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The Unidimensional Solidification of a
Binary Eutectic System With a Time-
Dependent Surface Temperature’

The realistic boundary condition of the surface temperature varying with time is used
in the heat transfer analysis of the solidification of a binary eulectic alloy system.

The

system occupies a semi-infinile region and consists of a solid zone, a freezing zone,

and a liquid zone.
heat generation.

The heat released in the freezing zone is trealed as a discontinious
The solid-fraction disiribuiion in the freezing zone, given as a func-

tion of temperature, is solved simulianeously with the temperature distribution, which

is given as a function of distance within the freezing zone.

Using the “heat balance

wnlegral” technique, the method for the solution of the temperalure distribution and the

thickness of each region is given.

As an example, the resulls are shown in graphical

form for an Al-5 percent Cu alloy.

Introduction

THE change from the liquid to the solid phase during
the solidification of an alloy does not take place isothermally, as
is the case for a pure metal. The liquid starts to freeze at the
liquidus temperature, and freezes partially and gradually until
its temperature drops to a eutectic temperature; then the re-
maining liquid freezes isothermally at that temperature. The
physical representation of this process can therefore be con-
structed by separating the liquid and the solid by a “freezing
zone’’ which is formed by two isothermal surfaces at the liquidus
and the solidus temperatures, respectively. The mathematical
model consists of the Fourier’s conduction equation and the
solid-fraction temperature relationship within the freezing zone.
A general account of the derivation of the relationship between
the temperature and the solid fraction within the freezing zone is
given by Brody [1]! and Pfann [2].

The one-dimensional solidification of a binary eutectic system
with a constant surface temperature, and assumed solid fraction
distribution within the freezing zone, was analyzed previously
by the authors [3] from the heat transfer point of view. A more
realistic model is one in which the cooling temperature at the

1 The material presented in this paper consists of a portion of a
PhD dissertation submitted by R. H. Tien to the Department of
Mechanical Engineering, University of Pittsburgh, Pittsburgh, Pa.

2 Numbers in brackets designate References at end of paper.

Contributed by the Heat Transfer Division of THE AMERICAN
Sociery or MecHANICAL ENGINEERS and presented at the ASME-
AIChE Heat Transfer Conference and Ixhibit, Seattle, Wash.,
August 6-9, 1967. Manuscript received by Heat Transfer Division,
February 21, 1967. Paper No. 67—HT-43.

surface is time-dependent and the solid fraction distribution and
the temperature distribution are solved simultaneously from
Fourier’s conduction equation and a specific relationship be-
tween the temperature and the solid fraction.

The time-dependent boundary condition prohibits an error
function form of solution. Applying Goodman’s [4] approximate
method of the heat balance integral to both the solidified part
and the freezing zone reduces the system from a set of two second-
order partial differential equations to a set of two first-order
ordinary differential equations, with the thickness of the solidi-
fied part and the freezing zone as dependent variables. The
latter then is solved by the Runge-Kutta method, a simple but
reliable numerical technique.

The temperature distribution within the freezing zone depends
on the heat generation arising from freezing, and is dependent
upon the solid fraction distribution. If this temperature dis-
tribution can be expressed only in terms of a dimensionless
space variable, & such that the functional relationship is inde-
pendent, of the form of an assumed solid fraction distribution,
then the combination of this temperature distribution with a
specific solid-fraction temperature relationship is the actual solid-
fraction distribution in terms of the same dimensionless space
variable.

Statement of the Prohlem

The liquid, at liquidus temperature, initially occupies a semi-
infinite region which extends over the positive z-axis. At time
zero, the suwrface (z = 0) is at solidus temperature. At later
times the temperature is allowed to decrease in an arbitrary

Nomenclature
A = internal heat generation, L = latent heat of fusion, Btu/ T, = solidus temperature, deg I
Btu/ft3-hr Ib , ..
¢ = specific heat, Btu/lb deg F M; = magnitude of the slope of T; = liquidus temperature, deg
Cy = initial concentration of the the liquidus line, deg I F
alloy a = thermal diffusivity, ft?/hr T, = surface temperature, deg F
e = position of solidus front, ft p = density, Ib/ft? .
Ae = thickness of freezing zone, R = rate of temperature change AT = temperature .dlfference b‘?‘
ft at cooling surface, deg tween liquidus and soli-
/. = solid fraction F/hr dus, deg I
fsu = eutectic solid fraction { = time, hr 2 = distance, ft
k = equilibrium distribution co- T = temperature, deg I' '
efficient Ty = equilibrium  temperature subscript 1 solidified part
K = thermal conductivity, Btu/ for zero concentration,

ft-hr-deg I’
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Fig. 1 Schematic representation

manner. A schematic representation of this problem is shown
in Fig. 1. The rate of change of the solid fraction with respect
to time within the freezing zone provides the latent heat effect.
A solid-fraction temperature relationship can be written as,

1

M .C 1-%
il = <T1[1 UT> (1)
=

For the normal nonequilibrium mode of [reezing, the derivation
of equation (1) is given by Pfann [2].

Assuming constant physical properties, one-dimensional tem-
perature variation, conduction as the only heat transfer mechan-
ism, and the heat of fusion the only internal heat generation,
Fourier’s conduction equation for the solidified part and the
freezing zone can be written as:

I=

0T 1 oT,
== for 0<2< @
ox? a, Ot or = 2)

o7, { 1 oT
i R Ty . e<z<e+t Ae (3)

dx? + K, o« Ot

where 7 and 7T, are relative to the solidus temperature, 7',.
The boundary conditions are:

1 TWz=0)=—-T,-T,)
2 Thz=¢=0
3 Tiz=¢€¢)=0
4 Tz = € + Ae) = AT
T,
5 — (z =€+ Ae)=0
oz
. o7 T, de
K, % (x=¢) =K, 5 (x =€) + pL(1l — f.) T

The initial conditions are:

7 et =0)=0
8 Aet=10)=0

The first five boundary conditions specify the temperature or
the temperature gradient at the respective positions. The sixth
boundary condition represents the conservation of energy at the
eutectic front. The second term on the right side of the equation
represents the latent heat effect due to freezing of the remaining
liquid at the eutectic temperature.

The internal heat generation term, A, associated with the
latent heat effect, can be written as

of,

= ph
4=p > (4)

where the solid fraction, f,, can be represented generally by a
nth degree polynomial.

= f.u[l -5 c‘-as-'] ®)

i=1
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The coefficients C;’s are chosen such that
fs(& = 0) = f,, i.e.,, Cis are all finite

and
n
T (&= 1) =0 ie., E C;=1
i=1

Combining equations (4) and (5) provides
pL [ de _dAe B | o

= == (| s = i 3 6

4= 5 (dt Tty ?;1 WCE | fou 6)

} . T — €
where x = .
Ae

Solution

It will be assumed that the “thermal layer” which has been
defined by Goodman [4] in the heat-balance-integral method is
the entire solidified part of the system in which equation (2)
is applicable. Then integrating equation (2) with respect to
zfromz = 0tox = eresultsin

T 1 [T
=e,t)——1(x=0,t-)=—f——ld'c (7
ox 0

(4] ol ’
01 = f T](m, t)("l;
0

the right side of equation (7) can be reduced to

] [‘—@ + i@ = ¢ 1) izi] ®)
dt

[e4] dt

o7
bzz

By defining

by using Leibniz’s formula.
By combining equations (7), (8) and the boundary conditions
(2) and (6), equation (2) becomes

1{2 ng _ sz df
1{1 oz (x =€ i) + I(l (1 —fau) di
le A | (101
- e=00==""(
N

Next the “thermal layer” for equation (3) is defined as the
entire freezing zone. Then integrating equation (3) with respect
toxfromz = etoz = € + Aec yields

oT oT
—Z(:c=e+Ae,t)———-2(x=e,t)
ox ox

L etae 1 etledr,
= = = ~=dp (1
%) Adz = — f 5 4 (10)

On the left side of equation (10), the first term is eliminated
by applying boundary condition (5), the second term is replaced
by boundary condition (6), while the last term can be integrated
with the aid of equation (6). The right side of equation (10)
can be reduced in a similar manner to

dAe
+25

1 [ db, de
o l:dt A (dt

e Ae
0, = f Ta(z, t)de

With the aid of all the foregoing conditions, equation (3) is
reduced to the following final form:

where
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L de Lf. i 7 dAe

Eox NN ) P Y au : A ['2222

<ce * ) dt + l: 2 <1§ 14 1C‘> * Pi| di
I{l 0’1’1 (102

($=E,t)=ﬁ

pea Ox

(11)
Now a quadratic temperature distribution in both the solidi-
fied part and freezing zone is assumed,
Th(z, 1) = Ao + Ar(e — @) + Aa(e — z)?
To(z, t) = As + As(x — €) + As(z — €)?

(12)

where the 4;’s are independent of z, and can be determined by
the prescribed boundary conditions.

From the boundary conditions (2) and (3), Ag and A; are zero.
By using the boundary conditions (4) and (5), A4 and A; are
determined as:

2AT

A=y
(13)

Y

A= —a

Ay and A, must be solved by the use of boundary condition
(1) and the combination of boundary conditions (2) and (6),
and equation (2). The boundary condition (6) alone is not

; . de .
suitable for the present case. Since 7 “Ppears in boundary
(

condition (6), this will make equation (9) a second-order differ-
ential equation in € which cannot be solved because only one
initial condition for € is available.

1
4, = —r By + B2)
. (14)
A, = ~ (T = T) — (B + o))
where
1\2
AT — — —
,Bl I{| 7 (l fau)
(15)
L
= Jﬁl'z + 2 C_ (1 - flu)(Tl - Tc)
Hence the temperature distribution in the two regions is:
1
Th(z, t) = - (Br + Bo)(e — x)
1
iy (T, — To) — By + Bl (e — ) (16)
2AT AT "
Tolz, 1) = T (x —e€) — Ad (x — €)? (17)
By defining & = xA—e e! equation (17) can also be written as
To(%) = 2AT & — AT#? (18)

The functional relationship between 7%, and & as shown in
equation (18) appears to be independent of the distribution of
the solid fraction f,, however ¢ and Ae which appear in £ are
functions of f,. Hence, substituting equation (18) into equation
(1) will give the true solid fraction distribution in terms of %, and
is shown as:

=L,

- M,Co I-k
s I:(To - T,)— AT(@2z — _{-2)]
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(19)

Equation (19) can also be represented by an nth degree
polynomial using a modified least-squares method as shown in
equation (5). However, the coeflicients now are not assumed
but caleulated from equation (19).

With the temperature distributions 7'y and 7% as kunown funec-
tions of z, €, and Ae as shown in equations (16) and (17), the
parameters 6; and 6, are calculated according to their definitions.
Upon substituting these into equations (9) and (11), two first-
order ordinary differential equations of e and Ae are obtained
with respect to time, ¢, as independent variables as:

(16 A’aﬂ{g - J\rzﬂ[a

= DL VY | e Ay
& Nodls — Nap, & A6 D

dAe NMs — NsM,
— =T —uar = e Ae
dt  N\My — NaM, foe, Ag, 1)

where

k
=
I

L
P, + — (1 = fau)
C

, 1K € By
=g AT <Ae> ( +ﬁ'z>

N;=—;: gl cpo-a,<f1,+2A,e+%2§—Z’>
Ml=c£2+AT

M;=—%A1a~z
¢2=1+%§(1—f.u)[—;2

and A,, A, 81, and (3, are given in equations (14) and (15).
To generalize the solution, the following dimensionless varia-
bles are defined:

e e e g T-m
pm gy M= ey T =g
B o 8, awl et
K= I{l ¢= C[’ @ al' ClAT,
where D is a characteristic length. Then
- D 1 = -
Ay = A, <A_T> = _—E Br + B2)
= D2 1
A = A, <AT) = E (ﬁx < ﬁs)]
5 E_ g & =
Bi=3p= Ky — L1
= : = L =
ﬁ2 = AB_;, = Jﬂlz =Tz au)jc
. - | B + B — 2T, +1?-§—<1+@>:|
tTar e T c Ae B
&=-&=1+La Ju) &
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- M, L
My = — = =
My=ap =143
- M I a4\, 1
M= Ar =3 f‘“‘<i=1i+1c“>+ 3
2 My a 1 - -
h! = —a_——- = ~
e (AToq) g P tA
D
- N e -
Al = A_Y: = ¢l + L(l _f.vu)
2 1\72 | € 2 B-]
R, = = ——R(=) (14+%F
T AT T TG <As> < * ,32>
N3 1 _dT, = _ _ 2K
By ot e o g T, g4 =
fa (Am._) s¢a T [A‘ e Aé]
D
Therefore equation (20) can also be written as:
de Nsﬂsz = lv;lﬂ—z & -
T— N e —— €. A_ [
di N My — N,M, fl(e’ % t)
(21)

dAg 1\71 1173 — 1\—733_'[1 -
BEY | Sl Sl e MR
i = WO = Fag, ARk

The Runge-Kutta [5] method is used to solve equation (21)
with the initial conditions (7) and (8) for ¢ and Ae. With a
uniform interval AZ, the (n 4+ 1)th values of & and A& can then
be calculated in terms of nth values of € and A as:

1
Eny = &, + 8 (no 4 201 + 2ns + n3)
(22)
1
Aépy = Ag, + 1 (mo + 2my + 2me + ma)

where
ne = Afi(I, &, Ag&,)
mo = Alfu(l,, &, Ag,)

ny, = Alfl (7" + ‘; AT,
my = Aif—g <l" +

ny = Alfy (?,‘ + % A,

& 1 1 1
me = Alfp <7n + 5 Al &, + 5 n, Ag, + 5 my
ny = Al[i(I, + AL &, + nyy, Ag, + ma)
my = Alfy(f, + AL &, + ny, Ag, + ma)

with g = Ag = 0atf =0

Numerical Example and Discussion

The distribution of the solid fraction within the freezing zone
in terms of & is calculated from equation (19) by use of the fol-
lowing numerical data for 5 percent Cu-aluminum alloy.

k
M,

0.1687
5.78

Co = 5.0 percent
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Ty = 1220 deg ¥
T, = 1018 deg I
AT = 173.1 deg I

This f, ~ & curve is then fitted by a tenth degree polynomial
with the maximum difference less than 7 X 107% through a
modified least-squares method. Thus,

9
fa = .fsu[l - Z Ciii}

1=1

(23)

where
C 1.9516656 X 101
Cy = 2.6572437 X 1071
Cy = 1.940831 X 1071

Cs = 3.52208

Cy = —2.379364 X 10
Cs = 9.227445 X 10!

C: = —1.9979674 X 10?2

Cs = 2.4912653 X 102
Cq = —1.6538519 X 102
Cyo = 4.4397551 X 10t
With a solid fraction distribution as in equation (23) and a

linearly decreasing surface temperature such as

T,=T,—Rit; oo T,=—Ri (24)

” D2
where B = (alAT
fronts & and Ag are caleulated by equation (22) with a carefully
selected time interval, A7, to insure convergence. The following
physical properties are necessary to proceed with the caleulation:

> R, the positions of those two isothermal

K; = 114 (Btu/ft-hr deg I')
K, = 105 K = 0921
¢ = 0.25 (Btu/Ib deg I) c=12

c: = 0.3 (Btu/lb deg I) a = 0.7675
p = 170 (Ib/ft3) or L = 3928
L = 170 (Btu/lb)
fou = 0.903 fou = 0.903
T, = 1191.1 (deg F) R = 5.75

T, = 1018 (deg I")

The results which include the growth of & and Ag and their
: - de dAe . . N
time derivatives, i and T against time are shown in I'ig. 2.
The corresponding temperatwre distributions within the freezing
zone as well as in the solidified part are calculated by equations
(16) and (17) for several values of 7, and are shown in Fig. 3.
The heat flux at the surface, « = 0, and the temperature, 7',
defined in equation (24) are plotted against time in Iig. 4.

As seen from Fig. 2 the rate of movement of the solidus front,

7 increases rapidly at first, reaches a maximum, then decreases
d

1A\&
gradually. On the other hand, (I—; for the liquidus front de-
(¢

creases with freezing time. If the surface temperature remains

constant during freezing, as shown in the previous study [3], both

de dAz ; g 5 ;

by and ra for solidus and liquidus fronts decrease with freezing
(443

time.
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de dhe 1.0
dt dt
05 .
0
s 5
<l =
T .05 ]
e -
_ &
e
1) -1.0H _
w
-1.5¢ 4
_20 B F 1 1 1 1 1
Y0 0ol 02 03 04 05 06 07
X=X/D

Fig. 3 Temperature distribution

= ta,/D?

Fig. 2 Growth of solidified and freezing zones and their rates

Variations in the heat flux and temperature at the surface with
freezing time are shown in Fig. 4. At the initial stage of solidifi-
cation the heat flux at the surface decreases rapidly with time,
then becomes essentially constant even though the temperature,
T,, decreases at a constant rate. This is consistent with the
de dAe . s v
fact that i and Te change rapidly only during the initial stage
¢ di
of solidification.

0

I/K (3T /%) -

References

1 Brody, H. D., “Solute Redistribution in Dendritic Solidifica-
tion,” SeD thesis, MIT, 1965.

2 Pfann, W. G., “Principles of Zone-Melting,"” Trans. AIME,
Vol. 135, July 1952, p. 85.

3 Tien, R. II., and Geiger, G. E., “A Heat Transfer Analysis of
the Solidification of a Binary Eutectic System,” ASMI Paper No.
66—WA/HT-23. To be published in Journal of Heat Transfer.

4 Goodman, T. R., “The Heat-Balance Integral and Its Applica- 5 I 1 1 -20
tion to Problems Involving a Change of Phase,” Trans. ASMI, Vol. 0 0.l 0.2 03 0.4
30, 1958, p. 335. T= !a,/DZ

5 Hildebrand, F. B., Iniroduction to Numerical Analysis, McGraw-

Hill, New York, 1956, p. 233. Fig. 4 Heat flux and temperature at surface

Q

Journal of Heat Transfer FEBRUARY 1968 / 31

Downloaded From: https://heattransfer.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use





