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Inverse Geometrico-Static
Problem of Underconstrained
Cable-Driven Parallel Robots
With Three Cables1

This paper studies underconstrained cable-driven parallel robots (CDPRs) with three
cables. A major challenge in the study of these robots is the intrinsic coupling between
kinematics and statics, which must be tackled simultaneously. Effective elimination
procedures are presented which provide the complete solution sets of the inverse
geometrico-static problems (IGPs) with assigned orientation or position. In the former
case, the platform orientation is given, whereas the platform position and the cable
lengths and tensions must be computed. In the latter case, the platform position is known,
whereas the platform orientation and the cable lengths and tensions are to be calculated.
The described problems are proven to admit at the most 1 and 24 real solutions,
respectively. [DOI: 10.1115/1.4024291]

1 Introduction

CDPRs employ cables in place of rigid-body extensible legs in
order to control the end-effector pose. A CDPR is referred to as
fully constrained if the end-effector pose is completely determined
when actuators are locked and, thus, all cable lengths are assigned.
Conversely, a CDPR is underconstrained if the end-effector pre-
serves some freedoms once actuators are locked. This occurs ei-
ther when the end-effector is controlled by a number of cables
smaller than the number of degrees of freedom (dofs) that it pos-
sesses with respect to the base or when some cable becomes slack
in a fully constrained robot [1–3]. The use of CDPRs with a lim-
ited number of cables is justified in several applications, in which
the task to be performed requires a limited number of controlled
freedoms (only n dofs of the end-effector may be governed by n
cables) or a limitation of dexterity is acceptable in order to
decrease complexity, cost, set-up time, likelihood of cable inter-
ference, etc. While a rich literature exists for fully constrained
CDPRs, whose features were studied under several viewpoints,
including type synthesis [4–10], workspace analysis [11–17], stiff-
ness [18–20], cable interference [21,22], calibration [23,24], fail-
ure recovery [25], etc., little research has been conducted on
underconstrained robots [26–32].

A major challenge in the kinetostatic analysis of undercon-
strained CDPRs comes from the fact that, when the actuators are
locked and the cable lengths are assigned, the end-effector is still
movable, so that the actual configuration is determined by the
applied forces. Accordingly, loop-closure and mechanical-equi-
librium equations must be simultaneously solved and displace-
ment analyses become, more properly speaking, geometrico-static
problems [1,2]. These are significantly more complex than dis-
placement analyses of rigid-link fully constrained parallel manip-
ulators. A meaningful element of comparison is provided by
parallel robots equipped with telescoping legs connected to the
base and the platform by ball-and-socket joints, whose position
problems parallel those of CDPRs (with the obvious difference
that, in the latter, configurations involving negative forces in the

cables are not admissible). For fully constrained manipulators,
such as the Gough–Stewart manipulator, the inverse displacement
analysis, aiming at determining the leg lengths when the platform
posture is assigned, is a trivial task. Conversely, the direct
analysis, which aims at finding the platform pose when the leg
lengths are assigned, is a difficult algebraic problem that has
attracted the interest of researchers for several years [33]. For
underconstrained robots, both kinds of analyses gain significant
complexity, because of the contribution of equilibrium equations.
According to McCarthy [34], the displacement analysis of under-
constrained CDPRs is a major pending challenge in current
kinematics.

A general framework for the geometrico-static analysis of
underconstrained CDPRs, tailored to obtain the complete solution
sets of the nonlinear equations governing the problems at hand,
was proposed in Refs. [1] and [2]. By taking advantage of this
framework, this paper studies the IGP of the general 3–3 CDPR.
This locution denotes a parallel robot in which a fixed base and a
mobile platform are connected to each other by three cables, with
cable exit points on the base and anchor points on the platform
being distinct. Cables are treated as inextensible and massless,
and the platform is acted upon by a constant force, e.g., gravity.
The aim of the IGP is to determine the overall configuration of the
robot, as well as cable tensions, when three pose coordinates of
the platform are assigned, namely, its orientation or the position
of a reference point on it. The solution of the IGP was briefly
sketched in Ref. [1], whereas full details and algorithms are given
here. In particular, a novel and improved elimination procedure
solving the IGP with assigned platform position is provided and
positive-dimensional solution sets are analyzed. The solution of
the direct geometrico-static problem (DGP) of the 3–3 CDPR is
presented in Refs. [35–37], whereas the IGP and the DGP of the
4–4 CDPR are presented in Refs. [38] and [39], respectively.

In all numerical examples presented in the text, measurements
are expressed in SI units.

2 Geometrico-Static Model

A mobile platform is connected to a fixed base by three cables
(Fig. 1). The ith cable (i ¼ 1;…; 3) exits from the fixed base at
point Ai, and it is connected to the mobile platform at point Bi.
The cable length is qi. Oxyz is a Cartesian coordinate frame that is
fixed to the base, with i, j, and k being unit vectors along the

1A preliminary version of this paper was presented at the 13th World Congress in
Mechanism and Machine Science, Guanajuato, Mexico, 2011.
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coordinate axes. Gx0y0z0 is a Cartesian frame that is attached to the
end-effector. Without loss of generality, O is chosen to coincide
with A1. The platform pose is described by X ¼ ½xT ; UT �T , where
x ¼ ½x; y; z�T is the position vector of G in the fixed frame and U is
the array grouping the variables parameterizing the platform ori-
entation with respect to Oxyz. For the sake of brevity, the follow-
ing symbols are also introduced

ai ¼ Ai � O; ri ¼ Bi � G

si ¼ Bi � Ai ¼ xþ ri � ai

Moreover, if bi is the position vector of Bi in Gx0y0z0 and RðUÞ is
the rotation matrix between the mobile and the fixed frame, then
ri ¼ R Uð Þbi. Vector components along the coordinate axes are
denoted by right subscripts reporting the axis names.

The platform is acted upon by a constant force, e.g., gravity,
which is assumed to be oriented as k and applied at G, without
loss of generality. This force may be described by a 0-pitch
wrench QLe, where Q is the intensity of the force and Le is the
normalized Plücker vector of the force line of action. The normal-
ized Plücker vector of the line associated with the ith cable is
Li=qi, where, in axis coordinates, Li ¼ � si; pi � si½ �, and pi is any
vector from an arbitrarily chosen reference point (called for brev-
ity moment pole) to the cable line. So, the wrench exerted by the
ith cable on the platform is si=qið ÞLi, with si being a positive sca-
lar representing the intensity of the cable tensile force.

For practical reasons, the following is finally assumed:

(1) qi > 0 and, thus, si 6¼ 0; i ¼ 1;…; 3 (Assumption I)
(2) 0 < jjBj � Bijj < jjðAj � AiÞxyjj; i 6¼ j (Assumption II).

The latter assumption, according to which the segment BiBj is
strictly smaller than the projection of the segment AiAj on the xy-
plane, is not conceptually necessary, but it rules out some special
configurations, which could be handled with no difficulty, but whose
analysis would burden the presentation. In particular, the possibility
that any two cables may be simultaneously parallel to k is discarded.

When all cables of the robot are in tension, the set C of geometri-
cal constraints imposed on the platform comprises the three relations

jjsijj ¼ qi; i ¼ 1;…; 3 (1)

Since only three geometrical restraints are enforced, the plat-
form preserves 3 dofs, with its pose being determined by equilib-
rium laws, namely [1]

L1 L2 L3 Le½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

s1=q1ð Þ
s2=q2ð Þ
s3=q3ð Þ

Q

2664
3775 ¼ 0 (2)

with si � 0; i ¼ 1;…; 3.
Equations (1) and (2) amount to nine scalar relations in 12 vari-

ables, namely, x, U;qi and si; i ¼ 1;…; 3. A finite set of system
configurations may be generally determined if any three of these
variables are known. In particular, when three variables concern-
ing the platform pose are assigned, an IGP must be solved. Typi-
cally, one may wish to assign either the orientation U of the
platform or the position x of G. In the former case, the physical
meaning of the IGP is the following: which cable lengths must be
imposed so that the platform may rest in equilibrium with the
assigned orientation? What is the resulting value of x? Which are
the cable tensions? In the latter case, the physical meaning of the
IGP is, conversely: which cable lengths must be imposed so that
the platform may rest in equilibrium with G located in x? What is
the resulting orientation of the platform? Which are the cable
tensions?

In both cases, the IGP may be simplified by eliminating cable
tensions from Eq. (2). By following Refs. [1] and [2], a convenient
elimination strategy emerges by observing that Eq. (2) holds only
if

rankðMÞ � 3 (3)

namely if L1, L2, L3, and Le are linearly dependent. This is a
purely geometrical condition, since M is a 6� 4 matrix only
depending on the platform pose. By setting all 4� 4 minors of M
equal to zero, a set of suitable independent scalar relations that do
not contain cable tensions may be obtained. Moreover, such rela-
tions do not comprise the cable lengths, so that they lead to a par-
tial decoupling of the system equations, with cable lengths only
appearing in Eq. (1).

The IGP takes particular advantage of the mentioned decou-
pling, since the platform configuration may be directly computed
by way of three relations emerging from Eq. (3). In particular,
letting all 4� 4 minors of M vanish leads to 15 polynomial
equations in x and U of the form pj ¼ 0. The solution of the
problem coincides with the variety V of the ideal generated
by such equations. When three configuration variables are
known (typically, either x or U), any three pj, say, pl, ph, pk, may
be chosen and a corresponding (generally zero-dimensional) va-
riety Vlhk is obtained. V is the intersection of the five varieties
that may be generated this way. A primary objective of the
problem-solving algorithm consists in limiting the number of
varieties to be computed to the lowest possible value, possibly to
just one.

Once X is known, cable lengths may be directly calculated by
Eq. (1). Cable tensions may then be computed by any three suita-
ble relations chosen within Eq. (2), e.g., if s1; s2, and s3 are line-
arly independent, as

s1

s2

s3

24 35 ¼ � s1

q1

s2

q2

s3

q3

� ��1

Qk (4)

The robot configuration is feasible if all cable tensions are non-
negative and equilibrium is stable. Stability may be evaluated by
assessing the definiteness of the reduced Hessian matrix Hr , as
defined in Ref. [2]. The algorithm presented in Ref. [2] is based
on a purely algebraic formulation, which allows the equilibrium
stability of a robot of arbitrary geometry to be evaluated in a very
efficient way. In the examples reported in this paper, the symbols
>, �, <, �, and <> denote, respectively, a positive-definite, a
positive-semidefinite, a negative-definite, a negative-semidefinite,
and an indefinite matrix.

Fig. 1 Model of a cable-driven parallel robot with three cables
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3 IGP With Assigned Orientation

When U is assigned, all vectors ri; i ¼ 1;…; 3, are known. In
this case, the position vector x must be determined.

If O is chosen as the moment pole, Li and Le may be, respec-
tively, expressed, in axis coordinates, as � si; ai � si½ � and
k; x� k½ �. Accordingly, M becomes

MðOÞ ¼ �s1 �s2 �s3 k

0 �a2 � s2 �a3 � s3 x� k

� �
(5)

or equivalently, by expanding si; i ¼ 1;…; 3, and by performing
elementary column transformations

M0ðOÞ ¼ xþ r1 r21 � a2 r31 � a3 k

0 a2 � xþ r2ð Þ a3 � xþ r3ð Þ x� k

� �
(6)

where rij ¼ ri � rj; i 6¼ j.
Since the cables may not all be parallel to k (cf. Assumption II

in Sec. 2), the ranks of the block matrices2
M123ðOÞ and M0

123ðOÞ
must be equal to either 2 or 3. By letting

D :¼ detM0
123;234ðOÞ¼ r21�a2ð Þx r31�a3ð Þy� r21�a2ð Þy r31�a3ð Þx

(7)

two cases may be distinguished, depending on D being zero or not
(notice that D only depends on the input parameters, when U is
assigned). In general, Eq. (3) is satisfied if L1;L2;L3, and Le belong
to the same three-dimensional subspace of lines,3 namely [40]:

(1) a regulus on a one-sheeted hyperboloid;
(2) the union of two planar pencils sharing a line, none of

which has its center at infinity;
(3) a bundle through a point;
(4) a regulus on a hyperbolic paraboloid;
(5) the union of two planar pencils sharing a line, with one of

them having its center at infinity;
(6) a bundle of parallel lines; and
(7) a planar field.

Cases 1–3 are the most general ones and they are characterized
by s1; s2; s3, and k not being perpendicular to a common direction.
In this case, rankM0

123ðOÞ ¼ 3 and D 6¼ 0.
Cases 4–7, instead, have L1;L2;L3, and Le lying perpendicu-

larly to a common direction. In this case, rankM0
123ðOÞ ¼ 2 and

D ¼ 0. Assumption II in Sec. 2 rules out the possibility that case 6
may actually occur. Furthermore, case 7 must be taken into con-
sideration only when A1, A2, and A3 lie on a plane R parallel to k,
and G, B1, B2, and B3 are coplanar, since, in this case, it may hap-
pen that the two planes coincide. In this circumstance, Eq. (3) is
identically satisfied and an ad hoc procedure is in order. In partic-
ular, since the theoretical constraints imposed by cables are suffi-
cient to determine the platform pose on R, the “flattened” 3–3
robot is geometrically equivalent to a planar parallel manipulator
with telescoping legs connected to the base and the platform by
revolute joints, so that it may take full advantage of the algorithms
available for its geometric and static analyses [33].4

It is important to observe that letting Bi � Ai, with i ¼ 1;…; 3,
causes the ith column of M to vanish (since si ¼ ai � si ¼ 0) and,
thus, it causes all 4� 4 minors of M (and of M0) to be zero. It fol-
lows that, when a configuration for which Bi � Ai is compatible
with the assigned constraints, it necessarily belongs to V: we call
it a trivial solution and we need to discard it (cf. Assumption I in
Sec. 2). This observation is particularly important for the IGP
with assigned orientation. In this case, in fact, it is always possible
to displace the platform (with a given orientation) so as to super-
impose Bi onto Ai. Consequently, all varieties Vlhk necessarily
contain the trivial solutions corresponding to B1 � A1;B2 � A2

and B3 � A3, namely

xi :¼ �xi; �yi; �zi½ �T ¼ ai � ri; i ¼ 1;…; 3 (8)

3.1 Case D 6¼ 0. The equations

p1 :¼ det M0
1236ðOÞ ¼ A20x2 � B011 þ C101ð Þxy

þ A02y2 þ A10xþ A01yþ A00 ¼ 0 (9a)

p2 :¼ det M0
1235ðOÞ ¼ B110xy� A20xzþ B020y2

þ B011yzþ B100xþ B010yþ B001zþ B000 ¼ 0 (9b)

p3 :¼ det M0
1234ðOÞ ¼ B110x2 þ B020xy� C101xz

þ A02yz� C100x� C010y� C001z� C000 ¼ 0 (9c)

comprise the lowest-degree polynomials among all minors of
M0ðOÞ5. Since rankM0

123ðOÞ ¼ 3, satisfying Eqs. (9a)–(9c)
ensures that rankM0ðOÞ ¼ rankM0

123ðOÞ and thus V � V123.
p1 is quadratic in x and y, and it does not contain the variable z.

p2 and p3 are quadratic in x, y, and z, but they do not contain the
monomial z2. Eliminating z from p2 and p3 gives a cubic polyno-
mial p23 in x and y, whereas eliminating y from p1 and p23 yields a
fourth-degree equation in x, namely

p123 :¼
X4

h¼0

Ehxh ¼ 0 (10)

whose coefficients Eh, h ¼ 0;…; 4, are known functions of the
geometric and orientation parameters only.

It emerges from Eqs. (9a)–(9c) that the coefficients of the lead-
ing monomials y2 and y3 in p1 and p23 are, respectively, A02 and
A02B020 (with, in particular, A02 ¼ a3xr21x � a2xr31x). Since A02

appears in both coefficients, it factors all terms of the resultant of
p1 and p23 with respect to y. p123 is the polynomial obtained by
clearing A02 from such a resultant. This simplification is obvious
when A02 6¼ 0, but it is still valid when A02 ¼ 0, with a caveat. In
fact, if the resultant of p1 and p23 is calculated after setting
A02 ¼ 0, a fourth-degree polynomial in x is again obtained and it
proves to be equal to p123 times the constant

C0 :¼ B020ðC001 þ A01Þ � C010B011 (11)

Hence, as long as C0 6¼ 0, p123 is still a legitimate elimination
ideal for p1 and p23. The case C0 ¼ 0 is discussed in Appendix A,
in the section concerning empty solution sets.

Since three roots of p123 must necessarily coincide with the triv-
ial solutions �x1; �x2, and �x3, and these are known real numbers, p123

may be factorized by using Vieta’s formulas. Accordingly, the
fourth root �x4 must be real, and it may be expressed as

�x4 ¼
E0

�x1�x2�x3E4

¼ Ê0

Ê4

(12)

2The notation Mhij;klm denotes the block matrix obtained from rows h, i, and j, and
columns k, l, and m, of M. When all columns are used, the corresponding subscripts
are omitted.

3It may happen that Eq. (3) is fulfilled because L1;L2; and L3 become linearly
dependent. In these situations, equilibrium is possible only if rankðMÞ � 2, since the
external wrench must, however, belong to the screw subspace generated by the cable
lines. Cases like these are very special and they must be studied separately.

4It is worth emphasizing that having A1, A2, and A3 on a plane parallel to k, and
G, B1, B2, and B3 coplanar, does not necessarily cause the 3–3 robot to behave like a
planar mechanism: this is a possibility, to be considered together with the general
spatial study of the manipulator. For example, when the DGP is considered, a
number of feasible stable configurations may be found, for which the base and the
platform are skew.

5Equations (9a)–(9c) coincide with those that would emerge by computing cable
tensions by the first three relations in Eq. (2) and by substituting them back into the
remaining ones.
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where the expression at the right-hand side of Eq. (12) takes
advantage of the fact that it is possible to factorize E0 and E4 as
�x1�x2�x3D

2Ê0 and D2Ê4, respectively.
By eliminating x (instead of y) from p1 and p23, one may obtain

a univariate fourth-degree equation in y (instead of x), i.e.

p0123 :¼
X4

h¼0

Fhyh ¼ 0 (13)

from which an expression for the direct computation of �y4 imme-
diately results, namely

�y4 ¼
F0

�y1�y2�y3F4

¼ F̂0

F̂4

(14)

where F0 ¼ �y1�y2�y3D
2F̂0 and F4 ¼ D2F̂4.

Since Ê0; Ê4; F̂0, and F̂4 are known functions of the geometric
and orientation parameters, and they are available in symbolic
form, Eqs. (12) and (14) provide a closed-form solution of the
problem at hand. Indeed, once �x4 and �y4 are known, �z4 may be
directly calculated by either Eq. (9b) or Eq. (9c), which are linear
in z. Cable lengths and tensions follow then from Eqs. (1) and (4),
respectively, whereas equilibrium stability may be assessed by
solving a linear eigenproblem of order 3 [2]. Clearly,
x4 ¼ ð�x4; �y4; �z4Þ is feasible if cable tensions are non-negative and
equilibrium is stable. Since a closed-form expression of x4 is
available, the entire computation (including stability analysis)
may be completed in a very short time, usually in less than 1 ms.
A numeric example is reported in Table 1. In this case, the axes of
L1;L2, L3 and Le form a regulus on a one-sheeted hyperboloid.

The above study proves that, as long as Ê4 6¼ 0 6¼ F̂4, the IGP
with assigned orientation (and D 6¼ 0) has a single real solution, i.e.,
x4. However, there are special combinations of the geometric parame-
ters and input orientations for which Eqs. (9a)–(9c) admit a positive-
dimensional solution set. In these cases, G may follow quasi-static
paths along assigned curves in space, with the platform orientation
remaining constant. These cases may have strong practical relevance
and, for this reason, they are discussed in detail in Appendix A.

3.2 Case D ¼ 0. By expanding the coefficients of p123, it is
possible to verify that all of them comprise the factor D2. Conse-
quently, when D ¼ 0, p123 degenerates and the procedure
described in Sec. 3.1 is not adequate to solve the problem.

Since Assumption II at the end of Sec. 2 guarantees that
r21 � a2ð Þxy and r31 � a3ð Þxy do not vanish, when D ¼ 0 these two

vectors must be parallel (cf. Eq. (7)), i.e.

r31 � a3ð Þxy¼ a r21 � a2ð Þxy (15)

where a 2 R� f0g.
By enforcing both Eq. (15) and D ¼ 0, the polynomial relations

in Eq. (9) may be factored as

p1 :¼ f10g ¼ 0 (16a)

p2 :¼ f20g ¼ 0 (16b)

p3 :¼ f30g ¼ 0 (16c)

where f10 and g are linear polynomials in x and y, and f20 and f30

are linear polynomials in x, y, and z. In particular

g :¼ det M0
123;124ðOÞ ¼ �y1 � �y2ð Þx� �x1 � �x2ð Þy

þ �x1�y2 � �y1�x2 (17)

where the coefficients multiplying x and y cannot simultaneously
vanish, since this would infer x1 � x2ð Þxy¼ r21 � a2ð Þxy¼ 0.

Equation (16) holds if either f10 ¼ f20 ¼ f30 ¼ 0 or g¼ 0. Since
the former requirement amounts to a linear nonhomogeneous sys-
tem in x, y, and z whose coefficient matrix is singular (and, hence,
it generally admits no solution), only the latter condition applies.
Together with the requisite D ¼ 0, this brings about that the first
two rows of M0ðOÞ are linearly dependent and that
rankM0

123ðOÞ ¼ 2. The problem may, thus, be solved by consider-
ing the system made up by the relation

p4 :¼ g ¼ 0 (18)

and any two between the equations

p5 :¼ det M0
2345ðOÞ ¼ 0 (19a)

p6 :¼ det M0
2346ðOÞ ¼ 0 (19b)

p7 :¼ det M0
2356ðOÞ ¼ 0 (19c)

where p5, p6, and p7 are cubic polynomials in x, y, and z (with p6

and p7 being linear in z and p5 being quadratic in the same vari-
able). If, for instance, p6 and p7 are considered, eliminating z from
them gives a fourth-degree polynomial p67 in x and y, and further
eliminating y from p4 and p67 yields a quartic equation in x, i.e.,
p467 ¼ 0, which admits a single solution besides the trivial ones.
This solution formally coincides with the quotient Ê0=Ê4 at the
right-hand side of Eq. (12). Such an expression provides, thus, the
general single solution of the problem at hand for all cases 1–5
listed in the first part of this section. If M0

236ðOÞ has full rank, then
rankM0ðOÞ ¼ rankM0

236ðOÞ ¼ 3 and V ¼ V467. A numeric exam-
ple is reported in Table 2. In this case, D ¼ 0 and L1;L2;L3, and
Le form a regulus on a hyperbolic paraboloid.

It may happen that, in very special cases, p467 degenerates and
the procedure described above becomes deficient. Typically, this
may occur when rankM0

236 ¼ 2. A different choice of the minors
to be considered normally allows one to conclude the analysis.6

4 IGP With Assigned Position

In this case, x is assigned, whereas U and, thus, vectors r1; r2,
and r3 must be ascertained (only the position vector bi of Bi in
Gx0y0z0 is known).

If the platform orientation is described by means of Euler pa-
rameters, i.e., U ¼ ½eo; e1; e2; e3�, the rotation matrix has the form

Table 1 IGP of a 3–3 robot with assigned orientation and D 6¼ 0

Geometric dimensions and load: a2 ¼ ½10; 0; 0�; a3 ¼ ½0; 12; 0�; r1 ¼ ½0:6; 0:10;�0:8�; r2 ¼ ½�0:4;�0:9;�0:3�; r3 ¼ ½�0:7; 0:5;�0:5�, Q¼ 10
Trivial solutions: x1 ¼ ½�0:6;�0:1; 0:8�; x2 ¼ ½10:4; 0:9; 0:3�; x3 ¼ ½0:7; 11:5; 0:5�; D ¼ 126:30

Univariate polynomial in x: p123 ¼ 43069563=1562500 � ð5xþ 3Þð5x� 52Þð10x� 7Þð1805x� 5196Þ

Nontrivial solution ðq1;q2;q3Þ ðs1; s2; s3Þ Hr

x4 ¼ ½5196=1805; 2973=722; 139299=20938� ¼ ½2:88; 4:12; 6:65� ð8:01 10:36 9:85Þ ðþ5:05þ 4:69þ 5:49Þ >

6A dialytic algorithm, similar to the one described in the subsequent Sec. 4,
may be used as an alternative procedure with respect to the one presented in this
section to solve the IGP with assigned orientation. In this way, a univariate resultant
of degree 1 in x (or y) may be computed as the determinant of a 5� 5 eliminant
matrix.

031002-4 / Vol. 5, AUGUST 2013 Transactions of the ASME

Downloaded From: https://mechanismsrobotics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



R ¼ I3 þ 2
e0
eU123 þ eU123

eU123

e2
0 þ e2

1 þ e2
2 þ e2

3

(20)

where U123 ¼ ½e1; e2; e3� and eU123 denotes the skew-symmetric
matrix expressing the operator U123�.

If Euler parameters are normalized in the Rodrigues form [41]
by setting e0 ¼ 1, the relations in Eq. (9) assume a particularly
favorable structure. Indeed, by letting ri ¼ Rbi; i ¼ 1;…; 3, and
by clearing the nonzero denominator 1þ e2

1 þ e2
2 þ e2

3, p1, p2, and
p3 become quartic polynomials in the Rodrigues parameters, i.e.

ph :¼
X

k ¼ 0;…;4
m¼ 0;…;4� k

n¼ 0;…;4� k�m

Dh;kmnek
1em

2 en
3 ¼ 0; h¼ 1;…;3 (21)

Quartic polynomials in e1, e2, and e3 also emerge from the
minors det M0

1245ðOÞ; det M0
1246ðOÞ and det M0

1256ðOÞ, but they lin-
early depend on p1, p2, and p3, so that they may be discarded. A
further quartic emerges by setting det M0

j456ðOÞ ¼ 0 for
j ¼ 1;…; 3, so that

xþ r1ð Þ det M0
456;234ðOÞ

h i
¼ 0 (22)

The variety defined by Eq. (22) comprises, besides the trivial solu-
tion x ¼ �r1, also the set of configurations for which

p8 :¼ det M0
456;234ðOÞ ¼ 0 (23)

Equation (23) has, indeed, degree 4 in e1, e2, and e3. All minors of
M0ðOÞ not considered so far, namely, det M0

1345ðOÞ; det M0
1346ðOÞ;

det M0
1356ðOÞ, det M0

2345ðOÞ; det M0
2346ðOÞ, and det M0

2356ðOÞ,
yield, instead, sextic equations in the Rodrigues parameters.

It is known that three polynomial equations of the same total
degree always admit a Sylvester-type resultant free from extrane-
ous polynomial factors [42]. For the case of three quartics, such a
resultant is a 64th-degree polynomial in one of the unknowns.
This polynomial may be obtained, in the present case, from p8 and
any two between p1, p2, and p3 (the resultant of p1, p2, and p3 is
identically nought). This observation led the author to conclude,
in Ref. [1], that the IGP with assigned position of the 3–3 robot
admits at the most 64 solutions. Such an estimation, however, is
too broad, since it is possible to verify, by numerical experimenta-
tion, that the varieties V128, V138, and V238 only have 48 solutions
in common and only 24 of them actually satisfy the aforemen-
tioned sextics, thus belonging to V.

The necessity to fulfill multiple relations, mutually dependent
in a nonliner way, suggests using Sylvester’s dialytic method [43]
in order to obtain a univariate polynomial of least degree in one of
the unknowns, e.g., e3. The method consists in rewriting the origi-
nal relations as linear equations in all monomials involving the
original unknowns except one, which is “hidden” in the equation
coefficients. Such monomials are then treated as linear homogene-
ous unknowns. By augmenting the system with new auxiliary
equations (an operation that usually introduces new monomials),
one may hope to arrive at a square homogeneous linear system. If

this is generically nonsingular, the determinant of the coefficient
matrix provides a resultant in the hidden variable. However, the
resultant may potentially contain an extraneous polynomial factor,
a situation that one wishes to avoid. Finding a formulation free of
spurious solutions is a crucial issue in the application of the
method. The strategy presented here is based on deriving a large
set of linearly independent quartics.

Let M be written by choosing a generic point P as the moment
pole, namely

MðPÞ ¼ � � � �si � � � k

� � � � Bi � Pð Þ � si � � � G� Pð Þ � k

� �
(24)

When P � Bi and P � Ai; i ¼ 1;…; 3, the moment vector in the
ith column vanishes, so that setting det Mj456ðBiÞ ¼ 0 and
det Mj456ðAiÞ ¼ 0 for j ¼ 1;…; 3 yields, respectively

si det M456;km4ðBiÞ
� �

¼ 0 (25)

and

si det M456;km4ðAiÞ
� �

¼ 0 (26)

with k;m 2 f1; 2; 3g � fig. This way, the equations

p9 :¼ det M456;234ðB1Þ ¼ 0 (27a)

p10 :¼ det M456;134ðB2Þ ¼ 0 (27b)

p11 :¼ det M456;134ðA2Þ ¼ 0 (27c)

p12 :¼ det M456;124ðB3Þ ¼ 0 (27d)

p13 :¼ det M456;124ðA3Þ ¼ 0 (27e)

may be obtained. Analogously, by defining a convenient addi-
tional point G0 such that G� G0 ¼ k, and by setting P � G and
P � G0, one may also obtain

p14 :¼ det M456;123ðGÞ ¼ 0 (28a)

p15 :¼ det M456;123ðG0Þ ¼ 0 (28b)

All polynomials pj, j ¼ 9;…; 15, have degree 4 in the
Rodrigues parameters. No other quartic linearly independent from
p1, p2, and p3 may be obtained from the minors of M by varying
the moment pole. The relations in Eqs. (21), (23), (27), and (28)
form a system of 11 quartics, comprising 15 monomials in e1

and e2. By multiplying such quartics by e2, 11 additional relations
may be introduced, which comprise five novel monomials in
e1 and e2. Among the new equations, nine may be chosen so as
to form, together with the original ones, a linear system of the
form

S e3ð ÞE23 ¼ 0 (29)

where Sðe3Þ is a 20� 20 matrix whose entries are known polyno-
mial functions (available in symbolic form) of e3 and E23 is a col-
umn vector comprising all monomials of e1 and e2 with a degree
less than or equal to 5, except e5

1. The last three entries of E23 are,

Table 2 IGP of a 3–3 robot with assigned orientation and D ¼ 0

Geometric dimensions and load: a2 ¼ ½10; 0; 0�; a3 ¼ ½0; 12; 0�; r1 ¼ ½1; 1; 2�; r2 ¼ ½5;�3; 3�; r3 ¼ ½�3:2; 10:2;�0:5�, Q¼ 10
Trivial solutions: x1 ¼ ½�1;�1;�2�; x2 ¼ ½5; 3;�3�; x3 ¼ ½3:2; 1:8; 0:5�; D ¼ 0

Univariate polynomial in x: p467 ¼ 21504=5 � ðxþ 1Þðx� 5Þð5x� 16Þð137xþ 989Þ

Nontrivial solution ðq1; q2;q3Þ ðs1; s2; s3Þ Hr

x4 ¼ ½�989=137;�705=137; 396757=10823� ¼ ½�7:22;�5:15; 36:66� (39.37 42.29 38.27) (þ21.91,�7.70,�4.54) <>
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in particular, e1, e2, and 1. The determinant of Sðe3Þ provides the
desired 24th-degree resultant devoid of spurious roots, namely

det Sðe3Þ ¼
X24

h¼0

Lheh
3 ¼ 0 (30)

where coefficients Lh, h ¼ 0;…; 24, only depend on the position
of G and the geometric parameters.

An alternative algorithm with respect to the one described
above to obtain a univariate resultant consists in conveniently
choosing, among the 22 novel equations derived by multiplying
the original ones by e1 and by e2, 10 linearly independent relations
that contain all six monomials of degree 5 in e1 and e2. In this
way, the resultant in e3 may be computed as the determinant of a
21� 21 matrix. Numerical tests show that this formulation is
more robust when dealing with special cases occurring for particu-
lar geometric configurations (for which the 20� 20 determinant
vanishes).

Since the expansion of the determinant of a 20� 20 or 21� 21
matrix in completely symbolic form is extremely onerous
for a computer algebra system (such as Maple or Mathematica),
this operation must normally be accomplished by assigning
numeric values to known geometric quantities. Once this
is accomplished, Sðe3Þ contains only one symbolic variable,
i.e., e3, and the expansion of its determinant is undemand-
ing. On a PC with a 2.67GHz Intel Xeon processor and
4GB of RAM, the expansion of det Sðe3Þ for the example

reported in Table 3 may be performed by Maple in less
than 0.5 s.

For each root of Eq. (30), a single value for e1 and e2 may be
obtained by solving the linear system in Eq. (29). Cable tensions
may then be computed by Eq. (4). The set of feasible configura-
tions emerges by selecting the real roots of det Sðe3Þ for which
cable tensions are non-negative and equilibrium is stable. The
overall computation time is essentially given by the time required
to expand det Sðe3Þ, since all subsequent steps (including finding
the real roots of the determinant) are at least one order-of-magni-
tude faster.

The expansion of det Sðe3Þ may be avoided, and computation
quickened, by setting up Eq. (29) as a polynomial eigenvalue
problem, in the form

S e3ð ÞE23 ¼
X4

k¼0

ek
3Ak

 !
E23 ¼ 0 (31)

where S e3ð Þ has been written as a matrix polynomial of order 4,
whose coefficients Ak; k ¼ 0;…; 4, are constant matrices only
depending on the position of G and the geometric parameters.
The roots of det Sðe3Þ and the vectors E23 solving Eq. (29) are, by
definition, the eigenvalues and eigenvectors of S e3ð Þ. If
dim S e3ð Þ ¼ N, these eigenpairs may be numerically computed by
converting Eq. (31) into a linear eigenvalue problem of order 4 N
with the same finite eigenvalues, so that classic methods for linear
eigenproblems may be pressed into service [44]. This way, all

Table 3 A 3–3 robot whose IGP with assigned position admits 24 real potential solutions

Geometric dimensions and load: a2 ¼ ½9; 10; 0�; a3 ¼ ½6; 8; 7�; b1 ¼ ½�7; 3; 2�; b2 ¼ ½�5; 1;�1�;b3 ¼ ½�5;�2; 0�; x ¼ ½7; 9; 1�, Q¼ 10

Univariate polynomial in e3: det Sðe3Þ ¼ þ820677682620056914502526001540236149664458265234e24
3

�10617653799950869805030326209274138831404616640847e23
3 � 80520112076291505095374254588925679936641140030612e22

3

þ620723191630596745708627913902702858912672118348292e21
3 þ 2244457381592378744951072003572886466505446804731568e20

3

�10042557842888364893128923167086735878025704668943759e19
3 � 19029295771254380694758354014911317918738663989654152e18

3

þ72578960982294287507086571892197357912446615077237786e17
3 þ 73830200439589669837526253624025758230943986804931990e16

3

�282390367979251759472889802317563412868139973956341870e15
3 � 147054215376404227324409755922820121888570550749730984e14

3

þ642054361021857602608966458820847086905733936256221504e13
3 þ 148405195196987585178762580495747225216253541090816592e12

3

�885338166160478450118928113693274810166512764272208294e11
3 � 60302762942757035644337559143371129363794576980157008e10

3

þ751323495984155705731825209490642557900604032459994716e9
3 � 11595379669620501495402884297918347261108730020337186e8

3

�388351844813509515413972040723375108190383669878826915e7
3 þ 18657939848644727162947954032852878363665878751571868e6

3

þ116581403236475679656512614572842467737777178404043276e5
3 � 5479495217583225088141304337530183632550502853198816e4

3

�18088152393372304157568597836103348197751307165431659e3
3 þ 367298317401261058941260215786258009876669842615928e2

3

þ1069454235691928199332179504703462749653994121549882e3 þ 46611482998309641495944652171569350743260097162458

Configuration ðe1; e2; e3Þ ðq1;q2; q3Þ ðs1; s2; s3Þ Hr

1 þ0:7634246351375643899;þ0:2144041953164012399;þ0:4807389069063061451ð Þ 5:08; 7:47; 9:28ð Þ �8:54;�0:69;�16:68ð Þ <>
2 �0:3118079777548289964;þ1:3138841327707174979;þ0:5017867472282055003ð Þ 16:98; 6:58; 4:07ð Þ þ2:88;þ9:87;þ1:56ð Þ <>
3 þ0:2001608318444858809;�0:2323624476334943307;þ0:7979367415323793600ð Þ 3:68; 6:46; 9:32ð Þ �29:69;�31:99;þ3:74ð Þ <
4 �1:1980739835427372418;þ0:3120413901385634775;þ0:8815736227134803121ð Þ 9:28; 7:50; 0:78ð Þ þ0:24;�4:20;�12:87ð Þ <
5 þ1:4317151114911808362;�0:4349823013446592256;þ1:1664189736927190095ð Þ 6:85; 6:17; 11:44ð Þ þ0:94;�0:46;�10:39ð Þ <>
6 �1:2294176759025500749;þ1:5323521263619918432;þ1:2814168119956330214ð Þ 15:76; 6:54; 4:79ð Þ þ0:55;þ11:57;þ3:56ð Þ <>
7 þ0:5876685126742958725;�1:5304987591598525061;þ1:3389381429787698737ð Þ 11:96; 3:83; 10:53ð Þ �3:36;�12:10;þ4:32ð Þ <>
8 �2:0793173042033534266;�0:5423326238903700990;þ1:4438672936010393110ð Þ 4:70; 7:16; 1:82ð Þ �37:83;þ0:87;�44:77ð Þ <
9 �7:1168007105998403878;�2:2727912287219393891;þ1:4867153462984873810ð Þ 3:59; 7:48; 5:41ð Þ þ17:37;þ20:09;�2:10ð Þ <>
10 �2:3167391480195777785;�0:4212144251684132813;þ1:7790336236054227234ð Þ 5:90; 7:12; 1:01ð Þ �8:19;þ0:85;�16:57ð Þ <
11 þ5:7978576157189826538;þ0:5703866722573983407;þ5:9874716213902005065ð Þ 10:98; 5:66; 11:53ð Þ �0:36;�2:33;�8:49ð Þ <>
12 þ6:5213887323660842474;�9:5688652126571470658;þ15:6259039246963154437ð Þ 15:07; 3:18; 9:90ð Þ �0:48;�18:96;þ10:58ð Þ <>
13 þ0:2579484191462487771;þ0:7260739527980151820;�0:0458987036139806216ð Þ 15:06; 7:12; 2:88ð Þ �72:14;�0:73;�78:57ð Þ <>
14 þ0:0456408825214523273;þ0:9618070707480913020;�0:2934072474535058737ð Þ 17:75; 6:28; 0:88ð Þ þ6:72;�0:60;�9:95ð Þ <
15 �0:3231844159276431892;�1:0590220806007764338;�0:6096213673883211171ð Þ 17:18; 3:65; 11:36ð Þ þ0:56;�2:57;�7:61ð Þ <>
16 þ0:8805611206146294749;þ1:1250708193247081074;�0:6795024237035720852ð Þ 14:60; 6:35; 1:63ð Þ �0:37;þ7:92;�3:39ð Þ <
17 þ0:7431375057822628939;þ1:2067418279500934783;�0:7808443877651603867ð Þ 15:68; 5:98; 0:85ð Þ �0:39;þ5:07;�5:23ð Þ <
18 �0:0350704155412834709;�1:4151080814907166256;�0:8433915522557506921ð Þ 18:47; 2:88; 11:54ð Þ þ0:67;þ4:73;�14:18ð Þ >
19 �0:4329502420956995131;�1:3468211640704336871;�1:0018691108946436935ð Þ 18:00; 3:28; 11:52ð Þ þ1:76;þ0:80;�11:26ð Þ <>
20 �1:4218370234199270169;�0:9117398153636558460;�1:6469179198997482355ð Þ 16:10; 4:59; 11:27ð Þ �2:36;�5:99;�3:97ð Þ <>
21 �1:6901971364929174389;þ7:9091089569234085282;�1:6909672945676966476ð Þ 18:93; 3:67; 7:68ð Þ �16:63;þ18:16;þ3:01ð Þ <>
22 �0:0068199958458342934;�0:7154426580635924040;�1:7244167908598977683ð Þ 19:28; 2:82; 10:54ð Þ þ17:96;�16:55;�3:94ð Þ <
23 þ4:1084117389317057621;�0:4212589725746318291;�4:1764537703635687677ð Þ 13:13; 6:08; 4:98ð Þ þ3:29;þ7:09;�2:10ð Þ <>
24 þ3:6592836868101469244;�2:8882478193490052005;�6:3408451287042458310ð Þ 16:68; 4:85; 7:69ð Þ þ8:64;þ0:80;�9:19ð Þ <>
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feasible solutions of the IGP with assigned position may be ordi-
narily calculated, for a robot of arbitrary geometry, within a few
milliseconds.

Table 3 reports the solution set for a numeric example, whose
geometric dimensions are not particularly meaningful under a
practical point of view, but which proves that all solutions of Eq.
(30) may be real.

Since the presented algorithm makes use of all minors of M, it
allows the problem at hand to be solved for all cases 1–5 listed in
the first part of Sec. 3. The degree of the equations involved in the
problem-solving procedure is rather high and all coefficients are
generally nonzero, so that positive-dimensional solution sets are
unlikely to be found (except, obviously, when ðx; yÞ ¼ �xi; �yið Þ and
z 6¼ �zi, i ¼ 1;…; 3, in which case the robot is allowed to operate
like a 1-dof crane, with the ith cable holding the entire charge).

Since Rodrigues parameters are unable to describe orientations
requiring e0 ¼ 0, this case must be considered separately. For exam-
ple, by setting e0 ¼ 0 and ej ¼ 1, for some j, the relations in Eqs.
(21), (23), (27), and (28) become quartics in eh and ek, h 6¼ j 6¼ k.
Since these equations contain only five monomials in ek, they are
“more” than sufficient to eliminate ek and, thus, obtain a univariate
resultant in eh. If special geometric conditions are satisfied, common
solutions may exist. An example is reported in Appendix B.

5 Conclusions

This paper studied the kinematics and statics of underconstrained
cable-driven parallel robots with three cables, in crane configuration.
For such robots, kinematics, and statics are coupled and they must be
dealt with simultaneously. This poses major challenges, since dis-
placement analysis problems gain remarkable complexity with
respect to those of analogous 6-dof rigid-link robots.

An original geometrico-static model was presented, which
allowed the IGP to be effectively worked out by elimination algo-
rithms and the complete solution sets of the problem to be deter-
mined. It was shown that

• the IGP with assigned orientation, which aims at computing
the platform position, the cable lengths and the cable tensions
once the platform orientation is given, admits at the most a
single solution;

• the IGP with assigned position, which aims at calculating the
platform orientation, the cable lengths and the cable tensions
once the platform position is known, admits at the most 24
solutions.

The former problem was solved by successive computation of
resultants. When the solution exists, it is real. Relevant cases exist
that cause the ordinarily single solution to degenerate into a one-
dimensional set, thus forming, in the space of the platform posi-
tion, a one-dimensional curve.

The latter problem was solved by a specialized Sylvester’s dia-
lytic procedure. A numerical example was given that proves that
all 24 points in the variety of the problem may be real.

It must be observed that all solution counts reported above do
not take into account the constraints imposed by the sign of cable
tensions and the stability of equilibrium. Once such constraints
are imposed and solutions are sifted, the number of feasible con-
figurations drastically decreases. The author is not aware of effec-
tive mathematical techniques that would allow the constraint on
the cable-tension sign to be incorporated into the equations to be
solved, when elimination techniques are used. This issue is open
to further research.

When the cable lengths emerging from the solution of the IGP
are feeded-in to the actuators of the actual robot, the end-effector
may evolve, a priori, in any one of the feasible solutions emerging
from the corresponding direct problem and nothing guarantees
that the desired configuration is actually reached. In fact, when
multiple feasible configurations exist, the end-effector may switch
across them, due to inertia forces or external disturbances.
Accordingly, the computation of the entire set of equilibrium con-

figurations is essential for robust trajectory planning. This moti-
vates the relevance of the presented algorithms, which allow the
complete set of feasible solutions of the IGP to be computed in a
very efficient way (the order-of-magnitude of the computation is a
few milliseconds, on a normal PC).
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Appendix A: Special Solution Sets of the IGP With

Assigned Orientation

There are special combinations of geometric parameters and input
orientations for which the IGP with assigned orientation of the 3–3
CDPR admits infinite solutions.7 In these cases, the platform may
follow quasi-static paths, within its feasible workspace, while pre-
serving its orientation unaltered. This property may be very useful in
applications in which the payload must be limitedly tilted during
handling. Three relevant cases, holding for D 6¼ 0, are studied here.
For readers who are not interested in the details of the derivation, the
main results are summarized hereafter.

• When planes A1A2A3 and B1B2B3 are perpendicular to k and
— either ri;xy and rj;xy are parallel to ðAi � AhÞxy and
ðAj � AhÞxy, respectively, for h; i; j ¼ 1;…; 3 and
h 6¼ i 6¼ j 6¼ h (Fig. 2(a)),

— or the sides of the projections of the triangles A1A2A3 and
B1B2B3 on the xy-plane are mutually parallel (Fig. 2(b)),

V is a line parallel to k.

• When the sides of the projections of the triangles A1A2A3 and
B1B2B3 on the xy-plane are mutually parallel, V is a curve
lying on a cylinder whose axis is parallel to k and whose
cross-section is a conic.

• When the platform orientation is such that ri � rj is parallel
to ai � aj

� �
� k, for i, j¼ 1,2,3 and i 6¼ j, V is a conic lying

on the plane Pij that is parallel to k and passes through Ai

and Aj, and the robot behaves like a 2–2 CDPR [2], with the
plane GBiBj coinciding with Pij, the ith and the jth cable
holding the entire load and the hth cable, with i 6¼ h 6¼ j,
being uncharged.

• When the platform orientation is such to require ri to be par-
allel to k, i¼ 1,2,3, the robot behaves like a 1-dof crane, with
Ai, Bi and G being aligned and the ith cable holding the entire
charge.

For the sake of completeness, the (not-so-rare) case in which
the IGP does not admit a solution is also discussed at the end of
the Appendix.

One-Dimensional Solution Set: A Line Parallel to k. When
D 6¼ 0, the IGP with assigned orientation is governed by Eqs.
(9a)–(9c). The problem was solved in Sec. 3.1 by eliminating, as
a first step, z from p2 and p3, thus obtaining a polynomial p23 in x
and y, and by further eliminating y from p1 and p23, in order to
attain a univariate polynomial p123 in x. As p23 is the resultant of
p2 and p3 with respect to z, the variety defined by p23 necessarily

7This is strictly related to the particularly simple form of the equations that
govern this problem, especially when D 6¼ 0 (cf. Eq. (9)).
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comprises the set of pairs (x,y) for which the leading coefficients
of z in both p2 and p3 vanish [45]. Since p2 and p3 have degree
one in z and, in both of them, the coefficient of the monomial z is
linear in x and y, such a set ordinarily consists of a single element,
namely

x̂; ŷð Þ ¼ 1

d
a3xn12 þ a2xn31; a3yn12 þ a2yn31

� �
(A1)

where d :¼ n12 þ n23 þ n31 and nij :¼ ri � rj � k; i; j ¼ 1;…; 3.
Normally, x̂; ŷð Þ is not a solution of the problem, unless

p1ðx̂; ŷÞ; p2ðx̂; ŷÞ and p3ðx̂; ŷÞ are simultaneously zero. If the rela-
tionship p1ðx̂; ŷÞ ¼ 0 is enforced, the following condition in the
geometric and orientation parameters is obtained:

D � n31a2 � r2 � kþ n12a3 � r3 � kð Þ ¼ 0 (A2)

and thus, by considering that D 6¼ 0

C1 :¼ n31a2 � r2 � kþ n12a3 � r3 � k ¼ 0 (A3)

If Eq. (A3) is satisfied, both p1 and p23 vanish in x̂; ŷð Þ, so that x̂
belongs to the variety of p123 and, accordingly, x̂; ŷð Þ ¼ �x4; �y4ð Þ.
x̂; ŷð Þ extends to a complete solution if the terms of zero total

degree in both p2 and p3 also vanish.8 Setting such coefficients to
zero amounts to two further conditions in the geometric and orien-
tation parameters, i.e.

C2 :¼
X

ðh;i;jÞ2r123

aiy � ajy

� �
nihnhjrij � k

� a2zr2yn31 þ a3zr3yn12

� �
d ¼ 0 (A4a)

C3 :¼
X

ðh;i;jÞ2r123

aix � ajx

� �
nihnhjrij � k

� a2zr2xn31 þ a3zr3xn12ð Þd ¼ 0 (A4b)

where r123 is the set of cyclic permutations of the triplet (1,2,3).

If C1 ¼ C2 ¼ C3 ¼ 0; x̂; ŷð Þ is a solution of the IGP for any
value of z, and, provided that cable tensions are positive and Hr is
positive definite, the platform may follow, with constant orienta-
tion, a quasi-static linear path parallel to k. Simple conditions suf-
ficient to let Ci ¼ 0; i ¼ 1;…; 3, are the following:

• C1 ¼ 0 whenever ri;xy and rj;xy are, respectively, parallel to
ðAi � AhÞxy and ðAj � AhÞxy, for h; i; j ¼ 1;…; 3 and
h 6¼ i 6¼ j 6¼ h (Fig. 2(a));

• C1 ¼ 0 whenever rj;xy � r1;xy ¼ baj;xy, for b 2 ð�1; 1Þ and
j¼ 2,3, namely, whenever the sides of the projections of the
triangles A1A2A3 and B1B2B3 on the xy-plane are mutually
parallel (Fig. 2(b));

• C2 ¼ C3 ¼ 0 whenever the planes A1A2A3 and B1B2B3 are
perpendicular to k (in this case, in fact,
a2z ¼ a3z ¼ rij � k ¼ 0, 8i;8j);

• C1 ¼ C2 ¼ C3 ¼ 0 whenever ri k k for some i (this condition
infers, in fact, nij ¼ njh ¼ 0; i 6¼ j 6¼ h 6¼ i; provided that G,
B1, B2, and B3 are not coplanar, the inverse implication is
also true).

Figures 3(a) and 3(b) show two examples in which the first and
the second condition are, respectively, satisfied, together with the
third one. In the latter case, x̂; ŷð Þ ¼ � r1x; r1y

� �
=b and the

wrenches acting on the platform always intersect in a common
point, thus forming a bundle of lines (case 3 of those listed at the
beginning of Sec. 3). When the fourth condition is met,

Fig. 3 Examples of one-dimensional solution sets of the IGP
with assigned orientation: (a) a2 ¼ ½8; 0; 0�; a3 ¼ ½0; 7; 0�;
r1 ¼ ½�0:5;�0:5;�1�; r2 ¼ ½1; 0;�1�; r3 ¼ ½0; 1;�1�; ½x ; y � ¼ ½2;1:75�
and (b) a2 ¼ ½8; 0; 0�; a3 ¼ ½0; 7; 0�; r1 ¼ ½�0:5;�0:5;�1�; r2 ¼ ½1:5;
�0:5;�1�; r3 ¼ ½�0:5; 1:25;�1�; ½x ; y � ¼ ½2;2�. In both cases, V is a
vertical line and equilibrium is feasible along the entire path.

Fig. 2 Conditions for positive-dimensional solution sets of the
IGP with assigned orientation: (a) ri;xy k ðAi � AhÞxy and
rj ;xy k ðAj � AhÞxy ; (b) the sides of the projections of the trian-
gles A1A2A3 and B1B2B3 on the xy-plane are mutually parallel

8If p2 and p3 do not vanish in x̂; ŷð Þ; x̂; ŷð Þ is a solution of the problem only for
z!1.
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x̂; ŷð Þ ¼ �xi; �yið Þ and V is a line parallel to k passing through Ai,
namely, the robot behaves like a 1-dof crane, with the ith cable
holding the entire charge.

One-Dimensional Solution Set: A Curve on a Cylinder. p1

has a noteworthy geometric interpretation. Indeed, by writing it in
the form

p1 : ¼ det M0
1236 ¼ det M1236 ¼ det M126;123

¼ �
s1;xy s2;xy s3;xy

0 a2;xy � s2;xy � k a3;xy � s3;xy � k

				 				 (A5)

and by discarding trivial roots, it emerges that p1 vanishes when-
ever either si;xy ¼ 0 for some i (namely when a cable is parallel to
k, in which case C1 ¼ C2 ¼ C3 ¼ 0 and the robot operates as a 1-
dof crane), or the projections of the cable lines on the xy-plane are

linearly dependent (namely, they meet in a common point, possi-
bly at infinity). It happens that, when the sides of the projections
of the triangles A1A2A3 and B1B2B3 on the xy-plane are mutually
parallel (i.e., when the second one of the conditions listed in the
previous subsection holds), the latter condition is always fulfilled.
In this case, rj;xy ¼ baj;xy þ r1;xy, for j¼ 2,3, b 2 ð�1; 1Þ, and
D ¼ 1� bð Þ2a2 � a3 � k. Accordingly, if D 6¼ 0, the solutions of
the IGP are simply given by Eqs. (9b) and (9c), and the resulting
variety is one-dimensional. In particular, since p23 represents, in
this case, a conic on the xy-plane, V is a curve lying on the cylin-
der having this conic as a cross-section (Fig. 4). The pair x̂; ŷð Þ (in
this case equal to � r1x; r1y

� �
=b) must ordinarily be subtracted

from the conic, since it does not extend to a finite solution of the
problem, unless C2 ¼ C3 ¼ 0.

One-Dimensional Solution Set: A Planar Curve. Let Pij,
i 6¼ j, be the plane parallel to k passing through Ai and Aj, and let
the plane GBiBj be parallel to Pij. Ordinarily, p1 and p23 represent
a conic and a cubic curve on the xy-plane, respectively. However,
in the considered case, p1 degenerates into the union of two lines,
l1 and l2, whereas p23 degenerates into the union of a line, coincid-
ing with l1, and a conic, c1. l1 is the line passing through Ai;xy and
Aj;xy. l2 and c1 intersect into a single point, coinciding with
�xh; �yhð Þ, namely, with the projection on the xy-plane of the h-th

trivial solution, with i 6¼ h 6¼ j. When Gxy 2 l2 \ c1f g (so that
p1 ¼ p23 ¼ 0), letting p2 ¼ p3 ¼ 0 infers the trivial solution
x ¼ xh, which has to be discarded. As a consequence, solutions of
the IGP may only exist so that Gxy lies on l1. However, when
Gxy 2 l1, letting p2 ¼ p3 ¼ 0 requires G to belong to a conic c2

lying on Pij (geometrically, c2 is the common intersection of the
quadrics p2 and p3 with the plane Pij). In this case, GBiBj lies on
Pij and the robot behaves like a 2–2 CDPR [2], with the i-th and
the j-th cable holding the entire load (Li, Lj, and Le intersect in a
common point) and the h-th cable being unloaded.

Empty Solution Sets. The ideals hp1; p23i and hp123i represent,
respectively, the first and the second elimination ideal of Eqs.
(9a)–(9c).

A solution �x4 of p123 may not extend to a partial solution
�x4; �y4ð Þ in the variety defined by p1 and p23, if the leading coeffi-

cients of y in p1 and p23 vanish for x ¼ �x4 [45]. If A20 6¼ 0, the

Table 4 A 3–3 robot whose IGP with assigned position admits 4 potential solutions for which e0 ¼ 0

Geometric dimensions and load: a2 ¼ ½10; 0; 3�; a3 ¼ ½0; 12;�1�; b1 ¼ ½�3; 0;�1�;b2 ¼ ½2; 0;�2�;b3 ¼ ½0:5; 2;�0:5�, x¼ [5;0;6], Q¼ 10

det Sðe3Þ ¼ þ2594712672459625567745737604806200e20
3 þ 40747126319737909233397578278695080e19

3

þ284349965968359004568076399646199042e18
3 þ1043229864111708871262572335104466928e17

3 þ1732614932964338744872879189400671929e16
3

�542766881892285288015899750149587120e15
3 �5567651819227402148936076223248701980e14

3 �1576761363412478821780276805557441240e13
3

þ9170224060325147192960168140072035879e12
3 �8092071189847190468672649452990127312e11

3 þ6328343891843260664260241570918397586e10
3

�3160923867178565924047127213997797736e9
3þ905708317657380675184629062546717099e8

3�645329963774494472790214265326617720e7
3

þ207438896336428591874170464723158000e6
3þ24738356106208402968686328774876000e5

3þ10509288342603134445121525548173125e4
3

Configuration ðe0; e1; e2; e3Þ ðq1;q2; q3Þ ðs1; s2; s3Þ Hr

1 1; 0;þ4:5333086033392681121; 0ð Þ 10:96; 8:63; 13:09ð Þ þ9:16;þ6:88; 0ð Þ <>
2 1; 0;�0:2137852705182155638; 0ð Þ 4:69; 3:09; 13:33ð Þ þ7:67;þ5:72; 0ð Þ >
3 ð1; 0;�0:1028510973048352173

þ0:6194328478319967566I; 0Þ
6:41; 5:51; 13:51ð Þ þ1:60� 4:82I;þ0:18þ 6:58I; 0ð Þ <>

4 ð1; 0;�0:1028510973048352173

�0:6194328478319967566I; 0Þ
6:41; 5:51; 13:51ð Þ þ1:60þ 4:82I;þ0:18� 6:58I; 0ð Þ <>

5 0;þ1:8939390744332848908; 0; 1ð Þ 4:78; 7:99; 16:70ð Þ þ7:15;þ5:38; 0ð Þ <>
7 0;�0:1075017293765457598; 0; 1ð Þ 9:92; 6:56; 16:07ð Þ þ15:41;þ12:71; 0ð Þ <>
6 ð0;�1:6229484022580992952

þ1:3215936809813085774I; 0; 1Þ
9:95; 3:88; 16:71ð Þ þ6:04� 0:26I;þ4:50þ 2:01I; 0ð Þ <>

8 ð0;�1:6229484022580992952

�1:3215936809813085774I; 0; 1Þ
9:95; 3:88; 16:71ð Þ þ6:04þ 0:26I;þ4:50� 2:01I; 0ð Þ <>

� � � � � � � � � � � � � � �

Fig. 4 Example of one-dimensional solution set of the IGP
with assigned orientation: a2 ¼ ½8; 0; 0�; a3 ¼ ½0; 7; 0�; r1

¼ ½�2=3;�2=3;�3=2�; r2 ¼ ½14=15;�2=3;�1=2�; r3 ¼ ½�2=3; 11=15;
�1�, and p23 :¼ 735x2 þ 567xy � 420y2 � 6062x þ 2534y þ 1960
¼ 0. V is a curve on a cylindrical surface and equilibrium config-
urations are feasible along the entire path.
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coefficient of the monomial y2 in p1 is always nonzero, so that �x4

certainly extends to �x4; �y4ð Þ. The same happens if A20 ¼ 0 and
C0 6¼ 0. In this case, in fact, the leading terms in y of p1 and p23

are, respectively, � B011 þ C101ð Þxþ A01½ �y and B020 B011ð½
þ C101Þx� B020C001 þ B011C010�y2, and the vanishing of C0 is a
necessary condition for the corresponding leading coefficients to
be zero. When, conversely, A20 ¼ 0 and C0 ¼ 0, p123 provides,
among its roots, the value of x for which such coefficients vanish,
i.e.

�x4 ¼
B020C001 � B011C010

B020 B011 þ C101ð Þ ¼
�A01

B011 þ C101ð Þ (A6)

In this case, �x4 does not ordinarily extend to a solution �x4; �y4ð Þ,
unless the coefficients of the monomials of degree zero in p1 and
degree less than or equal to one in p23 simultaneously vanish, for
x ¼ �x4. This requires, however, the satisfaction of rather compli-
cated and unlikely conditions in the geometric and orientation pa-
rameters. Further particular instances may be analyzed on a case
by case basis.

Finally, a solution �x4; �y4ð Þ of p1 and p23 does not extend to a
full solution in V when the coefficients of the monomial z in p2

and p3 vanish for ðx; yÞ ¼ �x4; �y4ð Þ (which requires C1 ¼ 0), but p2

and p3 remain nonzero, i.e., C2 6¼ 0 6¼ C3.

Appendix B: Special Solution Sets of the IGP With

Assigned Position: The Case e0 ¼ 0

Let Pij, i 6¼ j, be the plane parallel to k passing through Ai

and Aj. When x 2 Pij and the coordinates frames Oxyz and
Gx0y0z0 are chosen generically, Eqs. (29) and (30) provide, among
the 24 solutions of the IGP with assigned position, eight configu-
rations in which the plane GBiBj lies upon Pij. In such cases, the
ith and the jth cable hold the entire load and the hth cable,
i 6¼ h 6¼ j, is uncharged. These configurations coincide with the
solutions of the IGP of a 2–2 CDPR comprising the platform, the
ith and the jth cable, and which may work in both its operation
modes [2].

If the coordinates frames Oxyz and Gx0y0z0 are chosen, instead,

so that bi � bj

� �
� ai � aj

� �
� k

� �
¼ 0, the degree of det Sðe3Þ

lowers to 20 and Eq. (30) is not able to provide all solutions of the
problem. In particular, it only supplies four configurations for
which GBiBj and Pij are superimposed. The four “missing” solu-
tions may be obtained by setting e0 ¼ 0 and e3 ¼ 1, by eliminat-
ing e2 or e3 from a set of five relations chosen within Eqs. (21),
(23), (27), and (28), and by finally retaining only the solutions
for which all equations are satisfied. Table 4 reports a numeric
example. For the sake of brevity, only the configurations
for which the robot behaves as a 2–2 CDPR are listed (for
complex solutions, cable lengths are conventionally computed asffiffiffiffiffiffiffiffi

sH
i si

p
; i ¼ 1;…; 3).
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