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2Dipartimento di Economia Politica e Methodi Quantitativi, Universit "aa di Pavia, Italy
3Istituto di Matematica Applicata e Tecnologie Informatiche, C.N.R., Milano, Italy

SUMMARY

Telecommunications systems have recently undergone significant innovations. These call for suitable
statistical models that can properly describe the behaviour of the input traffic in a network. Here we use
fractional Brownian motion (FBM) to model cumulative traffic network, thus taking into account the
possible presence of long-range dependence in the data. A Bayesian approach is devised in such a way that
we are able to: (a) estimate the Hurst parameter H of the FBM; (b) estimate the overflow probability which
is a parameter measuring the quality of service of a network: (c) develop a test for comparing the null
hypothesis of long-range dependence in the data versus the alternative of short-range dependence. In order
to achieve these inferential results, we elaborate an MCMC sampling scheme whose output enables us to
obtain an approximation of the quantities of interest. An application to three real datasets, corresponding
to three different levels of traffic, is finally considered. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTORY ASPECTS AND MOTIVATIONS

The introduction of new technologies for telecommunications, based on packet switched
networks, has led to new teletraffic problems. Due to the exponential growth of the Internet, the
study and analysis of telecommunications is of considerable and increasing importance. In
Internet communications, the transmission of data files, e-mail, video signals, etc. generates an
information stream. The user generating such a stream is commonly referred to as a traffic
source. The information stream produced by a traffic source is segmented into variable size
packets called datagrams, according to the Internet Protocol (IP, for short); see Reference [1]. A
datagram is composed by a header area and a data area. The header area essentially contains
routing information, i.e. the source and destination IP addresses, as well as the information to
interpret the data area. IP datagrams are routed through IP routers, which interconnect input
links with output links. Output links are equipped with buffers to store and schedule IP
datagrams for transmission.
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Apart from the case of dedicated telephone lines, IP packets are transmitted using standard
commercial telephone lines. The common transport tool in telephone lines is the asynchronous
transfer mode (ATM) technique; see, e.g. Reference [2]. In ATM, the information stream
produced by a user (traffic source) is split into fixed-length packets. To identify both the source
and the destination, a fixed-length label is added to each information packet, to form an ATM
cell. According to their labels, cells are routed through ATM nodes connecting input links with
output links. The typical behaviour of a traffic source consists of alternating activity (ON) and
silence (OFF) periods. The transmission rate is usually constant during each ON period.
Because of the presence of several traffic sources simultaneously connected, it is far from being
unusual that different cells simultaneously require the same output link. To overcome the
competition among these cells, a buffer is used, and cells that cannot be immediately transmitted
are stored in it. This means that an ATM element is characterized by a queue of cells at the
output link. Since the buffer size is finite, a cell entering the system when the buffer is already full
cannot be either transmitted or stored in the buffer and, then, it is lost.

New standards have been recently defined in order to transmit IP datagrams by ATM
technique via ‘Cell switch routers’ (see References [1,3,4]). The basic idea consists in
interconnecting IP routers by ATM links. IP datagrams are first fragmented into ATM cells,
then transmitted by an ATM link and finally reassembled. If one ATM cell originated by the
fragmentation of an IP datagram is lost in the output buffer, then all the other ATM cells
belonging to the same IP datagram are lost, and the IP datagram must be retransmitted.

Packet switching networks are essentially networks of queues. The evaluation of the performance
of a single server queue, the ATM multiplexer, composed by an ATM link with buffer, is a
fundamental step in assessing the performance of ATM networks and, because of the use of ATM
switching fabrics in IP routers, of IP networks. This last point is particularly relevant, because of
the recent growth of applications using Internet protocol. IP technology does not eliminate the
need to deploy ATM networks, because ATM offers a standard set of traffic management
mechanisms that can inter-operate among different providers to allow efficient support for different
types of services and effectively guarantee a good quality of service (QoS) to the connections.

Telecommunication networks are characterized by QoS requirements. A fundamental QoS
parameter is the cell loss probability, as suggested in Reference [5] and the ITU-T
Recommendation I.356 Reference [6]. The cell loss probability is defined as the ‘long term
fraction of lost cells’. As a convenient approximation of it, the overflow probability is commonly
used; see, e.g. Reference [5]. It is defined as the probability that the number of cells in an infinite
queue exceeds the buffer size. Cell loss probability is the most important QoS parameter in ATM
and/or IP networks. As already stressed, in applications using the IP protocol, if an ATM cell is
lost, then the corresponding IP datagram is completely lost, and must be retransmitted. This may
clearly cause the congestion of communications networks and delay in the transmission. The
higher the cell loss probability, the stronger the phenomena of congestion and transmission delay.

In order to guarantee an acceptable QoS, it is of primary importance to have at least an idea
of the corresponding cell loss probability (or better, of the overflow probability). In ATM
networks, the traffic is controlled by the connection admission control (CAC) function. Before
establishing a new connection, the corresponding source is asked to declare some standard
intensity traffic parameters. On the basis of such parameters, the CAC function computes the cell
loss probability, and then checks if the system has enough resources to accept the new
connection without infringing QoS requirements. On the other hand, in IP networks there is no
preventive traffic control. Sources do not declare any intensity traffic parameters, so that the cell
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loss probability cannot be computed. This motivated the need of estimating the cells loss
probability on the basis of observed data. In fact, the evaluation of the cell loss probability
allows one to answer some basic problems, such as determining the utilization level of a link such
that the QoS requirements are met. Therefore the statistical estimation of the buffer overflow
probability is unavoidable if one wants to assess the performance of ATM and/or IP networks.

The main contribution of the present paper is a Bayesian approach to the estimation of the
overflow probability. In detail, Section 2 contains a description of the model and the related and
related statistical problems. In Section 3, a Bayesian technique to estimate the overflow probability is
developed. Finally, in Section 4 an application to real data is considered. Data come from
measurements made in Italy by Telecom Italia, in the framework of the European ATM Pilot Project.
The applications considered are videoconference, teleteaching, and transport of routing information
between IP network routers. All applications use the Internet Protocol over ATM, as described above.

2. THE MODEL AND ITS MOTIVATIONS

Stochastic models for packed switched traffic traditionally fall into one of two categories: burst
scale models, and cell scale models; see Reference [5, pp. 309, 310, 389] for a good description.
Burst scale models are based on the fluid flow approximation for the packet stream produced by
a source. Cell level models are primarily useful for ATM traffic data; cf. e.g. Reference [7]. They
are essentially based on the idea that all transmission systems work in discrete time. In fact,
there exists an elementary time unit, the time slot, such that no more than one cell per time slot
can be transmitted. The relative merits of these two different approaches to modelling teletraffic
phenomena is briefly discussed, for instance, in Reference [5, Chapters 16, 17]. We adopt here
the burst scale approach, which proves useful especially when studying the characteristic of the
aggregated traffic produced by several users simultaneously connected.

Suppose that N sources are simultaneously connected to a traffic node, and let Ai(t) be the
amount of traffic generated by the ith source during the time interval (0, t], t > 0, i ¼ 1; . . . ;N:
Furthermore, let

XðtÞ ¼
XN
i¼1

AiðtÞ ð1Þ

be the global amount of traffic generated by the N sources up to time t. In the sequel, the
stochastic process (X(t); t>0) will be referred to as the ‘cumulative arrival process’. Suppose
that the service time (i.e. the channel capacity) is constant, and equal to c, and let V be the
unfinished work of the system. It is not difficult to show (cf. Reference [8]) that the following
equality in distribution holds true:

V ¼d sup
t50

ðXðtÞ � ctÞ ð2Þ

Relationship (2) is of basic importance in studying the performance of telecommunication
systems. Let u be the buffer size. Then, the overflow probability, closely related to the loss
probability, is equal to

QðuÞ ¼ PðV > uÞ ¼ P sup
t50

ðXðtÞ � ctÞ > u

� �
ð3Þ
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As mentioned before, the overflow probability is the most important measure of performance
for telecommunication systems, since it is a good approximation of the loss probability for
buffered systems. Formula (3) shows that the problem of evaluating the overflow probability
essentially consists of studying the distribution of the supremum of a stochastic process.

Hence, some assumptions on the process (X(t); t>0) are in order. A common hypothesis is
that it is a Gaussian process with stationary increments. Such an assumption essentially rests on
(1) and the functional central limit theorem. The assumptions on the covariance function of
(X(t); t50) are more delicate. In the sequel, we will suppose that the process can be expressed in
the form

XðtÞ ¼ mtþ sZðtÞ ð4Þ

where (Z(t); t50) is a fractional Brownian motion (FBM, for short). It is characterized by the
following properties:

(i) Z(t) is a Gaussian process with stationary increments.
(ii) Z(0) =0 a.s.
(iii) E [Z(t)]=0 and E[Z(t)2]=t2H for all positive t.

The parameter H is the Hurst parameter: it takes values in the interval (1
2
; 1) and, if H ¼ 1

2
; Z(t)

reduces to the standard Brownian motion.
Model (4), with Z(t) FBM, was first proposed as a realistic model for aggregated traffic by

Norros [9,10]. Its most important feature is that it is a self-similar process: ZðatÞ ¼d aHZðtÞ for
every positive a. Clearly, the process (X(t)�mt) possesses the same property. The self-similar
nature of Ethernet traffic was first shown by statistical (frequentist) analysis of Bellcore traffic
data. See References [11,12]. A good bibliographical guide for the subject is in Reference [13].

As a consequence, the increments of Z(t) (and those of X(t), as well) are stationary with long-
range dependence whenever H > 1

2
: To be precise, let Yi =X(i)�X(i�1), i ¼ 1; . . . ;N: From the

well-known formula (see Reference [14], pp. 52, 56)

E½ZðtÞZðsÞ� ¼ 1
2
ðt2H þ s2H � jt� sj2HÞ 8t; s50

it is seen that the correlation coefficient between the increments Yi and Yi+k is equal to

rðkÞ ¼ 1
2
ððkþ 1Þ2H � 2k2H þ ðk� 1Þ2HÞ 8k51 ð5Þ

The most important property of (5) is that r(k) tends to zero very slowly as k tends to infinity.
In fact, by a Taylor expansion it is easy to see that r(k) � H(2H �l)k2(H�1) as k!1, for every
1
2
5H51.
Long-range dependence is essentially generated by ON and/or OFF periods with infinite

variance; see Reference [5]. From a practical point of view, this means that when the traffic
sources generate traffic with high variability, where the ON periods can be very long (cf.
Reference [15]), one should expect that the aggregated traffic stream entering the transmission
system, X(t), is characterized by the presence of long-range dependence. This is important not
only from a theoretical point of view. In fact, long-range dependence could potentially have a
great influence on the performance of telecommunication systems, since it could considerably
increase the overflow probability; see Reference [16]. Furthermore, stochastic models that do
not allow for long-range dependence could severely underestimate the loss probability. These
two facts provide the most important justifications to the use of model (4).

Copyright # 2004 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind., (in press)

P. L. CONTI, A. LIJOI AND F. RUGGERI



Unfortunately, even for model (4) the loss probability (3) cannot be written in a closed form.
However, using a result by H .uusler and Piterbarg [17] it can be shown that, under the stability
condition m5c, the following holds:

quðH; m;s2Þ :¼ QðuÞ

�

ffiffiffi
p

p
ðc� mÞ1�Hð1�HÞ3=2�H�1=HH2H

H3=2�H2ðH�1Þ=ð2HÞs1=H�1
uð1�HÞ2=HCðAs�1u1�HÞ ð6Þ

as u tends to infinity, where C( � ) is the survival function of normal standard distribution,

A ¼
ðc� mÞH

HHð1�HÞ1�H

and

H2H ¼ lim
t!1

ð1=tÞE exp max
04s4t

ð�s2H þ
ffiffiffi
2

p
ZðsÞÞ

� �� �
ð7Þ

Z(t) being a FBM. Since the usual buffer size is u=500, or u=1000, the asymptotic
approximation (6) is satisfactory.

The exact value of constant (7) is not known. Luckily enough, in Reference [18] it is
shown that

0:124H2H43:1 ð8Þ

Estimate (8) will be used in the sequel.

Remark 1

The most important part of relationships (8) is the upper bound 3.1, at least from a practical
point of view. In fact, as already outlined in the Introduction, communication providers should
guarantee a loss probability smaller than a given threshold. Hence, the upper bound in (8) is
much more important than the lower bound.

Remark 2

The constant H2H is given an equivalent definition in Reference [19]. It suggests, as the author
himself points out, the possibility of evaluating H2H numerically for some values of 2H.

Observe that the unfinished work V is infinite a.s. whenever m5c, so that in our setting the
loss probability turns out to be equal to

QðuÞ �

ffiffiffi
p

p
ðc� mÞ1�Hð1�HÞ3=2�H�1=HH2H

H3=2�H2ðH�1Þ=ð2HÞs1=H�1
uð1�HÞ2=H CðAs�1u1�HÞIm5c þ Im5c ð9Þ

where Im5c is 1 if m5c and is zero otherwise (similarly one defines Im5c).
Since in applications the parameters of model (4) are unknown, they must be estimated by

the observed data. The goal of the present paper is to propose a Bayesian approach to such
an estimation problem. More specifically, in Section 3, the priors for the unknown parameters
are introduced, and updated on the basis of the sample data. Since the posteriors cannot
be expressed in a closed form, a computational scheme based on MCMC is adopted. As a
by-product, a Bayesian approach to the problem of testing for independence ðH ¼ 1

2
Þ against
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long-range dependence ðH > 1
2
Þ is obtained. Finally, in Section 4 an application to real data

is provided.

3. BAYESIAN ANALYSIS

According to guidelines provided in the previous sections, we now proceed to illustrate the
Bayesian set-up for our statistical analysis.

Let n be the sample size and let t1; . . . ; tn be fixed time instants. Correspondingly, n
observations of the process {X(t): t50} are made and they are denoted by Xðt1Þ ¼ x1; . . . ;
XðtnÞ ¼ xn: For the sake of brevity, in the sequel, we will use the vector notation

x ¼ ðx1; . . . ;xnÞ
0 t ¼ ðt1; . . . ; tnÞ

0

Moreover, OH denotes (apart from the constant s2) the covariance matrix of ðXðt1Þ; . . . ;XðtnÞÞ;
whose (i, j)th element is

oi;jðHÞ ¼ 1
2
ðt2Hi þ t2Hj � jti � tj j2HÞ

Since the process (X(t); t 50) is assumed to be a FBM, the likelihood function coincides with

f ðH; m;s2; xÞ ¼
jOH j

�1=2

ð2ps2Þn=2
exp �

1

2s2
ðx� mtÞ0O�1

H ðx� mtÞ
� �

with jOH j denoting the determinant of matrix OH : As far as prior specification for the vector of
parameters (H; m;s2Þ 2 ½1

2
; 1Þ � R� Rþ we set

p0ðdHÞ ¼ ed1=2ðdHÞ þ ð1� eÞp�0ðHÞI1=25H51 dH

p1ðmjs2Þ ¼
1

s
ffiffiffiffiffiffiffiffiffi
2pw

p exp �
m� mcÞ

2

2s2w

� �

p2ðs2Þ ¼
ln

GðnÞ
1

s2

� �nþ1

exp �
l
s2

� �

for some e 2 [0,1], and dx( � ) is the Dirac function at x. The prior specification we are adopting
deserves some further explanation. The prior p0 for the Hurst parameter H is essentially
motivated by the following important fact: the (FBM) input process does possess completely
different characteristics according to the values of H. In particular, if H ¼ 1

2
; it reduces to a

standard Brownian motion, which is an independent increments process (with short-range
dependence behaviour and strong Markov, as well). If H 2 ð1

2
; 1Þ then the (FBM) input process

possesses increments with long-range dependence and it turns out to be non-Markov. The prior
p0 takes into account this basic fact, and allows to compare short- vs long-range dependence.
The value of e measures the degree of prior belief about short-range dependence of the original
series. Moreover, the diffuse component p�0 on (1

2
;1) is taken to be a uniform distribution so to

reflect lack of prior information concerning the strength of the long-range dependence
behaviour, if present.

As far as the prior for m and s2 are concerned, they depend upon the hyperparameters l, v, w
and mc. A discussion of their choice is postponed to Section 4, where sensitivity of posterior
estimates is considered as well.
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3.1. Estimation of H

Since Bayes’ theorem can be applied in our case, the posterior distribution of (H, m, s2), given
the vector of observations x ¼ ðx1; . . . ;xnÞ

0; is

pðdH;dm;ds2jxÞ / p0ðdHÞp1ðmjs2Þp2ðs2Þf ðH;m;s2; xÞ dm ds2

where / means that equality holds true up to a normalizing constant. In order to obtain a
posterior estimate of the self-similarity parameter H, we determine its posterior distribution by
integrating out m and s2 in the joint posterior distribution, so that one has

pðdH jxÞ /
ejO1=2j

�1=2

z1=2
1=2M

nþn=2
1=2

d1=2ðdHÞ þ
ð1� eÞjOH j�1=2

z1=2H M
nþn=2
H

p�0ðHÞ dH

8<
:

9=
;

where

zH :¼ t0O�1
H tþ

1

w
; xH :¼ t0O�1

H xþ
mc
w
; MH :¼ lþ

x0O�1
H x

2
þ

m2c
2w

�
x2H
2zH

are, for any H in ½1
2
; 1Þ; computable. On the contrary, the normalizing constant

k�ðxÞ ¼ e
jO1=2j

�1=2

z1=2
1=2M

nþn=2
1=2

þ ð1� eÞ
Z
ð1=2;1Þ

jOH j
�1=2

z1=2H M
nþn=2
H

p�0ðHÞ dH

¼: ekdðxÞ þ ð1� eÞkcðxÞ

has to be approximated. With the posterior distribution p(dH|x) at hand, one can obtain the
posterior mean for H

EðHjxÞ ¼ ðk � ðxÞÞ�1 e
2

jO1=2j
�1=2

z1=21=2M
nþn=2
1=2

þ ð1� eÞ
Z
ð1=2;1Þ

HjOH j�1=2

z1=2H M
nþn=2
H

p�0ðHÞ dH

8<
:

9=
; ð10Þ

Since the integral appearing in the right-hand side of (10) cannot be exactly evaluated, we
approximated it numerically. Details on the approximation procedures for k*(x) and E(H|x) are
illustrated in Appendix A.1.

3.2. Estimation of loss probability

As far as the problem of evaluating posterior loss probability, as a measure of performance
of the system, is concerned, using formula (9) and the dominated convergence theorem, we
have that

P sup
t50

ðXðtÞ � ctÞ > ujx
� �

�
Z
½1=2;1Þ�R�Rþ

quðH;m; s2ÞpðdH;dm; ds2jxÞI ðm5cÞ þ Pðm5cjxÞ
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holds true for large values of u. Hence, one hasZ
½1=2;1Þ�R�Rþ

quðH; m;s2Þ1ðm5cÞpðdH; dm;ds2jxÞ

4e
kd ðxÞ
k�ðxÞ

Z
R�Rþ

%qqu
1
2
;m;s2

� 	
p� 1

2
;m;s2jx

� 	
I ðm5cÞ dm ds2

þ ð1� eÞ
kcðxÞ
k � ðxÞ

Z
ð1=2;1Þ�R�Rþ

%qquðH;m;s2Þp��ðH;m;s2jxÞI ðm5cÞ dH; dm;ds2 ð11Þ

where %qqu is an upper bound for qu, obtained by substituting H2H with 3.1. Moreover, p*( � |x)
and p**( � |x) are probability distributions on R�R+ and on ð1

2
; 1Þ �R�R+, respectively. One

easily checks that the determination of an upper bound for the loss probability requires the
numerical evaluation of kc(x) and of the two integrals appearing in (11) above. We implemented
an MCMC algorithm whose features are fully described in the appendix.

However, the algorithm we have resorted to might be computationally cumbersome in some
cases, because of the presence of the term CðAs�1u1�HÞ in (9). Considerable simplifications are
obtained by virtue of the following well-known inequality for the Mills’ ratio of the Gaussian
distribution

CðAs�1u1�HÞ5
sffiffiffiffiffiffi

2p
p

As1�H
exp �

1

2s2
A2u2�2H

� �
ð12Þ

see, e.g. Reference [20, p. 49]. Using (12), we obtain

quðH;m; s2Þ5
3:1ðc� mÞ1�2Hð1�HÞð5=2Þ�2H�ð1=HÞuðH�1Þð2H�1Þ=H

21=ð2HÞH3=2�2Hs1=H�2
exp �

A2u2�2H

2s2

� �

and integration w.r.t. s2 gives, for an appropriate function %qq�uðH;m; xÞ:Z
½1=2;1Þ�R�Rþ

quðH;m;s2ÞpðdH;dm;ds2jxÞ

5
Z
½1=2;1Þ�R

%qq�uðH; m; xÞpðdHjxÞpðmjH;xÞ dm ð13Þ

where

pðmjH;xÞ ¼
Gððnþ 2nþ 1Þ=2Þffiffiffi

p
p

Gððnþ 2nÞ=2Þ

ffiffiffiffiffiffiffiffiffiffiffi
zH

2MH

s
1þ

zH
2MH

m�
xH
zH

� �2
( )�ðnþ2nþ1Þ=2

In order to provide an approximation of the integral in the right-hand side of (13), we implement
both aMonte Carlo i.i.d. sampling and aMetropolis–Hastings scheme as described in appendix A.2.

3.3. A model comparison problem: short- vs long-range dependence

An important problem is to study the essential features of traffic, and in particular the presence/
absence of self-similarity. Apropos of this we mention that there is a great debate in the literature in
order to assess the characteristics of traffic in telecommunication systems, see the key paper by
Willinger et al. [11] and the references in Reference [13]. See also Reference [15] for further
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important remarks and bibliographic references. The classical approach [11,12] consists of cons-
tructing an asymptotic confidence interval for the Hurst parameter H, and to check whether it
contains 0.5, which implies short-range dependence, or not, this latter case implying long-range
dependence. Two points have to be stressed. First of all, in References [11,12] the (frequentist)
analysis involves Ethernet traffic packets; no analysis is made for ATM traffic, neither frequentist
nor Bayesian. In our knowledge this is the first paper where a Bayesian analysis for ATM traffic
data is carried out. As already mentioned in Section 2, the value ofH does have a great influence on
the performance of the system: the greaterH, the worse the performance in terms of loss probability.

The problem of identifying the traffic data characteristics can be formally written down as an
hypothesis problem

H0 : H ¼ 1
2
; vs H1 : H > 1

2

On the basis of results in previous section, a Bayesian test can be easily performed. In principle,
a Bayesian test is based on the probability ratio

PðH ¼ 1
2
j xÞ

PðH 2 ð1
2
; 1ÞjxÞ

ð14Þ

It is apparent from the exposition in Section 3 that the probabilities in (14) cannot be computed
analytically. Using the same notation as in Section 3, the numerator of (14) is approximated by

ejO1=2j
�1=2

#kk�ðxÞz1=2
1=2M

nþn=2
1=2

Hence ratio (14) is approximated by

ejO1=2j
�1=2

#kk�ðxÞz1=2
1=2M

nþn=2
1=2 � ejO1=2j

�1=2

4. APPLICATION TO REAL DATA

We consider data from the experimental European ATM network [21], a project jointly
developed by the leading telecommunications company in the European Union. Engineering
aspects of the measurement problem are thoroughly described in Reference [22].

Data streams are produced by superimposing the traffic generated by three different kinds of
applications: videoconference, teleteaching and transportation of routing information between
IP network routers. All these applications use IP packets over ATM, so that the overflow
probability must be estimated on the basis of the available data. The measurement process
produces the number of cells arriving in a time slot (1/80 000 s) at an ATM multiplexer,
composed by an ATM link and a buffer to store cells not immediately transmitted by the link.

The data we have used come from measurements taken for three different kind of
applications: videoconference, teleteaching, and transportation of routing information. In order
to study the effects of simultaneous transmissions from several different sources, as described in
Section 2 (see (1)), the stream corresponding to every application has been split into substreams
(1 s length), and only the data from the first quarter in each substream have been considered.
Data from different quarters can be considered approximately independent, each of them
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coming from a different ‘virtual’ source. They can be superimposed as if they were coming from
sources simultaneously connected to the same ATM multiplexer. We consider three different
traffic scenarios: light, medium and heavy traffic. In the first case (light traffic) we have
superimposed 10 ‘virtual sources’ for each kind of applications. We have obtained a medium
traffic situation by considering 30 teleteaching sources and 20 sources each for both
videoconference and transportation of routing information. Finally, the heavy traffic scenario
is obtained by superimposing 30 teleteaching sources and 34 sources each from both
videoconference and transportation of routing information.

Data from the three scenarios are depicted in Figures 1(a)–(c). Arrivals follow a typical
pattern in telecommunications, already observed in non-ATM cases; see References [11,12]. In
fact, the patterns are far from being generated by a process with independent increments (i.e.
with H=0.5). On the opposite, Figures 1(a)–(c) shows the presence of self-similarity in the
arrival processes, i.e. long-range dependence in the corresponding increments (H > 0.5). As
already mentioned in Section 2, FBM is a natural tool for modelling purposes.

Formulas in Section 3 require dealing with matrices whose dimension is given by the data
stream length, in our case more than 20 000. Computational burdens have lead us to reduce the
size by grouping the data considering the number of cells arriving in 300 consecutive time slots.
Therefore, matrices from grouped data have been inverted by FORTRAN routines and their
determinants have been computed, as well.

Figure 1. Number of cell arrivals under (a) light, (b) medium and (c) heavy traffic.
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In relationship (3) we have taken u=1000, which is a rather high buffer size, whereas the
choice c=300 follows from the link speed. Moreover, in the prior distribution of m we set
w=0.01, in order to reduce the probability of sampling negative values for m.

Our main goals are the detection of long-range dependence and the estimation of the overflow
probability Q(u). The former goal has been achieved by both estimating the parameter H and
computing the posterior probability ratio for the problem H ¼ 1

2
vs H > 1

2
: The main finding is

the detection of long-range dependence even when considering priors heavily concentrated
around H ¼ 1

2
: The values of ratio (14), for different values of prior hyperparameters, are shown

in Tables I and II as well as the Bayes estimates of Q(u). Table III shows the same quantities
when the r.h.s. of inequality (12) is considered. It is worth mentioning that plots of estimated
Q(u)’s vs number of iterations show a quick convergence.

It appears that even when the prior probability of H= 0.5 is very high (e=0.999), ratio (14)
takes small values. By the way, the smaller e, the smaller (14). Hence, our first conclusion is that
the data show the presence of strongly correlated increments in the input processes
corresponding to the three scenarios considered. Bayes’ estimates of H (Table IV) are generally
far from 0.5.

The value e=1 has been considered in order to study the effect of neglecting long-range
dependence. Such an effect is particularly relevant in case of ‘heavy’ traffic (Tables I and II),
which is the most important for applications. As expected, a value e=1 could produce a severe
underestimation of the overflow probability. The use of the bound in (13) is less expensive from
a computational point of view, but produces less accurate results. Compare Tables I and II with
Table III. As far as the sensitivity of the Bayes’ estimates of the overflow probabilities (with

Table I. Upper bound and probability ratio with n=500, l=10, m=1000.

Traffic e Upper Ratio

Heavy 1 0.0 +1
Heavy 0.999 0.267� 10�9 0.159� 10�19

Medium 1 0.0 +1
Medium 0.999 0.0 0.222� 10�21

Light 1 0.0 +1
Light 0.999 0.0 0.222� 10�21

The column labelled ‘Upper’ features posterior estimates of the upper bound of the overflow probability. The column

labelled ‘Ratio’ provides estimates of the posterior probability ratio for the Bayesian test in Section 4.

Table II. Upper bound and probability ratio with n=300, l=10, m=1000.

Traffic e Upper Ratio

Heavy 1 0.49� 10�16 +1
Heavy 0.999 0.907� 10�7 0.687� 10�12

Medium 1 0.0 +1
Medium 0.999 0.996� 10�16 0.198� 10�12

Light 1 0.0 +1
Light 0.999 0.0 0.581� 10�19

The column labelled ‘Upper’ features posterior estimates of the upper bound of the overflow probability. The column

labelled ‘Ratio’ provides estimates of the posterior probability ratio for the Bayesian test in Section 4.
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respect to the choice of the hyperparameters) is concerned, we may note that it is moderate
although not negligible.

As far as posterior estimates of H are concerned, our results are summarized in Table IV,
where all three different frameworks of heavy traffic (HT), medium traffic (MT) and light traffic
(LT) are considered. Two different procedures have been employed. The first one relies upon the
classical Monte Carlo procedure as illustrated in Section 3.1. The second one resorts to a
Metropolis–Hastings sampling scheme for drawing from the posterior p(dH|x) and the resulting
sample is used for estimating H. The estimates have been obtained after 12 000 runs and with a
burn-in of 10 000 iterations. Diagnostic tests performed with the BOA package (see Reference
[23]) have provided strong evidence of convergence of the estimation procedure. The reason for
considering an MCMC scheme in this setting is two-fold. On one hand, it is desirable to sketch
some comparison, both in terms of computational time and in terms of numerical outcomes,
with the classical Monte Carlo procedure. From a computational point of view, the Monte
Carlo method is much faster, since it requires on average 15min with a HP machine (processor
PA8000, 180MHz) to be completed, whereas the MCMC sampler has been running for 95min.
From a numerical point of view, the estimates are not significantly different. On the other hand,
having performed an MCMC algorithm one can use the MCMC output in order to get a kernel
density estimate of the posterior distribution of H. This can give some insight on the dispersion
of H around its posterior mean. In Figure 2, we provide graphs both of the histogram of the
MCMC sample and the kernel density estimate of the posterior distribution of H.

The results obtained are fairly insensitive to different choices of the parameters of the prior
for m. The situation is different as far as the prior of s2 is concerned. From Table IV, it is argued
that different values of v could have a rather strong influence on the estimation of H. However,
as it appears from Tables I and II, such a negative effect is mitigated when one considers the

Table III. Upper bound and probability ratio using Mills’ ratio, with l=10.

Traffic e n Upper Ratio

Heavy 0.999 500 0.556� 10�7 0.16� 10�20

Heavy 0.999 300 0.498� 10�4 0.66� 10�12

Heavy 1 300 0.0 +1
Medium 0.999 300 0.232� 10�13 0.193� 10�12

Light 0.999 300 0.423� 10�41 0.57� 10�19

The column labelled ‘Upper’ features posterior estimates of the upper bound of the overflow probability. The column

labelled ‘Ratio’ provides estimates of the posterior probability ratio for the Bayesian test in Section 4.

Table IV. Posterior estimates of H.

n=300, l=10 n=3, l=10

HT MT LT HT MT LT

Monte Carlo 0.665 0.666 0.726 0.867 0.865 0.894

MCMC 0.694 0.688 0.756 0.821 0.818 0.832
MC error 0.00164 0.00165 0.00159 0.0015 0.0015 0.0017

The abbreviation HT stands for ‘High Traffic’, MT for ‘Medium Traffic’ and LT for ‘Light Traffic’.
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overflow probability (which is the real goal of our analysis). In fact, large variations of v
produce only moderate variations of the Bayes’ estimates of the overflow probability. Here we
provide some tables with estimates of H corresponding to different values of E(s2) and Var(s2),
i.e. to different choices of l and v. See Table V. One can notice that the posterior estimates
of H are more sensitive to changes in E(s2) when Var(s2) than in the case in which Var(s2) is
very low.

4.1. Discussion on the choice of the hyperparameters

The Bayes estimates of the overflow probability exhibit some sensitivity w.r.t. the
hyperparameters w, l, v. For this reason, it is of interest to discuss their choice. In
telecommunications, prior information is frequently available in the form of trial samples, i.e.
small samples of traffic measurements.

Figure 2. Histogram (on the left) and kernel density estimate of H (on the right) obtained with n=10,
l=300 and e=0.999. The posterior estimate is, in this case, EðHjxÞ ¼ #HH � 0:694: The estimates are

obtained basing on the ‘heavy traffic’ data.

Table V. Sensitivity of posterior estimates of H (with heavy traffic data).

Var(s2)=0.001 Var(s2)=1

E(s2) E(H|x) Acceptance ratio (%) E(H|x) Acceptance ratio (%)

0.5 0.6831 50.14 0.8251 58.11
1 0.6828 50.06 0.8239 57.9
10 0.6827 50.04 0.6931 58.29
100 0.6828 50.01 0.6829 57.43
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Assume that the available prior data consist of k51 independent samples. Each sample is
obtained by observing the system under consideration for a (short) period of time. The whole
observation period is split into m time intervals of length D>0. Let Yi,j be the amount of traffic
entering the system in the ith time interval of the jth sample (i ¼ 1; . . . ;m; j ¼ 1; . . . ; k). From
our previous assumptions, conditionally on m, s, H, the random vectors ðYi;j; i ¼ 1; . . . ;mÞ have
independent multinormal distributions, with E[Yi,j|m,s,H]=Dm, Var[Yi,j|m,s,H]=D2s2,
Cov[Yi,j, Yi+l,j |m,s,H]=D2r(l).

As a prior for H, it is reasonable to assume a mixture of a Dirac d1/2 and a uniform
distribution. As seen in the example, the posterior of H is robust w.r.t. the weight e. As far as the
choice of mc, w, l, v is concerned, the basic idea consists in matching them with ‘empirical
quantities’ evaluated on the basis of Yi,js. First of all, let z>0, and

tðzÞ :¼ E½zH � ¼ ez1=2 þ 2ð1� eÞ
z� z1=2

log z

It is immediate to see that the equalities

E½m� ¼ mc; E½s2� ¼
l

n� 1
; E½s3� ¼

l3=2

GðnÞ
G n�

3

2

� �

VarðmÞ ¼ E½VarðmjsÞ� þ VarðE½mjs�Þ ¼ E½ws2� ¼ w
l

n� 1

E½rðlÞ� ¼ 1
2
ðtððl þ 1Þ2Þ � 2tðl2Þ þ tððl � 1Þ2ÞÞ

hold true, provided that n > 3
2
: Consider now the hth sample moments

%YYh:j ¼ m�1
Xm
i¼1

Yh
i;j ; %YYh:: ¼ k�1

Xk
j¼1

%YYh:j ; h ¼ 1; 2; 3

Their expected values are equal to

a1 ¼ E½ %YY1:j� ¼ Dmc

a2 ¼ E½ %YY2:j� ¼ EjY2
i;j� ¼ D2 l

n� 1
ð1þ wÞ þ m2c

� �

a3 ¼ E½ %YY3:j� ¼ EjY3
i;j� ¼ D2 3

l
n� 1

ð1þ wÞmc þ m3c

� �

a4 ¼VarðY1:jÞ ¼ E½Varð %YY1:j jm;s;HÞ� þ VarðmÞ

¼D2 ðm�1 þ wÞEjs2� þ
2

m2

Xm�1

l¼1

ðm� lÞE½s2rðlÞ�

 !

¼D2 l
n� 1

m�1 þ wþ
1

m2

Xm�1

l¼1

ðm� lÞðtððl þ 1Þ2Þ � 2tðl2Þ þ tððl � 1Þ2ÞÞ

( )
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respectively. A possible (and simple, as well) criterion to set the prior hyperparameters consists
in choosing mc, w, l, n in such a way that the relationships

a1 ¼ %YY1::; a2 ¼ %YY2::; a3 ¼ %YY3::; a4 ¼
1

k� 1

Xk
j¼1

ð %YY1�j � %YY1::Þ
2

hold true.

5. CONCLUSIONS

In this paper, we have proposed a new, Bayesian approach to estimate the overflow probability
in ATM networks, when FBM is used to model the traffic. We have analysed short- and long-
range dependence using Telecom Italia data and we have discussed important issues in Bayesian
analysis, like the choice of the hyperparameters and the sensitivity of the inference with respect
to changes in their values. The choice of the prior distributions has been motivated by their
flexibility and relative ease in their use. More general classes could have been used, but at the
cost of making the computational algorithm even more cumbersome. The choice of the FBM is
justified by its (relatively) tractable mathematical structure, although the request of Gaussianity
of traffic data could be attenuated. For this purpose, other self-similar processes could be
considered, but their use would be a very challenging task.

APPENDIX A

A description of the main computational issues associated with the estimation procedure set
forth in Section 3 will be now provided.

A.1. Estimation of H

In order to provide posterior estimates of the Hurst parameter H, a simple Monte Carlo
procedure is adopted. Such a choice is suggested by the expression appearing on the right-hand
side of (10). A sample of N i.i.d. observations H1; . . . ;HN from p0*(H) can be generated. Such a
sample is used to approximate the normalizing constant k*(x) by means of the empirical mean

#kk�ðxÞ ¼
ejO1=2j

�1=2

z1=21=2M
nþn=2
1=2

þ
1� e
N

XN
i¼1

jOHi
j�1=2

z1=2Hi
M

nþn=2
Hi

so that E(H|x) can be approximated by a ratio of empirical means, namely

EðH jxÞ � ð #kk�ðxÞÞ�1 e
2

jO1=2j
�1=2

z1=2
1=2M

nþn=2
1=2

þ
ð1� eÞ
N

XN
i¼1

Hi jOHi
j�1=2

z1=2Hi
M

nþn=2
Hi

8<
:

9=
;

A.2. Estimation of loss probability

An algorithm providing the desired approximations of the two integrals appearing in the right-
hand side of (11) works as follows. If, for any H in ½1

2
; 1Þ;

pðs2jH;xÞ ¼
M

nþn=2
H

Gðnþ n=2Þ
1

s2

� �nþn=2þ1

exp �
MH

s2

� �
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and

pðmjH;s2;xÞ ¼
z1=2H

s
ffiffiffi
p

p exp �
zH
2s2

m�
xH
2zH

� �2
( )

one has p�ð1
2
;m;s2jxÞ ¼ pðmj1

2
; s2; xÞpðs2j1

2
;xÞ: It follows that the first integral in the right-hand

side of (11), corresponding to the case in which H ¼ 1
2
; can be easily handled by generating an

i.i.d. sample ðs2i ;miÞ; i ¼ 1; . . . ;N; with si
2 and mi drawn from pðs2j1

2
;xÞ and from pðmj1

2
;s2i ;xÞ;

respectively. HenceZ
R�Rþ

%qqu
1
2
;m;s2

� 	
p� 1

2
;m; s2jx

� 	
I ðm5cÞ dm ds2 �

1

N

XN
i¼1

%qqu
1
2
;mi;s

2
i

� 	
I ðmi5cÞ

As far as the second integral in the right-hand side of (11) is concerned, note that
p � �ðdH;m;s2jxÞ ¼ pðHjxÞpðs2jH;xÞpðmjH; s2; xÞI1=25H51; where

pðH jxÞ /
jOH j

�1=2

z1=2H M
nþn=2
H

p0 � ðHÞ

A Metropolis–Hastings algorithm applies in this case, since it is not possible to sample
directly from p(H|x). The proposal we employ is

pðHiþ1;s2iþ1;miþ1jHi;s2i ;miÞ ¼ ZðHiþ1Þpðs2iþ1jHiþ1; xÞpðmi�1js
2
iþ1;Hiþ1; xÞ

ZðHÞ / ð1� 2HÞg�1ð1�HÞd�1 being a probability density function on ð1
2
; 1Þ: Therefore, the

adopted scheme corresponds to an independence sampler with acceptance ratio given by

aððHi;mi;siÞ; ðHiþ1; miþ1; siþ1ÞÞ ¼ min 1;
ZðHiþ1ÞpðHijxÞ
ZðHiÞpðHiþ1jxÞ

� �

The same MCMC output is used to estimate kc(x) and, then, k*(x).
Let us now move on to the problem of determining the upper bound in (13), which follows

from inequality (12) on Mills’ ratio for the Gaussian distribution. We still consider separately
the cases H ¼ 1

2
and H 2 ð1

2
; 1Þ: When H ¼ 1

2
; a simple Monte Carlo integration can be done, by

sampling i.i.d. mi’s from pðmj12;xÞ: If H 2 ð12; 1Þ; an independence sampler is employed again. In
fact, we set

pðHiþ1;miþ1jHi;miÞ :¼ ZðHiþ1Þpðmiþ1jHiþ1; xÞ

as the proposal distribution, with Z(H) as above. Acceptance ratio is

aððHi;miÞ; ðHiþ1; miþ1ÞÞ ¼ min 1;
ZðHiþ1ÞpðHijxÞ
ZðHiÞpðHiþ1jxÞ

� �
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