identify compounds that alter the distribution

of proteome states so as to reduce the fraction of non-

responders. Combination therapy is standard in cancer

care, but targeting the dispersion of phenotypic responses

has not, to our knowledge, been examined as a strategy.

Preliminary data suggest that it might work however,

since heterogeneity in the responses of cells to drugs

such as a death ligand can be altered by changing the

expression levels of apoptotic regulators [5�]. The way

forward would appear to involve understanding which

proteins contribute most to variability in response to a

particular drug and then attempting to target these

proteins.

In many cases, the phenotypic heterogeneity within a

population is not simply a binary choice between death

and survival. For example, cells treated with microtubule

poisons such as nocodazole can respond with as many as

seven distinct phenotypes [3��]. Thus, following

exposure to a drug, even a relatively homogeneous popu-

lation of cells can become significantly more diverse. This

induced phenotypic heterogeneity is likely to be even

more complicated when multiple drugs are employed,

especially if one drug causes permanent genomic

changes. As a consequence, it is exceedingly difficult

to predict the optimal treatment regimen with the large

number of chemotherapeutics employed at this time.

Conclusions
The complexity of cellular response to drugs suggests that

it will be valuable to study preclinical pharmacology using

sophisticated single-cell measurement of both mean

behaviors and variation about the mean in proteome and

phenotype. While the phenomena of stochastic gene

expression, proteome fluctuations, and cell-to-cell varia-

bility in phenotypes have clearly been established in the

context of single-celled organisms and cell lines, the full

impact on pharmacology, and the treatment of human

disease is currently unknown. These concepts may actually

be clinically applicable in the short term, as relevant single-

cell data are already being collected in pharmacological

screens, histopathology samples, and flow cytometry

analysis of blood. Advances in mathematical modeling

methods are also required to account for stochastic bio-

chemical processes, dispersion in model parameters, and

the impact on phenotype. Nonetheless, there is every

reason to believe that non-genetic variability in the pro-

teome will be recognized, alongside genetic changes and

local environment, as an important factor in the develop-

ment and treatment of human disease.
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