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ABSTRACT 
In the present paper energy method is used 

to obtain two sufficient conditions for linear stability 
of steady hydrodynamical flows. The idea of the 
method is to construct a small three-dimensional 
perturbations and formulate the stability criteria for 
the steady magnetohydrodynamic flows of an ideal 
incompressible.The stability conditions so obtained 
ensure non existence of  perturbations which grow 
with time faster than linealy. 

 
I.  INTRODUCTION 

 
In this note, we consider the stability of steady 

magnetohydrodynamic flows of an ideal incompressible 
fluid to small three-dimensional perturbations. We 
exploit the approach first proposed by Bernstein et al [1] 
for analysis of the stability of magnetostatic equilibria 
and later generalized by Frieman and Rotenberg [2] to 
the case of steady MHD flows. 

The idea of the method is to construct a 
quadratic in perturbations functional which is conserved 
by the linearized equations. This has been done by 
Frieman and Rotenberg who obtained the conserved 
energy functional for a general steady basic state. 
Though this result is known for almost forty years now, 
not many stability criteria seem to have been obtained 
with its help. So far, it is known that the energy integral 
for linearized equations is non-negative definite for some 
magnetostatic equilibria [1] and for a relativity trivial 
situation when in the basic state the magnetic field 

 corresponds to a stable magnetostatic equilibrium 

and the velocity is given  where  is 

constant and  [3], so that again the energy 
functional is effectively reduced to that corresponding to 
a magnetostatic equilibrium. It is therefore interesting to 
find out whether there are any non-trivial steady MHD 
flows that are stable to three-dimensional perturbations 
and that are not reducible to any magnetostatic 
equilibrium.  

This question is analysed in the paper. Our 
analysis results in explicit stability criteria for two 
classes of non-trivial steady MHD flows. Namely, we 
obtain sufficient conditions for stability to small three-
dimensional perturbations of (i) steady flows with 

 and  where 

 and  are arbitrary functions, and of 
(ii) general two-dimensional steady flows. 
The plan of the paper is as follows. In section 2 we first 
formulate the linearized stability problem for an arbitrary 
steady state, and then, following the procedure of [2], we 
obtain the energy integral which is conserved by the 
linearized equations. In section 3 we analyse the 
properties of this integral invariant and formulate the 
stability criteria. 
 

II.  FUNDAMENTAL EQUATIONS 
Consider an incompressible, inviscid and perfectly 
conducting fluid contained in a domain  with fixed 

boundary . Let  be the velocity field, 

 the magnetic field (in Alfven velocity units), 

 the pressure (divided by density), and 

 the current density. Then the governing 
equations are 

 
Eq.  implies that  is frozen in the fluid, its flux 
through any material surface being conserved. We 
suppose that the boundary  is perfectly conducting 

and that the magnetic field  does not penetrate 

through . The boundary conditions are then 
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We suppose further that at , the fields and  

are smooth and satisfy eq.  and , but are 
otherwise arbitrary. (throughout the paper the term 
‘smooth’ means smooth enough so as to justify all our 
mathematical manipulations.) 
Let 

 
be a steady solution of the problem -  whose 
stability will be studied. We shall refer to this solution as 
the basic state. Let  and  be 

infinitesimal perturbation to the basic state . 
Linearized equations governing the evolution of 

 and  are 

 
From here on, ‘primes’ will be omitted to simplify the 
notations. We introduce the Lagrangian displacement 

 of a fluid particle (i.e. the displacement at the 

time  of a fluid particle in perturbed flow relative to its 

position (at the time ) in unperturbed flow) satisfying 
the equation[2] 

 
Eqns.  and  have a consequence that 

 
It follows that if the relation 

 
is satisfied at  then it holds for any . This 
allows us to introduce a special class of isomagnetic 
perturbations as such perturbations that satisfy the 
relation .  And only such perturbations will be 
considered. 
Substitution of  in  yields the following 
equation for the Lagrangian displacement  : 

 
where  is symmetric operator defined by the formula 

 
and where 

 
is a function which is determined from obvious 
conditions 

 

Eq.  represents the ‘incompressible version’ of the 

equation obtained by Frieman and Rotenberg [2].  
 

III.  SUFFICIENT CONDITIONS FOR 
STABILITY 

 
Taking dot product of eq.  with  and integrating 

over , we obtain 

 
i.e. the quadratic integral 

 
is conserved by linearized equations and may be 
interpreted as the energy of the linearized problem. 
Evidently,  as a quadratic functional of  and  is 
positive definite if the ‘potential energy’ 

 
is positive definite. Positive definiteness of , in turn, 

means that  can be taken as a norm to measure the 
deviation of perturbed flow from unperturbed one, and 
the conservation of  by ,  implies that 
stability of the basic state to small perturbations. 
However, as we shall show, the functional  in never 
(strictly) positive definite. 

First we note that for a particular class of 
perturbations (satisfying generalized isovorticity 
condition ), the corresponding integral invariant (of the 
linearized problem) is indefinite in sign provided that 
there is a region in the flow domain where  and  are 

both non-zero and non-parallel to  [3]. Moreover, in a 
somewhat different from [3] and  variational approach of 
Hameiri [4], the corresponding Lyapunov functional is 
indefinite in sign if  is not parallel to  or  

somewhere in . In our case the same arguments as in 

[3] and [4] show that  is indefinite in sign if there is a 

region in the flow domain where  is non-zero and non-

parallel to . Indeed, in this region one can choose a 

function  which rapidly oscillates along  and 

slowly varies in -direction, and which vanishes outside 

the region. For such a , the leading term in  has the 
form  
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and is obviously negative, so that  can take negative 
values. 

Consider now the situation when  is parallel 

to  everywhere in  In this case,  is never strictly 

positive definite: for any  with 

arbitrary function  the functional  vanishes. 

Thus,  may be at most a positive semi-definite 

functional. Suppose now that  is positive semi 

definite. The solutions of eqns. ,  such that 

 may, in principle, grow with time. 

Nevertheless, it follows from the conservation of  and 

from the non-negativeness of  that  cannot grow 
faster than linearly with time. It is also known that linear 
with time growth of  does not always mean physical 
instability because the corresponding Eulerian velocity 
perturbation may remain bounded [5]. We shall not 
discuss this subtle question here. In what follows we 
shall assume that the non-negativeness of  is sufficient 
for linear stability. 

Consider now the functional  given by eq. 

. Obviously, there are situations when  is 
positive semi-definite. For instance, it is well known that 
it is so for certain magnetostatic equilibria  [6]. 
On the other hand, the results of [3],[4] and our simple 
arguments above indicate that for steady MHD flows 
with non-parallel  and  the ‘potential energy’  
is never of definite sign. Therefore, in what follows, we 
restrict ourselves to the case of flow and magnetic field 
everywhere parallel, i.e. we suppose that in the steady 
state  
                                                     

in

 

with some smooth function . From the 
incompressibility condition, we obtain 

 
Eqns.  and  have a consequence that 

 
Also we have 

 

 
Substitution of eqns.  in  yields 

 
It may be shown that 

 

 
With the help of this identity, eq.  may be written 
in the form 

 
Now it is clear that the following stability criterion is 
valid. 
Proposition 1. Steady MHD flow satisfying  is 
stable to small three-dimensional perturbations provided 
that the quadratic functional , given by eq. , is 
non-negative definite. 
Below we consider three particular classes of stesdy 
MHD flows for which we formulate sufficient conditions 
for stability in explicit form. 

A. Flows reducible to magnetostatic equilibria. 
The simplest special class of flows  for 

which  is non-negative definite is well 
known [8]. It comprises flows with 

. Indeed, for such flows 

the quadratic functional  simplifies to 

 
The sign of W is thus determined by the value 
of  and by the sign of . 

Note that the integral  coincides with the 
well known potential energy of [7] which is 
related to the stability to magnetostatic 
equilibria and which has been studied by 
numerous authers [8]. Moreover, for steady 
flows  with constant  eq.  reduces 
to the equation 

 
which evidently coincides with the equation 
describing a magnetostatic equilibrium with the 
magnetic field  and the pressure . In other 
words, there is one-to-one correspondance 
between steady flows  (with constant ) 
amd magnetostatic equilibria with the same 
magnetic field and the modified pressure . 
Therefore, we conclude that for any stable (in 
the sense of non-negative definite ) 
magnetostatic equilibrium the corresponding 
steady flow of the form  with constant  

is also linearly stable provided that  
 

B. Parallel flow and field. Let the flow domain  
be an infinite cylinder (of arbitrary cross-
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section) parallel to the -axis. We suppose that 
in the basic state both the velocity and the 
magnetic field are along the axis of the cylinder 
and depend only upon transverse coordinates 

 i.e. 

 
Then 

 
and  

 
whence, after some algebra, we obtain 

 
Here, we suppose that the vector fields and  
decay sufficiently rapidly as , so that 

the integral in  exists. Thus, we have 
obtained the following: 

Proposition 2. The steady state  is linealy stable 

provided that  in . 
C. General two-dimensionl basic state. Let the 

flow domain be the same as in the previous 
example, and, in addition to the condition 

, we suppose that both the velocity and the 

magnetic field are independent of  and parallel 

to the -plane. Then  

 
where  is the flux function for the magnetic 

field and  is the stream function for the 

velocity. Note that, according to  and 

, . 
In the basic state 

 
For some function . After some 
manipulations, this equation may be rewritten 
in the following equivalen form 
  

 
 

where . Also in the basic state 

, 

 
we assume that  in  and define a 

unit vector  

 

It can be shown by standard but tedious 
manipulations that the integral  for the 

basic state  takes the form 

 

 
 
Further transformation of  with the help of 

 and  results in 

 
 
The following statement is a direct 
conssequence of . 

Proposition 3. The stesdy state  is stable to small 
three-dimensional perturbations provided that the flow is 
sub-alfvenic, i.e. , and either of 
the inequalities[9]  

 

 
is satisfied, where 

 
 

Note that for plane parallal flow anf magnetic field when 
 the integral  given 

by  is incidently equal to equal to zero, so that, in 
agreement with Proposition 1, the stability condition 
reduces to the single condition . 
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In eqns. , . 

Clearly, either  or  is satisfied provided 
that 

 
We may conclude that if inequality  is satisfied 

then the steady state  is linearly stable. 
 

IV.  CONCLUSIONS 
 
We studied the linear stability of steady 

magnetohydrodynamic flows of an incompressible fluid. 
We have shown that there are non-trivial steady flows 
for which the integral invariant  of the linearized 

problem  is positive semi-definite. From this 
fact we have concluded that these flows are linearly 
stable and formulated the appropriate stability criteria 
(Propositions 2 and 3). Strictly speaking (see the 
discussion on the begining of section 3), our stability 
conditions ensure only that there are no perturbations 
which grow with time faster than linealy. An important 
open question is whether the linear growth of  implies 
the growth of physical fields such as the velocity and the 
magneic field. This is a problem for further 
investigation. 
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