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Patients with central vision loss must rely on their
peripheral vision for reading. Unfortunately, limitations
of peripheral vision, such as crowding, pose significant
challenges to letter recognition. As a result, there is a
need for developing effective training methods for
improving crowded letter recognition in the periphery.
Several studies have shown that extensive practice with
letter stimuli is beneficial to peripheral letter
recognition. Here, we explore stimulus-related factors
that might influence the effectiveness of peripheral
letter recognition training. Specifically, we examined
letter exposure (number of letter occurrences),
frequency of letter use in English print, and letter
complexity and evaluated their contributions to the
amount of improvement observed in crowded letter
recognition following training. We analyzed data
collected across a range of training protocols. Using
linear regression, we identified the best-fitting model
and observed that all three stimulus-related factors
contributed to improvement in peripheral letter
recognition with letter exposure being the most
important factor. As an important explanatory variable,
pretest accuracy was included in the model as well to
avoid estimate biases and was shown to have influence
on the relationship between training improvement and
letter exposure. When developing training protocols for
peripheral letter recognition, it may be beneficial to not
only consider the overall length of training, but also to
tailor the number of stimulus occurrences for each letter
according to its initial performance level, frequency, and
complexity.

Introduction

Reading, a daily visual task, is heavily reliant upon
foveal vision. In the periphery, reading performance
declines notably with eccentricity (Legge et al., 2001). It
has been shown that reading and letter recognition are

limited by three sensory factors (Yu et al., 2014):
resolution (acuity), crowding, and mislocation. Acuity,
the smallest letter size required to accurately identify
isolated letters, relates generally to the observer’s
spatial resolution for fine details and decreases with
eccentricity in a linear relationship (Anstis, 1974).
When multiple letters are presented simultaneously, as
often occurs in print, the nearby presence of neigh-
boring letters can reduce the ability to recognize the
target letter even when letter size is well above the
acuity limit. This phenomenon is known as crowding,
the effect of which is minimal at the fovea and increases
with eccentricity (Pelli et al., 2004; Whitney & Levi,
2011). Mislocations are position errors due to uncer-
tainty about the relative position of correctly recog-
nized letters. These errors also become greater with
eccentricity (Yu et al., 2014). He, Legge, and Yu (2013)
investigated the degree to which peripheral reading is
limited by these three factors and found that, although
all factors play a role in determining performance,
crowding appears to be the primary limiting factor in
peripheral reading.

People with central vision loss often complain of
reading difficulty using their residual vision (Elliott et
al., 1997; Mitchell & Bradley, 2006). Improving reading
performance in the periphery is, therefore, important
for the rehabilitation of these patients. Perceptual
learning–based training interventions have been found
to successfully enhance reading performance in the
normal periphery (e.g., Yu, Cheung et al., 2010; Yu,
Legge et al., 2010) and in patients with central vision
loss (e.g., Chung, 2011; Tarita-Nistor et al., 2014).
Perceptual learning generally involves extensive prac-
tice of a perceptual task and results in long-term
modification of perception and behavior (Fahle &
Poggio, 2002; Gibson, 1963). One of the advantages of
employing perceptual learning is that the training
method itself can be systematically studied and

Citation: Husk, J. S., & Yu, D. (2017). Learning to recognize letters in the periphery: Effects of repeated exposure, letter
frequency, and letter complexity. Journal of Vision, 17(3):3, 1–11, doi:10.1167/17.3.3.

Journal of Vision (2017) 17(3):3, 1–11 1

doi: 10 .1167 /17 .3 .3 ISSN 1534-7362 Copyright 2017 The AuthorsReceived March 16, 2016; published March 6, 2017

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Downloaded from jov.arvojournals.org on 06/29/2019

mailto:husk.14@buckeyemail.osu.edu
mailto:husk.14@buckeyemail.osu.edu
mailto:yu.858@osu.edu
mailto:yu.858@osu.edu
http://u.osu.edu/love
http://u.osu.edu/love
https://creativecommons.org/licenses/by-nc-nd/4.0/


optimized for performance improvements. To develop
an effective training protocol, we need to consider
various components of the protocol, including the
stimuli, task, duration, and frequency of training. The
goal of this study is to evaluate the roles of stimulus-
related factors in perceptual learning regimens for
peripheral reading. We made use of perceptual learning
data collected across two experimental contexts (Yu,
2013; Yu, Legge et al., 2010) and selected four training
groups and two no-training control groups for our
analyses. Although the details of the training procedure
differed across the four training groups, the experi-
ments shared two main common design components
that enabled us to directly compare learning across
groups: (a) In all cases, training stimuli were trigrams
(strings of three letters) and (b) pretest and posttest
performance was measured on a trigram letter recog-
nition task for all groups. This shared methodological
structure allowed us to investigate common stimulus-
related factors that influence learning irrespective of the
specific training task context.

Despite letters being well-learned, familiar patterns,
peripheral viewing can pose significant challenges to
accurate letter recognition. We hypothesized that under
the more taxing condition, differential learning of
individual letters might emerge on the basis of factors
that varied across the different letters. Specifically, we
examined three stimulus-related factors that might
impact the effectiveness of training for peripheral letter
recognition under crowded conditions: letter exposure,
frequency of letter use in English print, and spatial
complexity. Letter exposure refers to the number of
occurrences of the letter during training and often
differs in different training studies as determined by the
study design. In some training conditions, certain
letters may be presented more often than others. All
these variations enable us to examine the impact of
repeated letter exposure on learning. Letter frequency,
frequency of letter use in English print, has shown little
impact on letter identification accuracy in native
English speakers (Appelman & Mayzner 1981; Mason
1982). To our knowledge, the letter frequency effect has
not been previously studied in the context of learning to
improve crowded letter recognition in peripheral vision.
Although we do process text information presented
outside of the fovea (parafoveal processing) and make
use of the extracted information (Schotter et al., 2012),
identifying crowded letters specifically using peripheral
vision is still a demanding task. Many learning studies
have shown that training utilizing short-term exposure
to letter stimuli can help enhance peripheral letter
recognition (e.g., an average increase of 0.08 to 0.11 in
accuracy in Yu, Legge et al., 2010, and 0.16 to 0.17 in
Yu, 2013) despite already acquired years of letter
reading experience through central vision. It is possible
that the already existing long-term letter exposure has

an impact on the amount of improvement for
peripherally presented letters. Spatial complexity of
letters has previously been reported as an important
factor in crowded letter recognition (Bernard & Chung,
2011; Yu, 2015). Higher target complexity corresponds
to fewer errors in identifying the target letter compared
to lower target complexity (Yu, 2015). Higher com-
plexity, however, may not be an advantage in
perceptual learning because more complex letters likely
have more features to be learned, which may require
more practice than learning less complex letters.

In the present paper, we evaluated the impact of
three stimulus-related factors on learning of crowded
letter recognition in the periphery by modeling letter-
by-letter improvements in performance following
training as a function of letter exposure, letter
frequency in the English print, and spatial complexity
of the letters.

Methods

Experimental procedures

We analyzed the data collected in two previous
studies that focused on using perceptual learning to
enhance reading speed in the periphery (Yu, 2013; Yu,
Legge et al., 2010). Yu, Legge et al. (2010) investigated
several character-based training tasks, including a
trigram letter recognition task and a lexical decision
task, and compared the extent to which each task could
improve reading speed in peripheral vision with
extensive training. Yu (2013) developed nontask-based
training methods utilizing repeated stimulus exposure
and priming of stimulus identity. Although the two
studies focused on different research questions and
have some differences in training details, the experi-
mental procedures adopted to present the stimuli and
to operationalize learning and testing were fundamen-
tally identical. The present study examined only the
training groups that were trained on stimuli composed
of three letters. Four training groups, the trigram letter
recognition group and the lexical decision training
group from Yu, Legge et al. (2010) and both nontask-
based training groups from Yu (2013) were included in
our analyses. Two no-training control groups, one
from each study, were also included. There were a total
of six groups. Each group comprised seven young
adults with normal or corrected-to-normal vision.

All testing was conducted binocularly in a dimly lit
room at a viewing distance of 40 cm. Subjects were
asked to maintain stable fixation at a dot in the center
of the display. Across all six groups, the testing and
training stimuli were always trigrams presented at
different letter distances to the left and right of the
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midline at 108 in the lower visual field. All characters
were lowercase English letters and rendered as black
characters on a white background. A monospaced
Courier font and the standard letter spacing (1.16 3 x-
width) were used. As shown in Figure 1, the position of
the trigram (denoted by the position of the middle letter
of the trigram) ranged from�5 to 5 (a total of 11
positions). Positive values refer to the positions to the
right of the midline; negative values signify the
opposite. Position 0 corresponds to the location
directly below fixation at the midline. The stimulus
presentation duration was 106 ms in Yu (2013) and 105
ms in Yu, Legge et al. (2010).

Print size (defined as x-height) was 2.58 in Yu (2013)
and 3.58 in Yu, Legge et al. (2010)—both larger than
the critical print size (CPS) at the testing location. CPS
refers to the smallest print size above which reading
speed reaches plateau. At 108 eccentricity in the lower
visual field, CPS has always been found to be smaller
than 2.58 for normally sighted young adults (e.g.,
Chung et al., 1998). Because trigram letter recognition
shows the same qualitative dependence on print size as
reading speed (Legge et al., 2007), print sizes of 2.58 and
3.58 (both above the CPS) provide similar levels of
performance in trigram letter recognition. In short, our
analyses and findings should not be affected by the use
of different print sizes in the two studies.

Pretest and posttest

All subjects completed a pretest and a posttest that
were 1 week apart. The posttest was always conducted
on the next day after the last training session for the
training groups. Although the task batteries that served
as the pretests and posttests in the two studies
comprised different combinations of tasks, both studies
included a trigram letter recognition task at 108 below
fixation. In the trigram task, the stimuli were random
letter trigrams (random strings of three letters).
Subjects were instructed to report all three letters from
left to right. There were 20 trials per position and a
total of 220 trials.

Besides the usage of different print sizes mentioned
earlier, the only other procedural difference between
the two studies was the letter sampling method in the
pretest and posttest measurements of trigram letter
recognition. To construct a trigram, letters were
selected with replacement in Yu, Legge et al. (2010) but
without replacement (no letter repetition within tri-
grams) in Yu (2013). Only 12% of the trials in Yu,
Legge et al. (2010) had letters repeated within the
trigram. We have excluded these trials from our data
analysis in the present study.

Training

Two of the six groups analyzed in this study, the
trigram letter recognition group and the lexical
decision group from Yu, Legge et al. (2010), received
explicit task-based training between the pretest and
posttest. For both groups, training occurred in daily
1-hr sessions on four consecutive days. In the trigram
letter recognition group, subjects practiced on the
trigram letter recognition task for a total of 3,520
trials (880 trials per day). The lexical decision training
group completed 5,400 trials of a lexical decision task
with 1,350 trials per day. In each trial, subjects were
instructed to report whether the trigram was a word
or nonword.1 Trigrams were words for half of the
trials.

Two nontask-based training groups from Yu (2013),
the trigram with repetition group and the trigram
without repetition group, were included in the present
study. For both groups, training consisted of viewing
trigrams on five successive days. Each training session
had 26 blocks, one for each letter. Within each block,
the middle letter of the trigram (target) was always the
same on each trial. Target identity was revealed to the
subjects in advance. The left and right letters were
randomly selected with replacement across trials.
Subject had no task but rather was instructed to attend
to each trial and learn to recognize the known target
letter. The with-repetition group had the option of
repeating a trigram stimulus for as many times as
preferred. The without-repetition group did not have
this option. On average, the with-repetition group
viewed 2,812 more trigrams than the without-repetition

Figure 1. A sample trigram stimulus. In this example, the trigram

‘‘tea’’ is located at position�4. The three letters are positioned

at �5 (‘‘t’’), �4 (‘‘e’’), and �3 (‘‘a’’), respectively. Position 0 is

right below fixation. Position �4 indicates that the corre-

sponding letter is to the left of the vertical midline and that the

distance between the letter and the midline, or position 0, is

four times the standard letter spacing.
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group who viewed a total of 7,150 trigrams (275
trigrams per letter2).

The common component across the four training
designs was that the stimuli were always trigrams. The
key differences were in the stimulus exposure (total
number of trigrams) and in the process of selecting
letters to compose a trigram (reflected as exposure
frequencies of individual letters). Depending on the
method of letter sampling, the number of occurrences
across individual letters may be the same or similar or
may differ greatly across individual letters.

Statistical analyses

Linear regression modeling was used to examine the
effects of letter exposure, the frequency of letter use in
English print, and letter complexity on performance
improvement for crowded letter recognition. We also
identified pretest accuracy as another important
explanatory variable and included it in the model to
avoid producing biased estimates.

Outcome variables: Performance improvement

The outcome variable was performance improve-
ment, calculated as the difference in letter recognition
accuracy between the posttest and pretest. We consid-
ered only the letters presented at the middle position in
the trigram as the middle letter is the most crowded
among the three letters of the trigram (Yu et al., 2014).
These analyses were also repeated for recognition of all
three letters of the trigram, and the results were
qualitatively the same (see supplemental results). In our
analyses, the unit of observation was the individual
alphabet letter observed in an experimental group. In
other words, different observations differed in regard to
letter identity (26 alphabet letters) and experimental
group (six groups). As a result, there were a total of 156
observations with each observation based on trials
cumulated across 11 letter positions and seven subjects
within the group. Data accumulation across letter
positions and subjects was necessary for obtaining
accurate estimates of letter recognition accuracy and
performance change. Because there is a dissociation
between crowding and mislocation (Yu et al., 2014;
Xiong et al., 2015) and our interest is in crowding, we
excluded the trials with target misplacement errors (one
type of mislocation errors). In the removed trials
(about 5% of the total trials), the middle letter of the
trigram was identified correctly but reported as being in
one of the two flanking positions. As shown in
Supplementary Tables S4 and S5, the exclusion of these
trials had no significant impact on the resulting model.

Stimulus-related factor: Letter exposure

For each letter, letter exposure refers to repeated
letter occurrences during the training sessions. An
aggregate measure of the number of occurrences,
averaged across subjects within each group, was
obtained for each letter by taking into account only the
middle letters of the trigrams and counting cumula-
tively across training days. The trials in the pretest and
posttest were not included in the exposure count. The
two control groups did not receive any training and
therefore were treated as having zero letter exposure
between the pretest and posttest. Number of letter
occurrences during training ranged from zero to 1,230
(see summary statistics in Table 1).

Stimulus-related factor: Letter frequency

Although it is impossible to determine the lifetime
letter exposure for the subjects, we can estimate the
relative lifetime exposures to different letters from
typical usage of English letters in print. We adopted the
lowercase letter frequency measured by Jones and
Mewhort (2004) who based their estimation on the
frequency of letter use in The New York Times. Letter
frequency was calculated as the percentage of uses of
each letter relative to the total counts for the entire
alphabet. For example, the letter ‘‘e’’ occurred
7,741,842 times out of a total of 61,676,894, which
yielded a percentage use of 12.55%. Across the 26
letters, letter frequencies ranged from 0.09% to 12.55%
with a mean of 3.85% (see Supplementary Table S1 for
the list of letter frequencies).

Stimulus-related factor: Letter complexity

Letter complexity, the spatial complexity of the letter
stimulus, has been quantified in a variety of ways,
including perimetric complexity (Attneave & Arnoult,
1956; Pelli et al., 2006), length of morphological
skeleton (i.e., total stroke length; Bernard & Chung,
2011), and stroke frequency (Majaj et al., 2002; Zhang
et al., 2007). Complexities computed with different
methods are highly correlated (Wang et al., 2014). In
the present study, we employed the length of the

Mean

Standard

deviation Minimum Maximum

Improvement (%) 12.99 14.46 �16.79 60.80

Pretest accuracy (%) 54.32 18.94 14.55 95.24

Letter exposure 167 199 0 1230

Letter frequency (%) 3.85 3.31 0.09 12.55

Letter complexity 152 24 118 194

Table 1. Summary statistics for key variables in the regression
modeling.
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morphological skeleton to quantify the letter com-
plexity because this complexity measure has been
previously used to investigate letter recognition per-
formance under crowded conditions (Bernard &
Chung, 2011). The complexities were calculated using
custom Matlab software for letters in Courier font with
an x-height of 43 pixels and ranged from 118 to 194
with a mean of 152.

Pretest accuracy

Pretest accuracy varies across letters. A higher level
of initial performance constrains the potential for
improvement. For instance, the initial recognition
accuracy was about 82% for letter ‘‘f’’ and 47% for
letter ‘‘b.’’ This means that letter ‘‘b’’ has more room to
improve and is likely to show greater improvement
than letter ‘‘f’’ because of initial performance alone. A
preliminary data analysis confirms that there is a
significant negative correlation between the pretest
accuracy and the post–pre improvement in letter
recognition (r¼�0.63, p , 0.0001). The observation of
the negative correlation is in agreement with many
other perceptual learning studies (Astle et al., 2013;
Baldassarre et al., 2012; Fahle & Henke-Fahle, 1996;
Tarita-Nistor et al., 2014). Statistically, it is important
to include such a significant explanatory variable in the
model to avoid constructing an underspecified model
and producing biased estimates. Additionally, it was
necessary to take into account the differences in the
pretest accuracy across letters because improvements
can be quantitatively the same but qualitatively
different depending on the initial levels of performance
(e.g., a change from 50% to 55% vs. a change from 90%
to 95%).

Modeling approach

The overall objective was to model performance
change as a function of letter exposure, frequency, and
complexity after controlling for pretest performance.
Prior knowledge of the response curve was used to
serve as a guide in choosing the most appropriate
functional form for each variable. Logarithmic trans-
formation was performed on two independent vari-
ables that have nonlinear relationships with the
dependent variable. First, the time course of perfor-
mance improvement in perceptual learning tends to
follow a nonlinear function where fast gains emerge at
the beginning of training with diminishing returns over
time (Dosher & Lu, 2007). Using the training data
from the trigram letter recognition group (Yu, Legge et
al., 2010), we assessed whether the same relationship is
true for letters. We examined three types of func-
tions—linear, exponential, and logarithmic—and
found that the logarithmic function corresponds to the

lowest mean squared error and is the best candidate to
model the learning curve for crowded letter recogni-
tion. Previous data (Yu, 2013; Yu et al., 2010) also
indicated a possible nonlinear relationship between the
total improvement and pretest accuracy. Comparing
among the three types of functions, fitting with a
logarithmic function consistently led to the lowest
mean squared errors. In the present study, we adopted
the logarithms of letter exposure and pretest accuracy
to evaluate the nonlinear relationships while preserving
the linear model. Base 10 was used for convenience so
that the value of two corresponds to 100 occurrences
for letter exposure or 100% accuracy for pretest
performance. Because the logarithm of 0 is undefined,
we recorded instances in which letter exposure was
zero to one before performing the logarithmic trans-
formation.

We were interested in examining both the linear and
interaction terms in the model. The selection of the
most parsimonious model was accomplished via a
backward elimination strategy. The starting model
included the four predictors of interest and all possible
interaction terms. Nonsignificant terms were progres-
sively eliminated, one at a time, starting with the four-
way interaction, followed by the three-way and two-
way interactions and the main effect terms. For
significant interaction terms, the corresponding main
effect terms remained in the model regardless of their
statistical significance.

Bootstrapped confidence interval

Bootstrapping, a distribution-free method, was used
to obtain the confidence intervals for the regression
estimates. Bootstrapping confidence intervals is ad-
vantageous in cases where the sample size is relatively
small such that the conditions of the Central Limit
Theorem may be violated, and normal distribution
assumptions may not apply (Fox, 2015). Although
there is no absolute standard for what constitutes a
small sample size, we opted to use bootstrapped
confidence intervals to avoid making assumptions
about the underlying distribution of the data. To
generate the bootstrapped confidence intervals, 5,000
iterations of random sampling with replacement were
used. At each iteration, the resampled observations
were fit using regression, and the resulting coefficients
were recorded. After 5,000 iterations, the resulting
distribution of coefficient values was examined, and the
95% confidence interval was obtained for each coeffi-
cient in that stage of the model (Fox, 2015). When the
95% confidence interval for a coefficient included zero,
the corresponding predictive term was considered a
nonsignificant predictor of the outcome.
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Results

Across all groups, recognition accuracy of the
middle letter of the trigram improved an average of
12.99% from pretest to posttest (Table 1). Table 2
shows the significant coefficients retained in the model
after the backward selection procedure. The four main
effect predictors—letter exposure, letter frequency,
letter complexity, and pretest accuracy—show signifi-
cant associations with the outcome measure. There was
also a significant interaction between log(Letter expo-
sure) and log(Pretest accuracy). The best-fitting model
relating mean improvement E(improvement j x) to the
four explanatory variables is given by the equation:

E improvementÞ ¼ð 87:23

þ21:093 logðLetter exposureÞ
�1:173 Letter frequency

�0:103 Letter complexity

�35:553 logðPretest accuracyÞ
�10:143 logðLetter exposureÞ
3 logðPretest accuracyÞ

This model indicates that improvement in crowded
letter recognition is significantly related to letter
exposure, frequency, and complexity after controlling
for pretest accuracy. As shown in Figure 2, more
frequent letters are expected to improve less than less
frequent letters while holding letter exposure, letter
complexity, and initial accuracy constant. More com-
plex letters improve less on average than less complex
letters when exposure, frequency, and initial perfor-
mance are held fixed.

The interaction term suggests that the effect of letter
exposure on improvement is greater at lower levels of
pretest performance. In other words, the lower the
initial accuracy of letter recognition, the greater
improvement the letter gains with repeated letter
exposure. On the other hand, the more letter exposure,
the greater the effect of pretest accuracy on improve-
ment. Note that the contribution of the interaction
term to explaining the total variance in the improve-
ment is small (sr2¼ 0.02). Overall, E(improvement) is
estimated to increase with increasing the number of
letter occurrences while controlling for the other factors
in the model; increasing the pretest accuracy in letter
recognition leads to reduction in the mean performance
improvement, holding the other predictor variables
constant.

Together, these results suggest that increasing the
number of trials in which a subject views crowded
letters is associated with greater improvement in letter
recognition although the rate of improvement depends
on the level of pretest performance. Meanwhile,

improvement is less in the context of letters that are
used more frequently in English print or more spatially
complex. Higher initial performance level is associated
with less improvement with letter exposure modulating
the size of the effect of pretest accuracy. Adjusted R
square, R2

adj, was chosen as a measure of model
adequacy. As shown in Table 2, the model explains
57% of the variability of the improvement. To assess
the unique contribution and relative importance of
each predictive term in determining E(improvement),
we also calculated semipartial correlations. Squared
semipartial correlation (sr2) indicates the amount of
decrease in R2 when the variable is removed from the
regression equation (Cohen et al., 2013). Among the
three stimulus-related factors, letter exposure contrib-
uted the most and letter complexity contributed the
least to the explained variation in the improvement.

The analyses presented in Table 2 focused on
improvement in recognizing the crowded, middle letter
of the trigram. Letter exposure was measured as the
count of occurrences of each letter in the middle letter
position within the trigram during training. As shown
in Supplemental Table S2, modeling performance
improvement with three-letter exposure (number of
occurrences of each letter across all three letter
positions within the trigram) does not substantially
alter the results of the regression analysis. The resulting
best model is qualitatively identical to the one shown in
Table 2. A similar relationship also holds when we
evaluate three-letter improvement (i.e., improvement
calculated across all three letters of the trigram) and use
total letter exposure across all three positions within
trigram as a predictor along with letter frequency,
complexity, and pretest accuracy (Supplemental Table
S3).

The analyses in the present study were performed
after excluding trials in which responses involved target
misplacement errors. To determine whether the exclu-
sion of these trials had any significant impact on the
resulting model (Table 2), we repeated the regression

Predictive term Coefficient 95% CI sr
2

log(Letter exposure) 21.09 [7.57, 35.15] 0.09

Letter frequency �1.17 [�1.63, �0.76] 0.06

Letter complexity �0.10 [�0.17, �0.03] 0.02

log(Pretest accuracy) �35.55 [�49.85, �22.27] 0.36

log(Letter exposure):

log(Pretest accuracy)

�10.14 [�18.26, �2.34] 0.02

Intercept 87.23 [63.29, 113.50]

Table 2. Results of regression model for improvement (R2 ¼
0.59; R2

adj ¼ 0.57). Notes: Dependent variable is middle letter
improvement. Predictors are middle letter exposure, letter
frequency, letter complexity, and pretest performance. 95% CI:
95% bootstrapped confidence interval. sr2: the squared semi-
partial correlation.
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analysis with all trials included. As shown in the
Supplemental Tables S4 and S5, target misplacement
errors were handled in two different ways: (a) treating
the responses as incorrect and (b) treating the responses
as correct. We found that inclusion of the trials with
target misplacement errors had little influence on the
resulting model regardless of error handling ap-
proaches.

We tested model stability using a procedure akin to a
jackknife procedure in which we repeated the model
analysis six times, each time dropping out one of the six
experimental groups. The rationale of this analysis was
that if an experimental group is causing undue
influence on the model, the parameter estimates should
vary notably when that group is removed from the
analysis. Further, because only one group was dropped
at a time, the sample size (n ¼ 130) remained large
enough to produce stable model solutions with four
predictors. Table 3 presents the coefficients obtained
during this analysis. The estimate for the interaction
term, log(Letter exposure) 3 log(Pretest accuracy),
appears less stable across simulations than the esti-
mates for the main terms. In particular, dropping the
trigram letter recognition group or the 2013 control
group results in a nonsignificant interaction term. This

is not surprising considering the small contribution of
the interaction term to the model (sr2 ¼ 0.02). It
suggests that the association between log(Letter expo-
sure) 3 log(Pretest accuracy) and improvement may be
more heavily driven by the trigram letter recognition
group and the 2013 control group. As shown in Table
3, regardless of whether the model contains the
interaction term, the variability of the coefficient
estimates is small relative to the estimates based on all
groups.

Discussion and conclusions

We explored three stimulus-related factors (letter
exposure, frequency, and complexity) as predictors of
the effectiveness of training for peripheral letter
recognition while controlling for pretest accuracy. All
factors are significantly related to the performance
change in crowded letter recognition. Among the three
stimulus-related factors, letter exposure contributes the
most and the spatial complexity of the letter contrib-
utes the least to the explained variation in the
performance change. Letters that are initially more

Figure 2. Post–pre improvement as a function of (a) letter exposure, (b) letter frequency, (c) letter complexity, and (d) pretest

accuracy. The lines represent the fit to the data given by the model. Each letter represents a data point associated with the letter.

Group dropped
All groups

(with

interaction

term)

All groups

(without

interaction

term)Predictive term

2010

control

2010

lexical

2010

trigram

2013

control

2013

without

repetition

2013

with

repetition

log(Letter exposure) 26.20 20.79 3.96 3.43 21.53 31.67 21.09 3.81

Letter frequency �1.26 �0.97 �1.34 �1.20 �1.15 �1.14 �1.17 �1.18
Letter complexity �0.09 �0.09 �0.07 �0.11 �0.12 �0.11 �0.10 �0.10
log(Pretest accuracy) �29.05 �36.79 �44.62 �56.81 �34.57 �32.55 �35.55 �52.23
log(Letter exposure):

log(Pretest accuracy) �13.19 �9.68 / / �10.58 �16.35 �10.14 /

Table 3. Coefficient estimates in the model stability analysis that examines the relative impact of dropping out a subset of the data.
Notes: Dependent variable is middle letter improvement. Predictors are middle letter exposure, letter frequency, letter complexity,
and pretest performance. All coefficient estimates presented in the table are significantly different from zero. Coefficient estimates
based on all groups with and without the interaction term are also presented here as references.
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difficult to recognize, exposed more frequently during
training, used less frequently in English print, or less
spatially complex are associated with greater perfor-
mance gains. Although the effect of letter exposure
depends on the level of the pretest performance and
vice versa, lesser confidence should be placed in the
contribution of this interaction.

Multicollinearity

It is worth noting that frequency and complexity
were marginally correlated (r¼�0.34, p¼ 0.09; Figure
3). High-complexity letters tend to appear less fre-
quently in English print whereas lower-complexity
letters span the range of letter frequencies in the
language. To evaluate the potential effect of multi-
collinearity, we examined the variance inflation factors
(VIFs; Fox, 2015) to estimate how much the variance of
one coefficient is inflated due to linear dependence with
other predictors. We found that values of all VIFs (�
1.19) were below the common criterion for identifying
problematic high VIF. Therefore, we conclude that
multicollinearity is not a concern for our models.

Letter exposure

It may not be surprising that greater exposure to
training stimuli resulted in greater improvement.
However, letters are already familiar objects, and the
differences in the amount of exposure to letters during
training are very small by comparison to lifetime
exposure levels. In the current analysis, the maximum
letter exposure is 1,230 trials. We are able to use a
logarithmic function to describe the performance
improvement as a function of letter exposure (i.e., the

amount of training). What if we extend the training
beyond 1,230 trials? The relationship between perfor-
mance changes and the length of training could vary
depending on the time period over which the perfor-
mance changes are considered. For instance, many
studies show that perceptual learning–based improve-
ment plateaus after just a brief period of practice such
as a few hours (e.g., Chung et al., 2004; Levi & Polat,
1996). For that reason, most perceptual learning
studies only focus their investigations on training over
short periods of time. Only a handful of studies have
tried to track learning beyond the initial plateau. Li et
al. (2008) found that, beyond the initial brief plateau,
there could be further substantial improvement with
prolonged training, especially for patients with more
severe vision loss. It is possible that crowded letter
recognition continues to improve with additional letter
exposure beyond the range tested here, which raises the
question of when the ultimate asymptotic performance
can be reached. This has yet to be answered.

Letter frequency

Although it is impossible to estimate lifetime letter
exposure levels for our subjects, letter frequency counts
in English print can act as a rough proxy for the
relative lifetime exposures to different letters. Does
long-term exposure matter in the context of letter
recognition? Pelli et al. (2006) found that for normal
vision, efficiency of letter identification rises quickly
with initial learning for both adults learning foreign
alphabets and young children learning native alpha-
bets. After the initial period of rapid improvement in
efficiency, no further gain was found even with decades
of additional reading experience. In other words,
human subjects can improve their performance of letter
identification to the ceiling level with merely a short-
term exposure to letter stimuli. Hence, it is reasonable
to observe the lack of letter frequency effect on
identification accuracy in native English speakers
(Appelman & Mayzner, 1981; Mason, 1982). Although
long-term exposure to letter stimuli is typically accrued
through central vision for normally sighted people, we
found the same result—no correlation between letter
frequency and (pretest) recognition accuracy—in the
periphery. Interestingly, the present study showed that
letter frequency does have an effect on performance
improvements with lower-frequency letters associated
with more improvement than higher-frequency letters.
Does this mean we should allocate more trials to low-
frequency letters during the training with a goal of
improving reading performance? Practically speaking,
when training time is limited, it may not be cost-
efficient to do so because low-frequency letters, by
definition, appear less frequently in daily reading.

Figure 3. Marginally significant correlation between letter

frequency and letter complexity (r ¼�0.34, p ¼ 0.09).
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Devoting more training trials to high-frequency letters
may not be advantageous either. A previous study
found that the improvement through training with
trigrams frequently used in the English language did
not exceed the improvement following random-letter
trigram training (Bernard et al., 2012). Further
investigation is needed to evaluate whether or not
training paradigms should be optimized based on letter
frequency.

Clinical implications

For patients with central vision loss, learning to
utilize their residual vision for tasks formerly per-
formed by the fovea is critical for maintaining daily
functioning and quality of life. Most people with
central vision loss are able to, at least on a certain level,
adapt naturally to their vision loss through processes
such as recruiting an eccentric retinal location as a
replacement for the original fovea (Cheung & Legge,
2005). Training interventions, providing intentional,
guided practice under controlled conditions, are
important components of low vision rehabilitation
complementary to patients’ natural adaptations. De-
veloping a training procedure to enhance letter
recognition and reading performance in the periphery is
especially important for reading rehabilitation in these
patients. Although we have had success developing
effective training methods for peripheral reading,
understanding the roles of various factors in learning
can help further improve the efficiency and effective-
ness of training. The findings of the present study
contribute to our knowledge on how stimulus-related
factors and pretest performance might influence per-
formance change for peripheral letter recognition. To
optimize training protocols for peripheral letter recog-
nition, it may be beneficial to not only consider the
overall length of training, but also to tailor the number
of stimulus occurrences for each letter according to its
initial performance level, frequency, and complexity.
Although we examined only four explanatory factors,
we recognize that other factors, such as training task,
duration, and frequency of training, may also have
significant impacts on the effectiveness of training.

Keywords: letter recognition, peripheral vision,
crowding, perceptual learning, low vision
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Footnotes

1 To ensure the task was sufficiently difficult to
observe learning, a postmask ‘‘###’’ was presented after
each trigram, and a shorter stimulus duration (92 ms)
was used for two of the subjects. Feedback on
performance accuracy was provided to the subjects
following each training block.

2 For the trigram without repetition group, the
number of letter exposures was designed to be 275 trials
per letter. However, a program error occurred in one
training session for one subject, resulting in slightly
different numbers of exposures across letters (267, 275,
or 283 trials per letter).

References

Anstis, S. M. (1974). A chart demonstrating variations
in acuity with retinal position. Vision Research,
14(7), 589–592.

Appelman, I. B., & Mayzner, M. S. (1981). The letter-
frequency effect and the generality of familiarity
effects on perception. Perception & Psychophysics,
30(5), 436–446.

Astle, A. T., Li, R. W., Webb, B. S., Levi, D. M., &
McGraw, P. V. (2013). A Weber-like law for
perceptual learning. Scientific Reports, 3, 1–8.

Attneave, F., & Arnoult, M. D. (1956). The quantita-
tive study of shape and pattern perception.
Psychological Bulletin, 53(6), 452–471.

Baldassarre, A., Lewis, C. M., Committeri, G., Snyder,
A. Z., Romani, G. L., & Corbetta, M. (2012).
Individual variability in functional connectivity
predicts performance of a perceptual task. Pro-
ceedings of the National Academy of Sciences, USA,
109(9), 3516–3521.

Bernard, J. B., Arunkumar, A., & Chung, S. T. (2012).
Can reading-specific training stimuli improve the
effect of perceptual learning on peripheral reading
speed? Vision Research, 66, 17–25.

Journal of Vision (2017) 17(3):3, 1–11 Husk & Yu 9

Downloaded from jov.arvojournals.org on 06/29/2019

mailto:yu.858@osu.edu


Bernard, J.-B., & Chung, S. T. (2011). The dependence
of crowding on flanker complexity and target–
flanker similarity. Journal of Vision, 11(8):1, 1–16,
doi:10.1167/11.8.1. [PubMed] [Article]

Cheung, S.-H., & Legge, G. E. (2005). Functional and
cortical adaptations to central vision loss. Visual
Neuroscience, 22(2), 187–201.

Chung, S. T. (2011). Improving reading speed for
people with central vision loss through perceptual
learning. Investigative Ophthalmology & Visual
Science, 52(2), 1164–1170. [PubMed] [Article]

Chung, S. T., Mansfield, J. S., & Legge, G. E. (1998).
Psychophysics of reading. XVIII. The effect of
print size on reading speed in normal peripheral
vision. Vision Research, 38(19), 2949–2962.

Chung, S. T., Legge, G. E., Cheung, S. H. (2004).
Letter-recognition and reading speed in peripheral
vision benefit from perceptual learning. Vision
Research, 44(7), 695–709.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S.
(2013). Applied multiple regression/correlation anal-
ysis for the behavioral sciences. Mahwah, NJ:
Routledge.

Dosher, B. A., & Lu, Z.-L. (2007). The functional form
of performance improvements in perceptual learn-
ing rates and transfer. Psychological Science, 18(6),
531–539.

Elliott, D. B., Trukolo-Ilic, M., Strong, J. G., Pace, R.,
Plotkin, A., & Bevers, P. (1997). Demographic
characteristics of the vision-disabled elderly. Inves-
tigative Ophthalmology & Visual Science, 38(12),
2566–2575. [PubMed] [Article]

Fahle, M., & Henke-Fahle, S. (1996). Interobserver
variance in perceptual performance and learning.
Investigative Ophthalmology & Visual Science,
37(5), 869–877. [PubMed] [Article]

Fahle, M., & Poggio, T. (2002). Perceptual learning.
Cambridge, MA: MIT Press.

Fox, J. (2015). Applied regression analysis and general-
ized linear models. Thousand Oaks, CA: Sage
Publications.

Gibson, E. J. (1963). Perceptual learning. Annual
Review of Psychology, 14(1), 29–56.

He, Y., Legge, G. E., Yu, D. (2013). Sensory and
cognitive influences on the training-related im-
provement of reading speed in peripheral vision.
Journal of Vision, 13(7):14, 1–14, doi:10.1167/13.7.
14. [PubMed] [Article]

Jones, M. N., & Mewhort, D. J. (2004). Case-sensitive
letter and bigram frequency counts from large-scale
English corpora. Behavior Research Methods, In-
struments, & Computers, 36(3), 388–396.

Legge, G. E., Cheung, S. H., Yu, D., Chung, S. T., Lee,
H. W., & Owens, D. P. (2007). The case for the
visual span as a sensory bottleneck in reading.
Journal of Vision, 7(2):9, 1–15, doi:10.1167/7.2.9.
[PubMed] [Article]

Legge, G. E., Mansfield, J. S., & Chung, S. T. (2001).
Psychophysics of reading: XX. Linking letter
recognition to reading speed in central and
peripheral vision. Vision Research, 41(6), 725–743.

Levi, D. M., & Polat, U. (1996). Neural plasticity in
adults with amblyopia. Proceedings of the National
Academy of Sciences, USA, 93(13), 6830–6834.

Li, R. W., Klein, S. A., & Levi, D. M. (2008).
Prolonged perceptual learning of positional acuity
in adult amblyopia: Perceptual template retuning
dynamics. The Journal of Neuroscience, 28(52),
14223–14229.

Majaj, N. J., Pelli, D. G., Kurshan, P., & Palomares, N.
(2002). The role of spatial frequency channels in
letter identification. Vision Research, 42(9), 1165–
1184.

Mason, M. (1982). More about the letter-frequency
effect. Perception & Psychophysics, 31(6), 589–590.

Mitchell, J., & Bradley, C. (2006). Quality of life in age-
related macular degeneration: A review of the
literature. Health and Quality of Life Outcomes,
4(1), 1–20.

Pelli, D. G., Burns, C. W., Farell, B., & Moore-Page,
D. C. (2006). Feature detection and letter identifi-
cation. Vision Research, 46(28), 4646–4674.

Pelli, D. G., Palomares, M., & Majaj, N. J. (2004).
Crowding is unlike ordinary masking: Distin-
guishing feature integration from detection. Journal
of Vision, 4(12):12, 1136–1169, doi:10.1167/4.12.12.
[PubMed] [Article]

Schotter, E. R., Angele, B., & Rayner, K., (2012).
Parafoveal processing in reading. Attention, Per-
ception, & Psychophysics, 74(1), 5–35.

Tarita-Nistor, L., Brent, M. H., Steinbach, M. J.,
Markowitz, S. N., & González, E. (2014). Reading
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