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Vortex Motion in the Ionosphere and Nonlinear Transport 

DAVID J. SOUTHWOOD 1 AND MARGARET G. KIVELSON 2 

Institute of Geophysics and Planetary Physics, University of California, Los Angeles 

The relation between vorticity and ionospheric flow patterns is investigated by using a fluid 
mechanics approach in place of the more customary electromagnetic approach. The focus on the fluid 
features is justified by the observation that in the incompressible limit appropriate to the ionosphere, 
vorticity can be regarded as the source of the flow field. We show how vorticity can be introduced into 
the flow by local ionospheric conditions. However, in the cases of greatest interest, the vorticity is 
imposed by external sources, which can be in the magnetosphere or in the solar wind. As an important 
application, we consider traveling ionospheric vortices propagating around the polar cap boundary. We 
show that such traveling disturbances transport both momentum and magnetic flux in the direction of 
their phase velocity, typically antisunward. Like other intermittent disturbances of small scale, such 
as flux transfer events, individual traveling ionospheric vortices transport relatively little flux, but 
multiple disturbances could conceivably transport an important fraction of the polar cap magnetic flux 
from the dayside to the tail. 

INTRODUCTION 

In the past few years there has been increasing interest in the 
existence of large-scale traveling vortex structures which move 
tailward in the vicinity of the polar cap boundary. The initial 
reports [Todd et al., 1986; Lanzerotti et al., 1986,] were intent on 
identifying the ionospheric footprint of reconnection phenomena 
at the magnetopause and of flux transfer events (FTEs), which 
were believed to be examples of impulsive and localized recon- 
nection. In fact, as we indicate below, there now exists a large 
literature [Friis Christensen et al., 1988; Bering et al., 1988, 
Lockwood et al., 1990; Glassmeier et al., 1989; Lanzerotti et al., 
1990; Farrugia et al., 1989; Glassmeier and Heppner, 1992] on 
the occurrence of large amplitude vortex like motions near the 
polar cap boundary that resemble the footprints of FTEs pre- 
dicted in theoretical works like those of Southwood [ 1985, 1987], 
Saunders [1989] and Lee and Fu [ 1985]. However there also is a 
substantial body of evidence that the events are often unlikely to 
be associated with reconnection. Theorists have gone on to pre- 
dict a different geometry for FTEs [Southwood et al., 1988; 
Scholer, 1988] and by implication a different footprint is predi- 
cated [Lockwood et al., 1990]. Thus, the generation mechanism 
may be uncertain, but the existence of traveling vortical flows in 
the ionosphere is well established. Hence it is worthwhile to 
consider the ionospheric observations themselves and investigate 
the flux and momentum transfer properties of vortices like those 
observed. We show that any traveling vortex in the ionosphere 
transports both momentum and flux in the direction of travel. 
Our conclusion is that the flux transferred in such transient distur- 

bances can be significant, a conclusion that is completely inde- 
pendent of the details of the mechanism by which the signatures 
are excited. 
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Traveling ionospheric vortices (TIVs) have a horizontal scale 
of the order of 300-2000 km, and travel away from the noon 
meridian at speeds ranging from ~ 1 to 5 km/s (and in one event, as 
high as 10 km/s). The flow speed within the eddies is typically 
lower than the phase velocity but the peak flow can exceed 1 
km/s. TIVs have been observed by radar backscattering and the 
associated magnetic perturbations have been tracked by arrays of 
magnetometers. In addition to flux transfer events (FFEs) or 
localized reconnection at the magnetopause generating the signa- 
tures, they could also be excited by solar wind pressu re perturba- 
tions traveling along the magnetopause [Kivelson and Southwoo& 
1991, and references therein] or nonlinear Kelvin Helmholtz 
waves at the magnetopause [Miura, 1987; Pu et al., 1990]. 

The vorticity in TIVs may be actually located in relatively thin 
sheets that map from the magnetopause or it may be more distrib- 
uted. The precise distribution is of course a critical feature in 
determining the source of vorticity but matters little for our argu- 
ment here. What is important is that the magnetic signature of 
such patterns over magnetometer arrays in Greenland and in 
Northern Scandinavia [Friis-Christensen et al., 1988; McHenry et 
al., 1988; Glassmeier et al., 1989] appear to move away from 
noon with a longitudinal phase speed which is faster (approxi- 
mately a few kilometers per second) than the flow speed deduced 
within the flow pattem but by not more than an order of magni- 
tude. The vortex system has a twin structure. Not only is the 
speed of fluid motion different from that of the pattern but also 
the fluid motion in the center of the pattern is directed transverse 
to the motion of the pattern. 

APPROACH AND PURPOSE OF PAPER 

In this paper we develop a simple theoretical model for under- 
standing the relationship between vorticity and ionospheric flow 
patterns using a mechanical approach instead of the usual electro- 
magnetic approach. We then use the formalism to compute the 
transport associated with TIVs in the high latitude ionosphere, a 
problem that is rather straightforward in fluid mechanics but 
would be fairly obscure if tackled as an electromagnetic problem. 

Ionospheric vorticity and field-aligned currents are intimately 
linked as has been described repeatedly [Hasegawa and Sato, 
1979; Sato, 1982; Vasyliunas, 1984]. The fundamental role of 
field aligned currents in the coupling between the ionosphere and 
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the magnetosphere is also well established [e.g., Vasyliunas, 
1972,]. In an earlier work [Southwood and Kivelson, 1991], we 
elaborated on the ionospheric vorticity specifically as a response 
to field aligned currents. Here we consider ionospheric flows in a 
more general sense. 

A particularly simple flow regime analyzed in standard fluid 
mechanics texts is the incompressible limit (V. u =0). The flow 
induced in the Earth's ionosphere is very similar in that it must be 
magnetically incompressible; from this it follows that the flow 
perpendicular to the magnetic field is also incompressible. This is 
because the earth's field strength is so high that the ionospheric 
flow cannot significantly compress the Earth's magnetic field. 
Vorticity plays a very basic role in incompressible hydrodynamic 
flow. In a two dimensional flow, the magnitude of the Laplacian 
of the streamfunction is equal to the magnitude of the vorticity. 
The relationship between vorticity and flow in an incompressible 
flow is exactly analogous to the relation between electrical cur- 
rent and magnetic field. Thus the vorticity can be seen as the 
source of the flow field. With these ideas in mind, we derive a 

vorticity equation for a simple model ionosphere. The equation 
shows that in the absence of external sources, vorticity is con- 
served following the motion of the plasma. It also shows how 
vorticity is put into the flow by the local ionospheric conditions 
and how it is put in from higher altitude. 

As a simple but important application of our approach, we 
examine the momentum and flux transfer in TIVs. We show that 

a TIV carries momentum in the direction of travel. What is 

remarkable is that by determining the speed of travel of TIVs in 
the ionosphere and the speed of their eddy motion one can quan- 
tify their effectiveness for transport without needing to specify 
what high-altitude magnetospheric process generates them. The 
observed TIVs typically move in the antisolar direction. Our 
work implies that diverse boundary perturbations can serve as a 
momentum source for the ionosphere and at the same time con- 
tribute to antisolar flux transfer provided only that they drive 
vorticity in the ionosphere. 

A corollary of our work is that, as both pressure drops and 
pressure jumps have been predicted to excite antisolar traveling 
vortices, both transfer tailward momentum to the ionosphere and 
lead to flux transport to the magnetotail (a point originally made 
by Dessler [1964]). The types of pressure changes in the solar 
wind that we have in mind are of order 115PI/P--0.3, capable of 
displacing the subsolar magnetopause by of order 0.5 RE and 
typical changes take place in 5 to 10 minutes. 

THE VORTICITY EQUATION 

As our prime purpose is to set up a simple model for use in high 
latitudes where the magnetic field is nearly vertical, we model the 
ionosphere as flat with a vertical magnetic field. Generalization 
to a tilted field is straightforward but there is much simplification 
in presentation if we use the assumption. The high-latitude iono- 
sphere is modeled as a thin collisional layer of thickness h, 
threaded by a magnetic field B = Bo•. We treat only the horizon- 
tal (x,y) variation of physical parameters, but we ignore the vari- 
ation in field associated with the horizontal variation of the 

Earth's dipole field. (This assumption is to be consistent with our 
assumption of a vertical field; on the scale of variation of the 
dipole field, the direction of the field also changes.) We assume 
that the ambient magnetic field does not vary significantly with 
height through the ionosphere and we replace quantities like 
mass density, p and pressure, p, by their height averaged values. 

The material is a low [I plasma with Cs << VA, where Cs is the 

sound speed (Cs 2 =¾p/p with ¾ the ratio of specific heats, p the 
plasma pressure, and p the ion density) and VA is the Alfv6n speed 
(VA 2 = B2/gop). The dominant collision process is between the 
ions and the pervading neutral atmosphere. We shall parametrize 
the collisions by a mean collision frequency v (x, y) defined by 

v (x,y) = 
l dz p(x, y, z) v (x, y, z) 

h p(x, y) 

where h is the height of the atmosphere. We now examine a set of 
equations describing two dimensional (horizontal) flow. The 
mass flux equation is 

or 

3p 
3'• + u.Vp + pV.u = 0 (1) 

Dp + pV.u = 0 Ot (2) 

where the differential operator, D/Dt, represents the (Lan- 
grangian) derivative taken along the path of a parcel of fluid and 
we assume no sources of ionization. 

To a good approximation the magnetic field is linked to the flow 
and the electric field by the condition for perfect conductivity 
(also called Ohm's law) 

(3) 

E=-uxB 

and the field is described as frozen into the flow. Faraday's law 
can then be written in the ionosphere as 

or 

--+u. VB +BV.u=B. Vu 
3t 

DB +BV. u =B. Vu (4) 
Dt 

We treat the ionosphere as a thin sheet and thus within the iono- 
sphere there is no variation of the flow velocity along the back- 
ground field. Thus 

DB + BV. u = 0 (5) 
Dt 

The low Alfv6n Mach number of ionospheric flow and the low 
pressure (low [•) imply that only very small changes in magnetic 
field result from the plasma motion. As well, variations in u 
along the magnetic field are small with respect to the other terms 
in a two dimensional approximation. We thus replace equation (5) 
by 

V. u = 0 (6) 

In other words, the field is so strong that only magnetically in- 
compressible flows are possible. However, by virtue of our as- 
sumption that the ionospheric plasma is confined to a thin sheet in 
the vertical direction, the condition also implies that the plasma is 
not compressed in the flow. 
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We next derive a momentum equation. In practice the high 
latitude ionosphere is driven by flow imposed from above, from 
the magnetosphere or even the solar wind. The momentum is 
conveyed along the field primarily electromagnetically. The 
magnetic flux of transverse momentum into the thin layer is 
• B/go where AB is a transverse horizontal field perturbation 
just above the ionospheric layer. Including the vertical magnetic 
momentum flux, assuming that all the momentum is is absorbed 
in the layer, gives 

Du 3u 

Dt 3t ----- + u'Vu =-vu - pl - [2goj • (7) 

where AB is a transverse field displacement at the top of the layer 
and where it should be noted that the horizontal gradient in 

B2/go is that due to local ionospheric current flow and not, as 
remarked earlier, due to variation in the background dipole field. 
We have ignored the plasma pressure gradient in (7); this can also 
be neglected relative to magnetic forces in the momentum equa- 
tion because in the ionosphere 13 (the ratio of thermal to magnetic 
pressure) is small. 

The curl of equation (7) gives an expression for the time evolu- 
tion of vorticity, •= V x u 

3t + Vx (u. Vu) = 

+XL Vx• 
(8) 

where we have allowed for the possibility that v varies spatially as 
it would if there were gradients in the neutral density. 

As u.Vu=Vu2/2-u xfland V. fl=V-u =0 and fl-Vu =0 by 
assumption, it follows that 

V x (u.Vu) =- V x (u x t) = u-Vfi (9) 

then satisfies 

3fl Dr 
-- + u.Vfl- 
3t Dt 

p• • + (Vx•) 
00) 

Equation (10) is the vorticity equation for the ionosphere. How- 
ever it is not in a very useful form because of the close to incom- 
pressible nature of the changes in field strength. We can eliminate 
the field pressure term by using the momentum equation (7) 
again, thus obtaining 

D•+Vfl= uxvv-VPx +vu + VxAB (11) P hi.loP 

On rearrangement and substituting go j, for VxAB, where j, is the 
vertical current out of the ionosphere, one has 

1 Of• B . 1 Ou xVp (12) - • + • = u x V(lnvp) + •-•jll + •-• P v Dt 

Equation (12) describes the creation and dissipation of vorticity in 
the flow. The time derivative in the equation is the Lagrangian 

derivative. Thus, when the right-hand side (the source) is zero, 
the left-hand terms show that the vorticity of any parcel of fluid is 
brought to an equilibrium value (or zero) on the time scale of the 

ion-neutral collision time, v-1, a relatively short time (<< 1 s) 
compared with high latitude ionospheric flow time scales in the 
terrestrial ionosphere. On time scales pertinent to the observations 
that motivate this study, one may take D/Dt << v. Then 

B (13) 
fl = V x u = u x V(lnvp) + •-•jll 

assuming for now that j, does not vary with time. Note that the 
equilibrium vorticity and field aligned current are linked but that 
they are proportional only if u x Vvp = 0. In this case j, = 0 only 
if 

V x (pvu) = 0. (14) 

The meaning of this condition is most easily pictured if the flow 
is locally rectilinear and in the •: direction. One can rewrite 
equation (14) as 

a (15) 

(pvu) = 0 
and it is clear that the vorticity imposed on the flow is simply that 
required to render the momentum deposition through collisions 
uniform transverse to the flow direction. Figure I illustrates the 
effect by showing how a localized region of enhanced pv modifies 

Flow with a(pvu)/ay = 0 

¾ 

Vorticity: f• = - 3(ux)/ay = 0 

Fig. 1. Schematic of a region of the ionosphere threaded by a vertical 
magnetic field B. Shading identifies a region of enhanced pv. In the 
upper panel, flow in the x direction is represented by arrows. As the 
plasma enters the region of larger pv, it slows down. Thus the shaded 
region is bounded in y by a sheet of vorticity, as illustrated in the lower 
panel. 
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the flow in the ionosphere. The localized deceleration sets up 
ionospheric vorticity, but as no j xB forces are required to slow 
the plasma, there is no need to drive field-aligned current. How- 
ever, the ionospheric vorticity couples into the magnetosphere or 
the solar wind, and it is the conditions of the external load that 
determine whether or not field-aligned currents develop in the 
final steady state. 

As the incompressibility of the flow leads one to expect that in 
steady state there will be no gradients in 9 along the streamlines of 
the flow (in the absence of ionization sources) and as in such 
circumstances v is unlikely to vary much along the streamlines, 
one sees the equilibrium flow is one in which the momentum 
deposition is very uniform. 

As noted above, the vorticity on a flux tube will not remain 
constant as the tube moves if the parallel current jll is not main- 
tained steady. Variations of j, depend on conditions in the 
plasma at higher altitudes on the flux tube in the magnetosphere 
or even the solar wind. Southwood and Kivelson [19.91] (hence- 
forth S&K91) have analysed the relationshi p between vorticity 
and field aligned current on the magnetospheric part of a flux tube 
(where the plasma is collision free). $&K91 shows that under 
fairly general assumptions the amount of field aligned cu.rrent at a 
given point in the magnetosphere is proportional to the time 
integrated rate of variation of the vorticity along the field. The 
result can be understood by recognizing that the field is sheared or 
twisted if it carries a field aligned current and, where the field is 
frozen into the plasma flow, any component of vorticity along the 
field direction acts to twist (or untwist) the field at each point. 
Because the ionosphere is collisional and thus dissipative, a con- 
tinual input of vorticity at high altitude is required to maintain an 
ionospheric flow. The time scale for dissipating the magneto- 
spheric vorticity is the same as that calculated by S&K91 for the 
dissipation of field aligned current, namely 

'c =go Y-v Lii (16) 

where • is the height integrated conductivity of the ionosphere 
and L, is the parallel scale length of the flux tube. Using the 
notation of this paper, one has 

[to ¾p/ql (17) 

In the Earth's ionosphere, the time scale ranges from tens of 
seconds to many minutes. This time scale is very much longer 
than the time 1/v we identified earlier for dissipating ionospheri- 
cally generated vorticity. Thus, for example, Alfv6n waves carry- 
ing vorticity generated by an impulse in the magnetosphere or at 
its boundary make multiple bounces before damping out. 

SOLVING FOR FLOW IN A HORIZONTALLY UNIFORM 
MODEL IONOSPHERE 

If the terms on the left hand side of (13) are zero, that is, the 
ionosphere is sufficiently uniform and there is no field aligned 
current input, the equations governing the possible flow systems 
are 

V.u=0 and Vxu=0 (18) 

In the nearly uniform case, these two equations represent continu- 
ity and the momentum equation, respectively, and thus should be 
capable of producing a unique flow pattern for a given set of 

boundary conditions. In a flow system governed by equation (18) 
it is well known that one may describe the flow by either a stream 
function W or a potential, q0. Both, W and 9 satisfy Laplace's 
equation 

V2V: V29-0 (19) 

It is also well known that i.n an infinite medium or a closed system 
with no boundaries (such as a thin spherical shell) the only solu- 
tion of Laplace's equation is the trivial one with •, q0 const.ant, 
leading in either case to the solution, u = 0. 

For a nontrivial flow solution which closes everywhere or van- 
ishes at large distances, one must have somewhere either the 
Laplacian of the stream function nonzero or the Laplacian of the 
velocity potential nonzero, The former condition corresponds to 
the vorticity being specified somewhere, the latter to there being a 
source of material somewhere. An alternative possibih'ty is to 
introduce a boundary in the flow on which inhomogeneous 
boundary conditions are specified. It tums out that in such a case 
the boundary conditions are equivalent to there being a source of 
vorticity or a source of material at the boundary. 

MOMENTUM AND FLUX TRANSPORT BY TIVs 

We next illustrate the use of the simple model developed so far 
by examining momentum and flux transport by TIVs. 

We continue to regard the ionosphere as an incompressible 
medium. In such a medium, motion can be instantaneously de- 
scribed by streamlines which all close. In a stationary vortex in 
an incompressible medium, the streamlines do not vary with time 
and the closed nature of the streamlines means that an element of 

material passes repeatedly through the same point. The maximum 
displacement possible is bounded by the scale size of the stream- 
line which is also the orbit of the element. In such a flow there is 
no net transport in the mean. The situation is very different when 
the flow pattern is not time stationary. The streamlines vary 
continually with time and the trajectories of fluid elements are not 
the same as the instantaneous streamline pattern. Determining the 
motion of a fluid element in a time varying incompressible flow 
becomes more problematic. 

When the time variation in the flow field detected at the position 
of a fluid element is important, the problem becomes nonlinear. 
The simplest analytic way to tackle the nonlinear problem is by a 
process of successive approximations. To zeroth order we can 
expect that the vortex provides no long term displacement. As for 
the steady vortex case, the displacement is bounded at any time by 
the spatial amplitude of the vortex streamlines. 

An early nonlinear calculation of the analogous problem of a 
surface wave of sinusoidal form was done by Stokes [1848] and 
reported by Lamb [ 1932]. For a traveling surface wave, it is well 
known that to first order in the amplitude of the wave the motion 
of fluid elements is circular in a plane perpendicular to the plane 
of the boundary. Evidently after an integral number of periods the 
elements return to their original positions. 

However, the flow field itself will vary on the scale of the fluid 
element orbit. Stokes showed that when the variation of the 

amplitude of the wave across the orbit of the fluid element in the 
wave itself is included, the orbit departs from circularity. For a 
surface wave, the element moves a greater distance in a time fit in 
the part of its orbit that is closer to the surface of the fluid than in 
the part of its orbit that is farther from the surface. Because it is 
moving in the direction of wave propagation at the "top" of its 
orbit (near the surface), there is a systematic motion imposed in 
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the direction of the wave propagation. Our calculation is similar 
but is in no way restricted to the simple form of wave chosen by 
Stokes. 

TRANSPORT OF MOMENTUM BY TRAVELING 

I ONO S PH ERIC VORTIC ES 

We consider a model in which the (two dimensional) plasma 
occupies a half space bounded by the line y = 0 which might be 
seen as representing the polar cap boundary. The essence of the 
TIV is its traveling nature and we represent this feature by linking 
the variation of the flow field in x (longitude) and t (time) to 
simulate the motion of a pattern along the direction of the bound- 
ary. 

As vorticity is imposed from above, the curl and the divergence 
of the flow no longer satisfy equation (18) but instead satisfy 

V.u = 0 and V x u = D4x - ct, y) (20) 

where c is a (phase) velocity of the traveling vortex which propa- 
gates in the x direction. The amplitude of the vorticity is re- 
garded as given, that is, it is specified from above by conditions in 
the magnetosphere/solar wind. 

We thus take the flow field to be of the form 

u(x, y, t) = u(x - ct, y) (21) 

For the sake of illustration, we show the streamlines of the flow 

imposed in the ionosphere by a sinusoidal surface wave perturba- 
tion in Figure 2a. The orbits of fluid elements at different dis- 
tances from the boundary in the linear (therefore circular) 
approximation are illustrated in Figure 2b. 

Let us define rg(Xo,yo,O as the net displacement experienced by 
the fluid element present at (xo,Yo) at time t in moving along its 
orbit from its initial position (xi,Yi) at t =-oo prior to the onset of 
the disturbance. •(xo,yo,t) is given by 

t 

•(xo,yo,O = ldt' u(x(t'),y(t'),t') (22) 
orbit 

where the integral is carried out over the orbit of the fluid element. 
Equation (22) is a non linear integral equation because the path 

integral is taken along an orbit which is itself determined by the 
time history of the displacement. In the linear approximation, one 
calculates the displacement ignoring the variation in the flow field 
experienced by the fluid element. One can proceed to the second 
order by repeating the integration using the linear displacement 
to determine the path of the integral. One can repeat this to 
arbitrarily high order. In the sinusoidal surface wave example, 
one can see the effect of going to second order by noting that the 
radii of the circular orbits of the linear approximation become 
smaller as one moves away from the boundary (cf. Figure 2b). 
Accordingly in the nonlinear case, the radius of curvature of the 
orbit varies with y and a cycloidal motion develops as illustrated 
in Figure 2c. 

An expansion of the integrand on the right hand side of equation 
(22) about (xo,yo) gives, to first order in displacement, 

•(xo,Yo,t) = 
t 

+ [x(t') - xol '3ux(xø'yø'O + [Y(O - Yo] '3ux o,t').) 
orbit 

(23) 
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Fig. 2. Streamlines and flow vectors for a traveling surface wave imposed 
along the boundary of a semi-infinite ionosphere. In (a), streamlines are 
illustrated. In (b), the motion of selected fluid elements is shown in the 
linear approximation. In (c), the motion of selected fluid elements is 
shown in the nonlinear approximation discussed in the text. 

The corresponding expression for •y is 
t 

•y(Xo,Yo,t) = I dtt Uy(X(t'),y(t'),t') 
orbit 

t 

(•;y _, •3uy(xo,yo,t'), =ldt,(uy(xo,yo,t)+[x(t,)_Xo]aUy o,t') +[y(t') yo, 3y / 
orbit 

(24) 

Evidently the expansion requires that the eddy speed lul be small 
compared with the phase speed of the disturbance. Noting that 
(again with xi, yi representing the initial position of the fluid 
element), 

x(t') - Xo = [x(r) - xi] - [Xo - xil = •(t') - •(t) 

y(t') - Yo = [y(t') - yi] - [Yo - Yi] = •y(t') - •y(O 
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and that equation (20) allows us to express 3u•/3y and 3uy/3), in 
terms of the derivatives with respect to x of components of u, one 
finds 

t 

aux(xo,yo,t') •(Xo,yo,O = ldt'(Ux(Xo,yo, t') + [•(t')- •(0] ax 
orbit 

- [•y(t3 - •y(t)][ auy(xø'yø't') ax -n ] ) (25) 
t 

•y(xo,yo,t) = ldt'(Uy(Xo,yo,t') + [$(t') - •c(0l auy(xo,yo,t') 
orbit ax 

- [•y(t') - •y(t)l.aUx(;• yo't') ) (26) 

Next we use the assumption that the disturbances depend on time 
only in the form shown in equation (20), so that 

au 1 •u (27) 
ax c at 

and also note that the integration path follows the fluid orbit along 
which fl is constant, say Do. This gives 

t 

•(Xo,yo,t) = I dt' (Ux(Xo,yo,t') - [•(t') - •(t)] .aux(xø'yø't') 
orbit C at' 

t 

•y(xo,yo,t) = ldt'uy(xo,yo,t') 
orbit 

(32) 

In equation (32) the additional terms have cancelled one another. 
The time derivatives of these equations give the velocity of a fluid 
element at (xo,yo) at time t in the form 

•.•x(xo,yo, t) 
at = Ux(Xo,yo,t) + [Ux(Xo,Yo,t) 2 + Uy(Xo,Yo,t)2]/c (33) 

a•v(Xo,yo,t) 
at = Uy(Xo,yo,t) (34) 

In equation (33), the term proportional to D.o has dropped out. 
Equations (33) and (34), allow us to obtain the momentum and 
the magnetic flux associated with the perturbed flow system over 
the full disturbance. The momentum P is the integral over (x,y) 
of the momentum density 

P = Ildx dy p(x,y,t)(•c a•(x,y,t) +• a•y•y,t)) at 

= Ildx dy p(x,y,t) (•c Ux(x,y,t) +) Uy(X,y,O 
A 

+ x [Ux(x,y,t) 2 + Uy(Xy, t)2]/c) (35) 

t 

auy(xo,yo,t'). -- [•y(t') -- •y(t)] cot' •- • I dtt [•(t') - •(t)] 
orbit 

(28) 

t 

•y(Xo,yo,t) = ldt'(Uy(Xo,yo,t') 
orbit 

_ • tt•]aUx(Xo,yo, t') -- [•-.•c(t') •:-•x(t)] auy(xø'yø't') + [•y(t') --,•y•, • C at' c at' 

(29) 

Partial integrations provide further simplification. As an exam- 
ple, consider the second term on the right hand side of equation 
(28) which becomes 

t 

-ldt '[•(t') ., , au(xo,yo,t') - $(m c at' 

) a$(t') , =- [•(t') - $(t)] Ux(Xo,yo,t') t +1 dt' at' Ux•Xo,yo,t ) --oo C 

= ldt' Ux2(Xo,yo,t')/c (30) 

where the limit terms vanish because the velocity is taken to 
vanish at times in the distant past and the factor • (t')- •(t)= 0 
at t' = t. Treating the other terms in the same fashion, we find 

t 

•(xo,yo,t) = ldt'( Ux(Xo,yo,t') + [ux(xo,yo,t') 2 
orbit t 

+ Uy(Xo,Yo,t')2]/C) -- f•goldt' [•y(t') - •y(t)] 
orbit 

(31) 

where the integrals are taken across the perturbed portion of the 
ionosphere, whose surface area we take as A. 

The linear term (the first on the right hand side) is bounded and 
cannot exceed (pu)maxA. It is likely to be much smaller than this 
upper limit because the perturbation flows are likely to have 
different orientations in different parts of the ionosphere. The 
positive definite quadratic term is likely to dominate. In this case 

P -- Pc 1 Ildx dy p(x,y,t)u2(x,y,t) = A Pc -lc<pU2> c (36) 

where <p u2> is the average value over the perturbed area. 
Analogous arguments apply to the calculation of the magnetic 

flux ß transported by the perturbed flow. 

ß :-ldt' ldy •'•x•y't)B(x,y,t)=•ldx ldy •'•7'OB(x,y,O 
(37) 

As B(x ,Y,O is roughly constant in the perturbed region of the 
ionosphere, 

ß = •c • II dydx u2(x,y,t)-- •c BA<u2>/c 2 (38) 
c 

Equation (38) provides the important insight that there is neces- 
sarily a net transport of magnetic flux as well as of momentum in 
the direction of phase motion of a propagating ionospheric distur- 
bance even in the absence of actual net flow. Propagating distur- 
bances, whether quasi-isolated vortical flows or waves, transport 
magnetic flux and momentum in the direction of phase motion 
independent of the nature of the boundary disturbance driving the 
ionosphere. The amount of flux transported increases as the 
square of the ratio of the mean eddy speed to the phase speed of 
the disturbance, a quantity that must be small for the approxima- 
tions that we have made to be valid. 
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For a typical TIV (described in the introduction) with phase 
speed of order 3 km/s and rms eddy speed of 500 m/s, the mag- 
netic flux transported is -3% of the total flux within the area 
spanned by the eddy. If a typical eddy has a spatial scale of ~ 1000 
km and the polar cap diameter is taken to be of order 5000 km, a 
single eddy can transport 1% of the polar cap flux. Thus, individ- 
ual eddies make relatively minor contributions on a global scale, 
but, as for flux transfer events (FTEs), with frequent repetition 
their effect can become significant. 

Studies of TIVs have sought to characterize the magnetospheric 
source of the disturbances observed at low altitudes. In consider- 

ing whether a TIV is the ionospheric signature of a moving FFE, 
the relative magnitudes of the propagation speed (above referred 
to as the phase speed) and the rms eddy speed give important 
clues that have not, to our knowledge, received any attention other 
than in our own work [Kivelson and Southwood, 1991]. For the 
scales typical of TIVs, the FFE must be of the form originally 
postulated by Russell and Elphic [1979], that is, it must have an 
equatorial cross section of order 1 R•r or less and be in motion 
antisunward from the subsolar point. It must transport all the flux 
linked to it. Thus within the ionospheric footprint, the rms eddy 
speed and the propagation speed of the signature must be compa- 
rable. As noted above, the eddy speed of typical TIVs is 1/6 of 
their phase speed and they can transport only a relatively small 
fraction of the magnetic flux that they link. This feature alone 
makes it unlikely that typical TIVs are FFE footprints in any 
direct sense. On the other hand, as an FFE moves through the 
ionosphere, it sets up flows in a larger region that surrounds it. 
The phase speed of these secondary flows is the FFE transport 
speed, but their rms eddy speeds are likely to be smaller; equation 
(38) then applies and shows that the ionospheric perturbations 
driven by the passage of an FTE themselves transport flux in the 
antisolar direction. For the nominal reported flow values of 
FTEs, only if the TIV is large enough to contain both the footprint 
of an FTE and the surrounding disturbed region does it seem 
consistent for the observed twin vortex signatures to be linked to 
transient reconnection. 

CONCLUSIONS 

We have developed a simple analogy between two-dimensional 
incompressible flow and high latitude flow systems in the iono- 
sphere. Vorticity acts a source for the stream function for flows 
and we have developed an equation for time evolution of vortic- 
ity and an equation linking vorticity with the flux of field aligned 
current into/out of the ionosphere. 

The results derived are interesting but in many respects are very 
similar to equations based on an electrodynamic approach. How- 
ever the usefulness of the approach is illustrated by the calculation 
that takes up the second half of the paper. Here we have derived a 
general result that any high altitude (that is, magnetospheric ) 
phenomenon that sets up a moving vortical flow must also trans- 
port both momentum and magnetic flux. The net momentum 
transport is in the direction of the phase motion which is not 
necessarily the local direction of motion of the plasma. Deriving 
the result using an electromagnetic formalism would have been 
possible, of course, but far harder to conceptualize. 

An immediate and important observational consequence of the 
discovery that traveling vortices must transport momentum and 
flux is that their transport properties can be deduced and moni- 
tored on the basis of data obtained from ionospheric flow meas- 
urements alone. The flux and momentum transport of a given 
disturbance do not depend on identifying the mechanism at high 
altitude whereby the motion is ultimately driven. 
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