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A Linear Programming Approach 
for Balancing Flexible Rotors 
The feasibility of a new flexible rotor balancing method is demonstrated. Discrete "effec­
tive" unbalance components which produce the same observed response as the actual 
rotor unbalance are identified, and subsequently removed, using linear programming. In 
addition to satisfying rotor runout observations, the unbalance may be identified such 
that it is potentially harmful to response at a speed above the level at which the shaft 
can safely run without balancing. The potentially harmful response corresponds to the 
linear programming objective function, while the observations become constraints. In 

. addition, further constraints can be included to assure that the size of the calculated 
balance weights are within practical limits. The versatility of the new approach is dem­
onstrated with example problems using a rotor model for which the response is obtained 
with a computer code. 

I n t r o d u c t i o n 

The deflection of a rotating shaft can be influenced by a broad 
range of factors, but one of the difficulties most frequently en­
countered is the existence of forced steady-state response due to 
unbalance. A rotor suffers from unbalance if its mass axis does not 
coincide with its axis of rotation. Smooth operation of a rotor de­
mands the reduction of unbalance forces, and this is accomplished 
at present by a process of balancing in which small correction 
masses are distributed along the length of the shaft (or material is 
removed) so that the unbalance response is reduced to acceptable 
levels over the range of operating speeds. The balancing process 
requires the formulation of systematic methods for selecting and 
positioning suitable correction masses, and this paper presents a 
new method, based on linear programming concepts. 

The balancing process involves determining the balance mass 
magnitudes, the angular locations in planes of rotation, and the 
axial locations of the planes of rotation in which the balance mass­
es are applied. A comprehensive review of balancing methods for 
flexible shafts is provided in reference [l].2 The various balancing 
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techniques which have been developed may be broadly grouped 
into two essentially different but not contradictory schools of 
thought: modal balancing and influence coefficient approaches. 
Since both approaches are discussed in detail in reference [1], no 
in-depth consideration of them will be given here. However, it is 
useful to outline the influence coefficient method since the pro­
posed approach belongs to that category. Influence, coefficient 
techniques (see, for example, references [2, 3]) have developed 
from suggestions initially offered by Goodman [4]. 

Although the inherent unbalance of a rotating shaft is, in gener-, 
al, distributed continuously along its length, the initial step of the 
influence coefficient approach involves assuming that this continu­
ous distribution may be "lumped" into a finite number of discrete 
unbalance elements. The net unbalance for the p- th axial element 
is therefore regarded as being resolved into a single equivalent un­
balance moment vector, Up which is given by [1] 

„ 2 „ 

Up = PpApf a{z)dz (1) 

In equation (1) pp is the weight density of the rotor material in the 
p -th element, of which there are n such elements. Ap is the cross-
sectional area, and a(z) is the mass eccentricity vector function. As 
indicated, the integration is performed from one side of the ele­
ment (z = 0) to the other (z = lp). The distribution of unbalance 
a(z) is, of course, unknown and the integration is not actually per­
formed. Instead, the integral equation merely indicates that the 
distributed residual unbalance may be represented in the form of 
n discrete unbalance moments Up, one for each of the n elements 
into which the rotor is divided. These unbalance moments are then 
related to vibration amplitudes measured at various speeds and at 
various locations along the axis of the shaft by the matrix equation 
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H = [AM (2) 

where \w\ is a displacement vector with m elements, [A] is an m by 
n matrix of influence coefficients, and \U\ is a vector containing 
the n unbalance moments, Up. Because of the two-dimensional na­
ture of the deflections and unbalance moments, the elements of 
each of the matrices in the preceding equation are complex num­
bers. It is convenient to express these complex elements in terms 
of their real two-dimensional (x,y) components. If displacements 
are measured at v locations along the rotor, and at N speeds, then 
m = uN. The elements of [A], denoted by a/p, represent the linear 
coefficients which give the effect on deflection of element j of the 
unbalance moment at location p . The balancing procedure in­
volves solution of the foregoing equation for U\, U% . • •, Un for, 

more precisely Uix, U<ix, Unx, Uiy, U2y Uny), which are 
the components of residual unbalance in the n balancing planes. 
The process requires measurement of amplitudes and phase angles 
of rotor vibration, calculation of the influence coefficients ajp, and 
finally inversion, or, perhaps pseudoinversion, of the [A] matrix so 
that the solution for the Up quantities may be obtained, i.e., • 

{£/} = UMw} (3) 

If the number of unbalance moments Up identified is equal to 
the number of response observations, i.e., m = n, then [A] is a 
square matrix and [A] - 1 of equation (3) is inverted in the usual 
sense. We choose to call this "direct" inversion. However, for the 
case where the number of observations exceeds the number of un­
balance moments to be identified, i.e., m > n, [A] - 1 requires a 
pseudoinversion operation, which is usually referred to as a least 
square fitting procedure. The linear programming formulation 
presented here requires that m < n. 

In spite of the considerable acceptance of the influence coeffi­
cient method of flexible rotor balancing, Lund and Tonneson [3] 
note that it has met with only qualified approval by many. There 
are several shortcomings, not the least of which is the inability to 
limit the magnitude of the unbalance moments identified to those 
that can practically be removed or added. For example, on thin-
walled rotors the addition or removal of too large a balance weight 
may introduce undesirable stress concentrations. 

In considering the feasibility of developing an improved ap­
proach, one's attention is directed to the fact that the success of 
present methods has indicated that it is not necessary to balance a 
rotor exactly, but rather to select and position a set of discrete bal­
ance weights such that shaft vibration due to inherent distributed 
unbalance is held below a certain limit. It is well known that for a 
given unbalanced rotor-support system, a number of different sets 
of balance weights may be selected which produce rotor behavior 
satisfying the specified response criterion of equation (2). It is nat­
ural, therefore, to ask which of these several different sets of bal­
ance weights might produce a type of optimum rotor behavior; 
that is, which set would satisfy the response criterion and produce 
rotor behavior which is in some way better than the behavior re­
sulting from the addition of each of the other sets of correction 
weights. The balancing problem is formulated here as an optimiza­
tion problem, in particular, in terms of linear programming con­
cepts. This makes it possible to identify, for subsequent removal, 
the unbalance distribution which satisfies a set of observations of 
the behavior of the unbalanced shaft and which also is potentially 
harmful to response at a location or speed which is not or cannot 
be actually observed. This additional requirement on the solution 

cannot be imposed using any of the balancing techniques currently 
employed. Another advantage of the linear programming tech­
nique is that it is possible to specify limits on the magnitudes of 
the calculated balance weights. 

F o r m u l a t i o n 
The general linear programming problem consists of determin­

ing (Ui, U% . . . , Un) such that 

[C]{U} (4) 

is minimized (or maximized) subject to 

MMo} 
[A]M = M 

(5) 

(6) 

where 

[c] 
M 
[A] 
\w\ 
101 
n 

= (ci, c2, . . ., cn) row vector 
= (C7i, U2, • . ., Un) column vector 

matrix; m rows, n columns 
= (w±, W2, • . ., wm) column vector 
= re-dimensional null column vector 
> m 

Large scale computer software routines for solving this problem 
are readily available. 

The conversion of the balancing problem to the linear program­
ming formulation is straight forward. Suppose the number of ob­
servations is less than the number of unbalance moments sought, 
i.e., m <n, then equation (2) becomes constraint (6). Let 

ws = [c]{u\ (7) 

represent the response of the rotor at a particular speed and axial 
location, where [c] is a row vector of influence coefficients. Equa­
tion (7) can be taken to. represent the objective function (4). If ws 

is chosen at a particular axial location (e.g., at a bearing, where 
large deflection would produce large forces) and/or at a particular 
speed (e.g., at a high speed that cannot be successfully negotiated 
with the unbalanced rotor), then maximization of ws leads to the 
identification and subsequent removal of a potentially harmful 
(e.g., large forces at high speeds) unbalance distribution. 

The control of the size of the unbalance moments is introduced 
through constraints of the type 

U„ U, Up
u,p = 1,2, (8) 

where UP
L, Up

u are lower and upper bonds that are chosen to be 
imposed on Up. In terms of linear programming, this inequality 
constraint is converted to the equality form of equation (6), so that 
equation (6) is increased in dimension. In practice, with most 
major linear programming software systems this conversion is fully 
automatic and presents no problem to the user. 

For the linear programming formulation applied to a rotor, the 
vectors \U], \w] contain the components of the unbalance moments 
and observations. Thus if there are n balance planes and m obser­
vations, ([/), \w] are 2n and 2m dimensional column vectors and 
[A] is 2m X 2n. Since the unbalance moment components may be 
negative, a change in variables is required to satisfy equation (5). 
This adjustment is automatically taken into account in major lin­
ear programming systems. 

For a given rotor-support system, the influence coefficients atj 
may be generated either experimentally or theoretically. If the ob­
jective function is taken at a speed or location that cannot be dealt 

• N o m e n c l a t u r e . 

a = distributed unbalance function 
aij = influence coefficient 
[A] = matrix of influence coefficients 
Ap — cross-sectional area of p t h axial ele- Up 

ment of rotor 

'p 
m 
n -

- length of p t h axial element of rotor 
= number of deflection observations 
number of identified unbalance values 
= unbalance moment of p t h axial ele­

ment 
w = rotor deflection 
x,y,z = mutually orthogonal coordinates 
pp = weight density of rotor material in 

p t h axial element 
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with experimentally then it is necessary to compute the influence 
coefficients for the objective function theoretically. This would 
normally be accomplished using a rotor response computer pro­
gram. Usually it is advisable to verify the accuracy of the computer 
model utilized in the program at those speeds that can be observed 
experimentally. 

The linear porgramming formulation includes the maximization 
of the objective function, equation (7). It would be desirable, how­
ever, to maximize the magnitude of the response at a given speed 
and location, as given by 

fi + ws (9) 

Thus | ws\ is a nonlinear function of the response components, and 
therefore of the unbalance components. Use of equation (9) as an 
objective function would' cast the problem into a quadratic pro­
gramming form, which is not as desirable as linear programming 
from the standpoint of available adequate computer software. We 
choose, therefore, to maximize the lingar combination \wsx + wsy\ 
of the x and y components of objective function response. It 
should be noted that the set of unbalance components thus identi­
fied might not, in all cases, correspond to the set which produces 
maximum objective function response, although the response will 
be large. Thus, instead of identifying unbalance which satisfies all 
observations and is potentially most harmful to objective function 
response, we obtain the unbalance distribution which is simply po­
tentially harmful. It will be seen that this formulation, involving 
maximizing the linear combination of the objective function re­
sponse components instead of the actual magnitude of the re­
sponse, and thus admitting the possibility of a linear programming 
solution, produces excellent results. In fact, several sets of unbal­
ance moments have been computed using linear and quadratic 
programming with virtually identical results. 

E x a m p l e P r o b l e m 
As an example of the application of the linear programming for­

mulation, consider the rotor of Fig. 1. A hypothetical situation is 
proposed whereby it is supposed that the rotor is to operate at 
6000 rpm. In order to reach operating speed, the rotor must negoti­
ate three flexural criticals. These critical speeds, along with their 
associated characteristic mode shapes, are given in Pig. 2. 

An initial arbitrary unbalance distribution is assumed. Our goal 
is to calculate balance weights such that response due to this initial 
unbalance is reduced to the extent that the assumed operating 
speed may be reached without deflections exceeding some allow­
able maximum value. In order to approximate the general case of a 
distributed initial unbalance, the rotor mass has been "lumped" 
into 25 equally spaced elements. Initial two-dimensional (x and y 
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Fig. 1 Model of uniform shaft on two supports 
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Fig. 2 Critical speeds and mode shapes for rotor of Fig. 1 

components) arbitrarily selected values of unbalance are intro­
duced at each of the 25 mass stations, as given in Table 1. Typical 
response values due to this initial unbalance are shown in Fig. 3. 
These and subsequent response data were calculated using a rotor 
response computer program described in reference [5] and modi­
fied by E. J. Gunter of the University of Virginia. It should be 
mentioned that the response plots shown in Fig. 3 are only approx­
imate, since the response due to the initial unbalance is three di-

Table 1 Arbitrary initial unbalance distribution for rotor of Fig. 1 

Rotor 
S t a t i o n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

x-component 
oz - I n . 

0 .56 
0.84 
0.47 
0 .74 

- 0 . 2 0 ( 
0 .46 
0.37 

- 0 . 5 8 
- 0 . 1 4 

0.58 
0.24 

- 0 . 4 2 
0.46 
0.10 
0.68 
0.27 
0.66 

- 0 . 2 3 ( 
- 0 . 5 2 ( 

0.49 ( 
0 .42 ( 

- 0 . 1 8 ( 
- 0 . 3 6 ( 

0 .18 ( 
- 0 . 3 0 < 

[mN.m) 

[ 4 .0) 
: 5 .9) 
: 3 .3) 
' 5 .2) 
- 1 . 4 ) 

: 3 .3) 
2 .6) 

: -4 .1 ) 
; -0 .99) 
: 4.D 
' 1.7) 
:-3.o) 
: 3 .3) 
: o.8) 
: 4 .8 ) 
; i . 9 ) 
: 4 .7 ) 
' - 1 . 6 ) 
- 3 . 7 ) 

3 .5) 
3 .0) 

- 1 . 3 ) 
- 2 . 5 ) 

1.3) 
- 2 . 1 ) 

y-component 
oz - i n . 

0 .74 
0.37 • 
0 .74 
0.46 
0 .28 

- 0 . 5 9 
- 0 . 4 4 
- 0 . 2 5 

0.50 
0.26 
0.46 

- 0 . 2 9 
- 0 . 4 4 
- 0 . 2 9 

0.27 
0 .41 

- 0 . 5 2 
0.36 
0.09 
0 .31 

- 0 . 7 7 
0.69 

- 0 . 9 6 
0.25 

- 0 . 5 0 

(mN-m) 

( 5.2) 
( 2 .6) 
( 5.2) 
( 3 .3) 
( 2 .0) 
( -4 .2 ) 
( -3 .1 ) 
( -1 .8 ) 
( 3 .5) 
( 1.8) 
( 3 .3) 
( -2 .1 ) 
( -3 .1 ) 
( -2 .1 ) 
( 1.9) 
( 2 .9) 
( -3 .7 ) 
( 2 .5 ) 
( 0 .6) 
( 2 .2) 
( -5 .4 ) 
( 4 . 9 ) 
( -6 .8 ) 
( 1.8) 
( - 3 . 5 ) 
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Table 2 Comparison of unbalanced and balanced response of rotor of 
Fig. 1, seven observations, eight planes 

R o t o r 
S t a t i o n 

13 
7 

19 
5 

1 1 
12 
21 
16 

Speed 
rpm 

600 
2400 
2400 
4800 
4800 
4800 
4800 
6000 

I n i t i a l U n b a l a n c e d 
Reap 

m i l s 

654 
109 

9 1 . 6 
5 6 . 1 
7 5 . 5 
8 2 . 4 
5 2 . 0 
2 3 . 9 

lonse 
(mm) 

( 1 6 . 4 ) 
( 2 . 7 3 ) 
( 2 . 2 9 ) 
( 1 .40 ) 
( 1 .89 ) 
( 2 . 0 6 ) 
( 1 . 3 0 ) 
( . 5 9 8 ) 

B a l a n c e d 
R e s p o n s e 
m i l s 

5 . 3 7 
2 . 5 2 
2 . 2 8 
1 .14 
0 . 3 3 
0 . 5 6 
1 .08 
0 . 2 9 

(urn) 

(134 ) 
( 6 3 . 0 ) 

( 5 7 . 0 ) 
( 2 8 . 5 ) 
( 8 . 3 ) 
( 14) 
( 2 7 . 0 ) 
( 7 . 3 ) 1 

P e r C e n t 
R e d u c t i o n 

9 9 . 2 
9 7 . 6 
9 7 . 4 
9 8 . 0 
9 9 . 5 
9 9 . 1 
9 8 . 1 
9 8 . 8 

Objective function, no observation 

mensional. However, in the vicinities of the critical speeds, devia­
tion from a planar response curve is small, so that little accuracy is 
lost in a two-dimensional plot. 

To establish a particular problem, we must choose the speeds 
and axial locations at which observations of unbalanced rotor re­
sponse are to be taken, as well as the number and axial locations of 
the balance weights to be applied. In making these selections, some 
experience with the actual behavior and balancing of rotating 
shafts can be extremely valuable. Accordingly, we choose observa­
tions corresponding to speeds at or near resonance values and at 
axial locations for observations and balancing weights which corre­
spond to some of the antinodes of the respective modes. 

For a specific balancing problem, assume the deflections at 4800 
rpm shown in Fig. 3 are the maximum allowable at that speed. 
Since the rotor is to operate at 6000 rpm, balancing is required. 
Suppose the rotor can be run safely at speeds up through 4800 rpm 
and displacement observations are made. In terms of the linear 
programming formulation, we wish to identify (and subsequently 
remove) the unbalance which satisfies observations through 4800 
rpm and is potentially harmful at 6000 rpm, a speed at which the 
rotor cannot be safely run prior to balancing. 

At 6000 rpm, response will involve a combination of third and 
fourth mode effects. Since the calculated balance weights will re­
duce the response at 4800 rpm (because observations are taken 
there), a speed close to the third critical, the third mode compo­
nent at 6000 rpm will also be reduced. We therefore focus our at­
tention on the fourth mode component and select the axial loca­
tion for the objective function at an antinode of the fourth mode, 
station 16 in Fig. 1. 

We choose to identify eight balance weights to be located at sta­
tions 5, 7, 11, 12, 13, 16, 19, 21 such that observations at the seven 
stations (and speeds) 13 (600 rpm), 7 (2400 rpm), 19 (2400 rpm), 5 
(4800 rpm), 11 (4800 rpm), 12 (4800 rpm), and 21 (4800 rpm) are 
satisfied. After the observation responses are computed, it is as­
sumed that the initial unbalance distribution is unknown and that 
only these response observations are available for use in calculat­
ing the balance weights. 

The first attempt by the authors to obtain a solution, using a 
standard linear programming code, resulted in an unbounded ob­
jective function. Physically the explanation for this phenomenon is 
that it is possible to obtain a set of unbalance moments (U\, U% 
. . . , Ug) which satisfy the observations (equation (6)), but which 
can produce unbounded response at station 16 at 6000 rpm. Such a 
set of unbalance moments would consist of very large magnitudes 
of components, Ux and Uy, but the orientations of the unbalance 
vectors are such that the observations are still satisfied. For exam­
ple, very large components might be calculated for stations 11, 12, 
and 13, but the signs of these components could be such that the 
resultant unbalance moment for all three stations is fairly small. 
Such a combination could produce an unbounded objective func­
tion, while still satisfying equation (6). 

In order to overcome this mathematical difficulty, it is necessary 
to place constraints on the maximum size of the unbalance compo­

nents. This requirement leads to an additional set of equations of 
the form of equations (8). As mentioned in the discussion of the 
linear programming formulation, this additional set of constraints 
is actually quite appropriate since it may be desirable in practice 
to obtain balance weights of minimum size. However, it was ob­
served that there is a lower bound on | Up\ such that attempts to 
calculate balance weight components smaller than this lower 
bound result in no feasible solution, i.e., it is not possible to satisfy 
the observations, equations (6). Thus the procedure consists of de­
termining balance weights for progressively smaller values of the 
bounds on Up, until the smallest possible values have been identi­
fied, and then using those weights to improve the response of the 
rotor. 

Using this procedure the balance weights were identified and 
then added. Representative resulting responses are shown in Table 
2. It is seen that a significant reduction in response was obtained at 
station 16 at 6000 rpm (the objective function), although no obser­
vation at station 16 was used to calculate the balance weights. Ex­
amination of other response values indicates reduced response at 
6000 rpm at all stations, although observations were assumed to be 
available up to only 4800 rpm. 

Additional Results 
The effectiveness of the linear programming approach was com­

pared with direct inversion balancing. For the speed range up to 
4800 rpm the two approaches are for the most part of equal quali­
ty. As shown in Table 3, however, the differences become more sig­
nificant at station 16 at 6000 rpm (the linear programming objec­
tive function). Here the balance weights obtained using the linear 
programming scheme lead to a substantially better response than 
those obtained by the direct inversion technique. 

Additional differences between the results obtained using the 
two approaches become evident when the calculated balance 
weight distributions are compared. Such a comparison is given in 
Table 4. We note that the balance weights calculated using the di­
rect inversion technique for application at stations 11, 12, and 13 
tend to be rather large in magnitude, but their directions (or signs) 
are such that the net resultant for all three stations is small. This 
phenomenon has been encountered in practice when the direct in­
version technique has been applied to the balancing of actual ro­
tors. In some cases the balance weight magnitudes calculated have 
been so large that application was impossible. The large magni­
tudes still satisfy the required observations, however, since the an­
gular orientations of the balance weights in adjacent planes differ 
by approximately 180 deg. 

This difficulty may be eliminated using the linear programming 
balancing technique, since constraints on the maximum size of the 
balance weight components may be included in the problem for­
mulation. For the case presented in Table 4, the maximum size of 
each component is required to be less than or equal to 3.0 oz-in. 
(21.2 mN-m). Although it is seen that the balance weights calculat­
ed by the linear programming technique tend to follow the same 

Table 3 Comparisons of balanced response of rotor of Fig. 1 obtained 
using different balancing techniques 

R o t o r 
S t a t i o n 

13 
7 

19 
5 ' 

11 
12 
21 
16 

Speed 
rpm 

600 
2400 
2400 
4800 
4800 
4800 
4800 
6000 

I n i t i a l 
U n b a l a n c e d 

Respi 
m i l s 

654 
109 

9 1 . 6 
5 6 . 1 
7 5 . 5 
8 2 . 4 
5 2 . 0 
2 3 . 9 

a n s e 
(mm) 

( 1 6 . 4 ) 
( 2 . 7 3 ) 
( 2 . 2 9 ) 
( 1.4P) 
( 1 .89) 
( 2 . 0 6 ) 
( 1 .30 
( . 598) 

L i n e a r P] 
8 o b s . 
m i l e 

5 .37 
2 .52 
2 .28 
1.14 
0 . 3 3 
0 . 5 6 
1.08 
0 . 2 9 1 

Balanced I 
rogramning 
, 7 p l a n e s 

(mm) 

(134) 
( 6 3 . 0 ) 
( 5 7 . 0 ) 
( 2 8 . 5 ) 
( 8 . 3 ) 
( 14) 
( 2 7 . 0 ) 
( 7 . 3 ) 

l e s p o n s e 
D i r e c t 

7 o b s . 
m i l s 

5 .37 
0 . 4 5 
0 .16 
0 .87 
0 .72 
0 . 5 8 
0 . 6 3 
5 . 9 0 2 

I n v e r s i o n 
, 7 p l a n e : 

(pm) 

(134) 
( 11) 
( 4 . 0 ) 
( 22) 
( 18) 
( 14) 
( 16) 
(148) 

no observation, objective function 
no observation, no balance plane 
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600 
(15 000) 

37 .5 
( 9 3 7 . 5 ) 

30 
(750) 

o 2 2 . 5 
n (562 . 5 ) ' 

7.5 
(187.5) 

1EARING N O . 1.STATION N O . 1 
I I I I I I I I I I I I I I | I I I I M l I I I ' l ' 

IN IT IAL UNBALANCE 

7 OBS. , 8 PLANES, N O . OBS. 
AT S T A T I O N 1 

OBS. AT STATION 1 AT 4800 RPM 
INCLUDED 

1 

30 37.5 

ROTOR SPEED, RPM(10~M 

Fig. 5 Effect on balanced response of including an observation at station 
1 of rotor of Fig. 1 

I 1 1 1 H -H 1 H 
3 5 7 9 J l 13 15 17 19 21 23 25 

ROTOR S T A T I O N 

Fig. 3 Response of rotor of Fig. 1 due to initial unbalance 

pattern for stations 11, 12, and 13 (large magnitudes with opposite 
signs), their magnitudes are considerably less than those obtained 
by simple direct inversion. 

A better understanding of the response of the balanced rotor 
may be gained by considering the balanced responses given in Pig. 
4, obtained by the addition of the balance weights calculated with 
linear programming on the basis of seven observations and eight 
balance planes. We note that, especially at the higher speeds, the 
greatest reductions in response are obtained at those stations 

•where observations are taken, namely, station 13 at 600 rpm, sta­
tions 7 and 19 at 2400 rpm, and stations 5, 11, 12, and 21 at 4800 
rpm. For the remainder of the rotor, especially the ends (where the 
bearings are located), the reductions in response are not as signifi­
cant. It seems reasonable to postulate, therefore, that balance 
weights calculated on the basis of satisfying additional observa-

Flg. 4 Response of rotor of Fig. 1 after balance weights are added 
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tions at the bearing would produce smaller balanced response at 
those points. Pig. 5 indicates that this is true. Shown in Fig. 5 is 
the response versus speed curve obtained at station 1 when bal­
ance weights based on including an observation at station 1 at 4800 
rpm are added. Also shown, for purposes of comparison, are re­
sponse curves obtained due to the initial unbalance distribution 
and the addition of balance weights previously obtained without 
an observation at station 1. Note that response at station 1 is dras­
tically reduced by requiring that the observation there be satisfied. 

In some cases a reliable theoretical model may not be available 
to provide influence coefficients for speeds above the safe speeds 
where observations may be taken. In such cases a linear program­
ming balancing approach still offers certain advantages over tech­
niques presently employed, since it admits the possibility of limit­
ing the size of the balance weights to be calculated. The objective 
function could be taken to correspond to a station and speed for 
which observation is possible, and the appropriate influence coeffi­
cients determined in the usual fashion. The feasibility of "moving" 
the objective function into the observable speed range was investi­
gated for the unbalanced rotor considered here, and a solution was 
readily obtained. 

More detailed studies of the linear programming approach are 
provided in reference [6], where consideration is given to such fac­
ets as the effect of varying the numbers of observations. For exam­
ple, the results indicate that increasing the number of observations 
results in better balanced response. Furthermore, attaching bal­
ance weights calculated on the basis of too few observations can 
have disastrous effects, producing response greater than that due 
to the initial unbalance distribution. On the basis of various obser­
vation combinations studied, it is shown that significant reduc­
tions in response are achieved when observations are taken for 
each mode under consideration, and even greater reductions are 
obtained when observations of response at each antinode of each 

Table 4 Comparison of balance weight distributions obtained for rotor of 

Rotor 
Station 

5 
7 
11 
12 
13 
16 
19 
21 

oz-ln 

-2.11 
0.24 

-1.20 
3.00 
-1.93 
-2.89 
3.00 

-2.04 

Linear Programming 
7 obs., 8 
X 
. (inN'm) 

(-14.90) 
( 1.70) 
C- 8.48) 
( 21.2) 
(-13.6) 
(-20.4) 
( 21.2) 
(-14.4) 

planeH 

oz-ln. 

-1.33 
0.81 

-1.50 
2.14 
-0.87 
-0.31 
-0.03 
0.41 

y 
(mN'm) 

(-9.39) 
( 5.7) 
(-10-6) 
(15.1) 
(-4.7) 
(-2.2) 
(-0.2) 
( 2.9) 

oz-in. 

-2.03 
0.22 

-2.45 
7.23 
-6.32 

--0.17 
-0.19 

Direct Inversion 
7 obs., 7 

X 
(mN'm) 

(-14.3) 

( 1.6) 
(-17.3) 
( 51.1) 
(-44.6) 

-(- 1.2) 
(- 1.3) 

planes 

oz-in. 

-1.49 
1.04 
-3.44 
6.71 
-3.79 

-0.46 
-0.04 

y 
(mH'm) 

(-10.5) 
( 7.35) 
(-24.3) 
( S7v4) 
(-26.8) 

-(• 3.3) 
(- 0.3) 
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mode are employed. 

S u m m a r y 
The material presented in this paper is the result of an investi­

gation of the feasibility of an apparently new flexible rotor balanc­
ing method, based on linear programming techniques. Discrete un­
balance components which produce the same observed response as 
the initial distributed rotor unbalance are identified and subse­
quently removed. In addition to satisfying the specified observa­
tions, the unbalance is identified such that it is potentially harmful 
to response at a certain speed and axial location. This response 
corresponds to the linear programming objective function. If the 
objective function influence coefficients can be calculated theoreti­
cally, then it is possible to formulate an objective function corre­
sponding to response which cannot actually be observed. In addi­
tion, linear programming techniques make it possible to limit the 
size of the calculated balance weights. 

A c k n o w l e d g m e n t s 
Preparation of this paper was supported by the U.S. Army Re­

search Office, Durham. Consultations with Professor E. Gunter of 
the University of Virginia are gratefully acknowledged. 

References 
1 Rieger, N. F., "Unbalance Response and Balancing of Flexible Rotors 

in Bearings," Vol. Ill, Flexible Rotor-Bearing System Dynamics, ASME, 
1973. 

2 Tessarzik, J. M., Badgley, R. H., and Anderson, W. J., "Flexible Rotor 
Balancing by the Exact Point-Speed Influence Coefficient Method," JOUR­
NAL OF ENGINEERING FOR INDUSTRY, TRANS. ASME, Series B,. 
Vol. 94, No. 1, Feb. 1972, pp. 148-158. 

3 Lund, J. W., and Tonneson, J., "Analysis and Experiments on Multi­
plane Balancing of Flexible Rotor," JOURNAL OF ENGINEERING FOR 
INDUSTRY, TRANS. ASME, Series B, Vol. 94, No. 1, Feb. 1972, pp. 233-
242. 

4 Goodman, T. P., "A Least Squares Method for Computing Balance 
Corrections," ASME Paper No. 63-W-295,1963. 

5 Lund, J. W., "Rotor-Bearing Dynamics Technology, Part V: Computer 
Program Manual for Rotor Response and Stability," Technical Report 
AFAPL-TR-65-45, Air Force Aero Propulsion Laboratory, Wright-Patter­
son Air Force Base, Ohio, May 1965. 

6 Little, R. M., "The Application of Linear Programming Techniques to 
Balancing Flexible Rotors," PhD thesis University of Virginia, 1971. 

Journal of Engineering for industry AUGUST 1976 / 1035 
Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




