Multiscale Haar Orthonormal Matrices with the Corresponding Riesz Products and a Characterization of Cantor-Type Languages

N. D. Atreas and C. Karanikas

Communicated by John J. Benedetto

Abstract

We introduce a class of multiscale orthonormal matrices $H(m)$ of order $m \times m, m=$ $2,3, \ldots$.For $m=2^{N}, N=1,2, \ldots$, we get the well known Haar wavelet system. The term "multiscale" indicates that the construction of $H(m)$ is achieved in different scales by an iteration process, determined through the prime integer factorization of m and by repetitive dilation and translation operations on matrices. The new Haar transforms allow us to detect the underlying ergodic structures on a class of Cantor-type sets or languages. We give a sufficient condition on finite data of length m, or step functions determined on the intervals $[k / m,(k+1) / m), k=0, \ldots, m-1$ of $[0,1)$, to be written as a Riesz-type product in terms of the rows of $H(m)$. This allows us to approximate in the weak-* topology continuous measures by Riesz-type products.

1. Introduction

A matrix is a concise and useful way of treating linear transforms and an extremely important concept in time series analysis (see [5]). In order to analyze data, we prefer linear transforms whose corresponding matrices have the ability to handle a large amount of information with fast computations. Sparse matrices (matrices with a small number of nonzero elements), have the ability to reduce computational cost (see [7, 10]). Thus, in [1] and [2] we introduced new classes of sparse invertible matrices, capable of revealing local information and suitable for providing multiscale analysis on finite data.

[^0]The initial idea of this work emerged from the observation that the Gram Schmidt orthonormalization process of the following sparse matrices (see [1] and [2]):

$$
U(1)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), U(2)=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), U(3)=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right), \ldots,
$$

derives the Haar matrices:

$$
\begin{aligned}
& H(1)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right), H(2)=\left(\begin{array}{ccccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right), \\
& H(3)=\left(\begin{array}{ccccccc}
\frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} \\
\frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} & \frac{1}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} & -\frac{1}{2 \sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} \\
0 & -\frac{1}{\sqrt{2}}
\end{array}\right), \ldots
\end{aligned}
$$

Since the sparse matrices introduced in [1] are created by a multiscale construction, we wanted to check if we can get a similar construction to create Haar matrices. In Section 2, we build a class of orthonormal matrices $H(m)$ of order $m \times m(m=2,3, \ldots)$, using an iteration in scales, determined by the prime integer factorization of m. The matrices $H(m)$ can be considered as a generalization of the usual Haar matrices, since the rows of $H(m)$ are unbalanced Haar wavelets, as introduced in [4, 9], and [12].

The construction of $H(m)$, where $m=p_{1} p_{2} \cdots p_{N}$ is the prime integer factorization of $m, p_{1} \geq p_{2} \geq \ldots \geq p_{N}$, starts with a matrix $H\left(p_{1}\right)$, whose all rows, except for the first row, have zero mean. $H\left(p_{1} p_{2} \cdots p_{k}\right)$ is obtained from $H\left(p_{1} p_{2} \cdots p_{k-1}\right)$ by joining two matrices, derived by a dilation and a translation process on $H\left(p_{1} p_{2} \cdots p_{k-1}\right)$. As a result, we get a multiresolution analysis and a Haar transform:

$$
\left\{t_{n}: n=1, \ldots, m\right\} \leftrightarrow\left\{\left\langle t, h_{n}\right\rangle: n=1, \ldots, m\right\}
$$

where $\langle.,$.$\rangle is the usual inner product and h_{n}$ are the rows of $H(m)$.
In Section 3, we use the Haar transform to identify a Cantor-type language. A Cantortype language of length N in an alphabet $A=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p-1}\right\}$ of p letters, is the set of all words $\left\{\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{N}: \varepsilon_{i} \in A^{\prime} \subset A, i=1, \ldots, N\right\}$. The corresponding Cantor set on $[0,1)$ is the set $\left\{x=\sum_{i=1}^{N} \varepsilon_{i} p^{-i}, \varepsilon_{i} \in B\right\}$, where $B=\left\{i \in\{0, \ldots, p-1\}: a_{i} \in A^{\prime}\right\}$.

In Theorem 2 we prove that any Cantor language can be identified:
(a) By the sequence $\left\{\left\langle t, h_{1}\right\rangle, \ldots,\left\langle t, h_{p}\right\rangle\right\}$ of the first p Haar coefficients of t, where t is the indicator sequence (see Definition 6) of the Cantor language and
(b) by the set of zeros of the Haar transform of t.

In Section 4 we deal with Riesz-type products based on Haar matrices $H(m)$. We prove that to any step function $f(x)$ on $[0,1)$ satisfying $f(x)=t_{n}, x \in\left[\frac{n-1}{m}, \frac{n}{m}\right), n=1, \ldots, m$, there corresponds a unique sequence of numbers $\left\{a_{n}: n=1, \ldots, m\right\}$ and a representation:

$$
f(x)=\prod_{k=1}^{m}\left(1+a_{k} h_{k}(x)\right),
$$

where $h_{k}(x)=h_{k, n}, x \in\left[\frac{n-1}{m}, \frac{n}{m}\right), k, n=1, \ldots, m$ and $h_{k, n}$ is the (k, n) entry of the matrix $H(m)$, provided that $\left\langle f, h_{k}\right\rangle \neq 0$. In other words, we prove that any data $\left\{t_{n}: n=1, \ldots, m\right\}$ satisfying $\left\langle t, h_{n}\right\rangle \neq 0$, can be expressed as a product:

$$
t_{n}=\prod_{k=1}^{m}\left(1+a_{k} h_{k, n}\right)
$$

called Haar-Riesz product associated with the coefficients $\left\{a_{n}\right\}$. Thus, we introduce a non linear transform:

$$
\left\{t_{n}: n=1, \ldots, m\right\} \leftrightarrow\left\{a_{n}: n=1, \ldots, m\right\}
$$

which can be implemented by a fast computational algorithm.
We should note here that the original Riesz's construction associated with a sequence $\left\{a_{n}\right\}$, was to point that the pointwise limit of the functions:

$$
F_{N}(x)=\int_{0}^{x} \prod_{n=1}^{N}\left(1+a_{n} \cos \left(2 \pi 4^{n} t\right)\right) d t
$$

is a continuous function F of bounded variation in $[0,2 \pi]$, whose Fourier-Stieltjes coefficients do not vanish at infinity. Riesz's construction was the source of powerful ideas for producing many examples of measures with desired properties, by replacing $\cos (2 \pi t)$ with trigonometric polynomials (see [11]), or other generating functions (see [6]). Recently, the authors of [8] presented a new perspective for constructing Riesz products. From their point of view, the original Riesz product emerged from a Ruelle Perron-Frobenious operator acting on the well known low pass filter function of wavelets.

The common thread among the aforementioned approaches is a multiscale Riesz product defined in Benedetto-Bernstein and Konstantinidis work (see [3]). Their definition consists of a homomorphism $T: G \rightarrow G, G$ being a locally compact Abelian group with Haar measure m and a real valued function H on G called generating function, such that:

$$
d \mu_{N}=\prod_{n=1}^{N}\left(1+a_{n} H\left(T^{n-1} x\right)\right) d m
$$

converges weak-* to a continuous measure. They prove a dichotomy theorem and examine the support properties of measures based on this construction. Thus, our approach to make multiscale Haar-Riesz products is different and hopefully suitable for examining the
characteristic properties of singular measures as well as hidden ergodic structures. We will treat this problem in a future occasion.

The article is organized in the following sections:
In Section 2, Definitions 1-2, we introduce new dilation and translation operations on matrices. In Lemma 2 we prove that these operators are orthonormal. In Definition 5 we construct the matrix $H(m)$ in terms of a recursion equation. Theorem 1 states that the matrices $H(m)$ are orthonormal.

In Section 3, Proposition 1, we compute the Haar coefficients of the indicator sequence t of a Cantor language in terms of the first p Haar coefficients of t. In Theorem 2 we compute the set of zeros of the Haar transform of t and we present the reconstruction formula for t.

In Section 4, we define the Haar-Riesz product corresponding to the matrix $H(m)$. In Proposition 2 we compute the Haar-Riesz coefficients and in Theorem 3 we prove their uniqueness.

2. The Iteration Process for the Construction of the Haar Matrices $\boldsymbol{H}(\boldsymbol{m})$

In order to construct the orthonormal matrices $H(m)$, we need to determine new dilation and translation operators on the space of matrices. We use the following notation.

Notation. Let $\mathrm{M}_{n, m}$ be the space of matrices of order $n \times m$ over the field of complex numbers. If $n=m$, then $\mathrm{M}_{n, m}$ is abbreviated to M_{n}. A matrix $M \in \mathrm{M}_{n, m}$ is orthonormal, if its rows form an orthonormal set. We denote $M_{i}=\left\{M_{i j}: j=1, \ldots, m\right\}$ to be the i row of the matrix $M \in \mathrm{M}_{n, m}$. The support of the row M_{i} is: $\operatorname{supp}\left\{M_{i}\right\}=\{j=1, \ldots, m$: $\left.M_{i, j} \neq 0\right\}$. Finally, we denote by $[x]$ the lowest integer which is greater than or equal to a real number x.

Let $p=2,3, \ldots$, we define the following operators D_{p} and T_{p} on the space $\mathrm{M}_{n, m}$.
Definition 1. Let $D_{p}: \mathrm{M}_{n, m} \rightarrow \mathrm{M}_{n, p m}$ be the following dilation operator:

$$
D_{p}(M)=\left\{M_{i,\left[\frac{j}{p}\right]}, \quad i=1, \ldots, n, \quad j=1, \ldots, p m\right\}
$$

Example 1. $D_{2}\left(\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\right)=\left(\begin{array}{llll}1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4\end{array}\right), D_{3}\left(\left(\begin{array}{lll}1 & 2 \\ 3 & 4\end{array}\right)\right)=\left(\begin{array}{lllll}1 & 1 & 1 & 2 & 2\end{array}\right)$
Definition 2. Let $T_{p}: \mathrm{M}_{k, l} \rightarrow \mathrm{M}_{p k, p l}$ be the following translation operator:

$$
T_{p}(M)=\left\{\begin{array}{ll}
M_{\left[\frac{i}{p}\right], \operatorname{Mod}(j-1, l)+1}, & \text { whenever } \operatorname{Mod}(i-1, p)+1=\left[\frac{j}{l}\right] \\
0, & \text { otherwise }
\end{array}, i=1, \ldots, p k, j=1, \ldots, p l\right\}
$$

Example 2. $T_{3}\left(\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)\right)=\left(\begin{array}{cccccc}b_{11} & b_{12} & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{11} & b_{12} & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{11} & b_{12} \\ b_{21} & b_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{21} & b_{22} & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{21} & b_{22}\end{array}\right)$.
Remark 1. The operator $D_{p}(M)$ creates p replicas of any column of the matrix M, while the matrix $T_{p}(M), M \in \mathrm{M}_{k, l}$ has:
(i) k generator rows:

$$
\left(T_{p}(M)\right)_{r p+1}=\left\{\begin{array}{ll}
M_{(r+1), j} & j=1, \ldots, l \\
0, & j=l+1, \ldots, p l
\end{array}, \quad r=0, \ldots, k-1\right.
$$

(ii) each row $\left(T_{p}(M)\right)_{r p+s}, s=2, \ldots, p$ is an $(s-1) l$-translation of the row $\left(T_{p}\right.$ $(M))_{r p+1}$.

Lemma 1. The operators D_{p}, T_{p} satisfy the following properties:
(i) $D_{p} D_{q}=D_{p q}$.
(ii) $D_{p} T_{q}=T_{q} D_{p}$.
(iii) If the rows of the matrix $M \in M_{n, m}$ form an orthonormal set, then both operators $p^{-1 / 2} D_{p}$ and T_{p} preserve orthonormality.

Proof.

(i) and (ii) are straightforward applications of Definitions 1 and 2.
(iii) If the rows of M form an orthonormal set, then:

$$
\frac{1}{p}\left\langle\left(D_{p}(M)\right)_{i},\left(D_{p}(M)\right)_{j}\right\rangle=\frac{1}{p} \sum_{l=1}^{p m} M_{i,\left[\frac{l}{p}\right]} M_{j,\left[\frac{l}{p}\right]}=\sum_{l=1}^{m} M_{i, l} M_{j, l}=\delta_{i, j}
$$

In order to prove that T_{p} is orthonormal we use Remark 1:

$$
\left\langle\left(T_{p}(M)\right)_{i},\left(T_{p}(M)\right)_{j}\right\rangle=\left\{\begin{array}{ll}
\left\langle M_{\left[\frac{i}{p}\right]}, M_{\left[\frac{j}{p}\right]}\right\rangle, & |i-j|=c p \\
0, & |i-j| \neq c p
\end{array}, c=1, \ldots, n-1\right.
$$

and the result follows as a consequence of the orthonormality of M.
Definition 3. Let $S: M_{n, m} \times M_{k, m} \rightarrow M_{n+k, m}$ be the following block matrix operator:

$$
S(M, N)=\left\{\left\{\begin{array}{ll}
M_{i, j}, & i=1, \ldots n, \quad j=1, \ldots m \\
N_{(i-n), j}, & i=n+1, \ldots, n+k, \quad j=1, \ldots m
\end{array}\right\}\right.
$$

Example 3. $S\left(\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2\end{array}\right),\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0\end{array}\right)\right)=\left(\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0\end{array}\right)$.
Definition 4. Let $p=2,3, \ldots$, we define the following matrix $\Psi^{p}=\left(\psi_{i j}^{p}\right)$ of order $(p-$ 1) $\times p$:

$$
\psi_{i j}^{p}=\left\{\begin{array}{ll}
\frac{1}{\sqrt{p-i}} \frac{1}{\sqrt{p-i+1}}, & \text { whenever } 1 \leq j \leq p-i \tag{2.1}\\
-\frac{\sqrt{p-i}}{\sqrt{p-i+1}}, & \text { whenever } j=p-i+1, \\
0, & \text { whenever } p-i+1<j \leq p
\end{array} \quad i=1, \ldots, p-1 .\right.
$$

Example 4. $\Psi^{2}=\left(\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right), \Psi^{3}=\left(\begin{array}{ccc}\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\sqrt{\frac{2}{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\end{array}\right)$,

$$
\Psi^{5}=\left(\begin{array}{ccccc}
\frac{1}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & -\frac{2}{\sqrt{5}} \\
\frac{1}{2 \sqrt{3}} & \frac{1}{2 \sqrt{3}} & \frac{1}{2 \sqrt{3}} & -\frac{\sqrt{3}}{2} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\sqrt{\frac{2}{3}} & 0 & 0 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0
\end{array}\right)
$$

Lemma 2. The matrix Ψ^{p} satisfies the following properties:
(i) $\sum_{j=1}^{p} \psi_{i j}^{p}=0$, for any $i=1, \ldots, p-1$.
(ii) $\psi_{i}^{p} \psi_{j}^{p}=\psi_{i, 1}^{p} \psi_{j}^{p}$, whenever $i<j$.
(iii) The matrix $S\left(\frac{1}{\sqrt{p}}(1, \ldots, 1)_{1 \times p}, \Psi^{p}\right)$ is orthonormal.
(iv) Let $r, q=2,3, \ldots$ and let $i<j$, then:

$$
\left(T_{r}\left(D_{q}\left(\Psi^{p}\right)\right)\right)_{i}\left(T_{r}\left(D_{q}\left(\Psi^{p}\right)\right)\right)_{j}=c \quad\left(T_{r}\left(D_{q}\left(\Psi^{p}\right)\right)\right)_{j}
$$

$$
\text { where } c=\left\{\begin{array}{ll}
\psi_{\left[\frac{i}{r}\right], 1}^{p}, & j-i=s r \\
0, & j-i \neq s r
\end{array}, \quad s=0, \ldots, p-2 .\right.
$$

Proof.
(i) Obvious, see (2.1).
(ii) Let $i<j$, then $p-j+1 \leq p-i$. Since $\psi_{i, n}^{p}$ has the same non zero value for all $n \leq p-i$ and since $\psi_{j, n}^{p}=0$ for all $n>p-j+1$, we have: $\psi_{i}^{p} \psi_{j}^{p}=\psi_{i, 1}^{p} \psi_{j}^{p}$.
(iii) Elementary application of (ii) and Equation (2.1).
(iv) Let $M^{q, p}=D_{q}\left(\Psi^{p}\right)$. We suppose that $i<j$ and we use Remark 1 to deduce that

$$
\operatorname{supp}\left\{T_{r}\left(M^{q, p}\right)_{i}\right\} \bigcap \operatorname{supp}\left\{T_{r}\left(M^{q, p}\right)_{j}\right\}=\emptyset
$$

whenever $j-i \neq s r, s=0, \ldots, p-2$. If $j-i=s r$, then:

$$
\operatorname{supp}\left\{T_{r}\left(M^{q, p}\right)_{i}\right\} \bigcap \operatorname{supp}\left\{T_{r}\left(M^{q, p}\right)_{j}\right\}=\operatorname{supp}\left\{M_{\left[\frac{i}{r}\right]}\right\} \bigcap \operatorname{supp}\left\{M_{\left[\frac{j}{r}\right]}\right\}
$$

Since $M_{\left[\frac{i}{r}\right]} M_{\left[\frac{j}{r}\right]}=\psi_{\left[\frac{i}{r}\right], 1}^{p} \psi_{\left[\frac{j}{r}\right]}^{p}$ as a consequence of part (ii) and Equation (2.1), the result follows.

From now on, we consider the prime integer factorization of $m>0$:

$$
\begin{equation*}
m=p_{1} p_{2} \cdots p_{N} \tag{2.2}
\end{equation*}
$$

where $p_{1} \geq p_{2} \geq \ldots \geq p_{N}$.

Definition 5. Let m be as in (2.2). For any $n=1, \ldots, N$ we define a sequence of block matrices $H^{m}(n)$ of order $\left(\prod_{i=1}^{n} p_{i}\right) \times\left(\prod_{i=1}^{n} p_{i}\right)$:

$$
H^{m}(n)= \begin{cases}S\left(\frac{1}{\sqrt{p_{1}}}(1, \ldots, 1)_{1 \times p_{1}}, \Psi^{p_{1}}\right), & n=1 \\ S\left(\frac{1}{\sqrt{p_{n}}} D_{p_{n}}\left(H^{m}(n-1)\right), T_{\left(p_{1} \cdots p_{n-1}\right)}\left(\Psi^{p_{n}}\right)\right), & n=2, \ldots, N\end{cases}
$$

For the case $n=N$ we use the notation $H(m)$.
Example 5. Let $m=12$, then $p_{1}=3, p_{2}=2, p_{3}=2$ and we have:

$$
\begin{aligned}
& H^{12}(1)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\sqrt{\frac{2}{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right), H^{12}(2)=\left(\begin{array}{cccccc}
\frac{1}{\sqrt{\sqrt{6}}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{2 \sqrt{\sqrt{3}}} & \frac{1}{2 \sqrt{3}} & \frac{1}{2 \sqrt{3}} & \frac{1}{2 \sqrt{2}} & -\frac{1}{\sqrt{\sqrt{3}}} & -\frac{1}{\sqrt{3}} \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) .
\end{aligned}
$$

Theorem 1. The matrices $H^{m}(n), n=1, \ldots, N$ are orthonormal.
In order to prove Theorem 1 we need the following lemmas.
Lemma 3. Let $n=2, \ldots, N$, then

$$
\frac{1}{\sqrt{p_{n}}} D_{p_{n}}\left(H^{m}(n-1)\right)=S\left(A_{0}, A_{1}, \ldots, A_{n-2}\right)
$$

where $A_{0}=\frac{1}{\sqrt{p_{n} \cdots p_{2}}} D_{\left(p_{n} \cdots p_{2}\right)}\left(H^{m}(1)\right)$ and $A_{k}=\frac{1}{\sqrt{p_{n} \cdots p_{k+2}}} T_{\left(p_{1} \cdots p_{k}\right)}\left(D_{\left(p_{n} \cdots p_{k+2}\right)}\left(\Psi^{p_{k+1}}\right)\right)$, $k>0$.

Proof. We use Lemma 1 (i)-(ii) and Definition 5 to get:

$$
\begin{aligned}
\frac{1}{\sqrt{p_{n}}} D_{p_{n}}\left(H^{m}(n-1)\right) & =\frac{1}{\sqrt{p_{n}}} D_{p_{n}}\left(S\left(\frac{1}{\sqrt{p_{n-1}}} D_{p_{n-1}}\left(H^{m}(n-2)\right), T_{\left(p_{1} \cdots p_{n-2}\right)}\left(\Psi^{p_{n-1}}\right)\right)\right) \\
& =S\left(\frac{1}{\sqrt{p_{n} p_{n-1}}} D_{\left(p_{n} p_{n-1}\right)}\left(H^{m}(n-2)\right), A_{n-2}\right) \\
& =S\left(\frac{1}{\sqrt{p_{n} p_{n-1} p_{n-2}}} D_{\left(p_{n} p_{n-1} p_{n-2}\right)}\left(H^{m}(n-3)\right), A_{n-3}, A_{n-2}\right) \\
& =\ldots=S\left(A_{0}, A_{1}, \ldots, A_{n-2}\right)
\end{aligned}
$$

Lemma 4. Let $1 \leq n<l \leq m$, then $h_{n} h_{l}=h_{n, l_{0}} h_{l}$, where $h_{l, l_{0}}$ is the first nonzero element of the l-row of the matrix $H(m)$.
Proof. $H(m)=S\left(A_{0}, \ldots, A_{N-2}, A_{N-1}\right)$ as a result of Lemma 3 .
Step 1. Let $n<l$ and let $h_{n}, h_{l} \in A_{0}$, then: $\left.h_{n, i} h_{l, i}=\psi_{n,\left[\frac{i}{p_{2} \ldots p_{N}}\right.}^{p_{1}}\right]_{l, i}=\psi_{n, 1}^{p_{1}} h_{l, i}$.
Step 2. Let $n<l$ and let $h_{n}, h_{l} \in A_{k},(k=1, \ldots, N-1)$, then Lemma 2 (iv) yields the result.

Step 3. If h_{n} is a row of the submatrix A_{k} and h_{l} is a row of the submatrix A_{m} where $k<m$, then either $\operatorname{supp}\left\{h_{l}\right\} \bigcap \operatorname{supp}\left\{h_{n}\right\}=\emptyset$ or $\operatorname{supp}\left\{h_{l}\right\} \bigcap \operatorname{supp}\left\{h_{n}\right\}=\operatorname{supp}\left\{h_{l}\right\}$. Since the row h_{n} has the same entries within the support of the row h_{l}, we have $h_{n} h_{l}=c h_{l}$, where

$$
c=\left\{\begin{array}{ll}
h_{n, l_{0}}, & \text { whenever } \operatorname{supp}\left\{h_{l}\right\} \bigcap \operatorname{supp}\left\{h_{n}\right\}=\operatorname{supp}\left\{h_{l}\right\} \\
0, & \text { whenever } \operatorname{supp}\left\{h_{l}\right\} \bigcap \operatorname{supp}\left\{h_{n}\right\}=\emptyset
\end{array} .\right.
$$

Proof of Theorem 1. We proceed by induction. The matrix $H^{m}(1)$ is orthonormal as a result of Lemma 2 (iii). Let $H^{m}(n-1)(n=2, \ldots, N-1)$ be an orthonormal matrix, then the rows of both matrices $p_{n}^{-1 / 2} D_{p_{n}}\left(H^{m}(n-1)\right)$ and $T_{\left(p_{1} \ldots p_{n-1}\right)}\left(\Psi^{p_{n}}\right)$ form orthonormal sets as a consequence of Lemma 1 (iii) and the inductive hypothesis, thus it suffices to prove that $\left\langle h_{k}, h_{l}\right\rangle=0$ whenever $h_{k} \in p_{n}^{-1 / 2} D_{p_{n}}\left(H^{m}(n-1)\right)$ and $h_{l} \in T_{\left(p_{1} \ldots p_{n-1}\right)}\left(\Psi^{p_{n}}\right)$. Indeed, we have:

$$
\left.\left\langle h_{k}, h_{l}\right\rangle=\sum_{r=1}^{m} h_{k, r} h_{r, l}=c \sum_{j=1}^{p_{n}} \psi_{\left[\frac{r}{p_{1} \cdots p_{n-1}}\right.}^{p_{n}}\right], j=0
$$

so the matrix $H^{m}(n)$ is orthonormal.
Remark 2. The multiresolution structure arised from $H\left(p^{N}\right)$, where p is a prime number and $N=2,3, \ldots$.

Let V_{N} be the space of all real-valued sequences of length p^{N} and let h_{i} be the i-row of the Haar matrix $H\left(p^{N}\right)$, then any element $t=\{t(n), n=1, \ldots, m\} \in V_{N}$ can be written as:

$$
t(n)=\sum_{i=1}^{p^{N}}\left\langle t, h_{i}\right\rangle h_{n, i}
$$

For any $j=0, \ldots, N-1, k=1, \ldots, p-1$, we define the subspaces $W_{j, k}=\operatorname{span}\left\{h_{k p^{j}+s}\right.$: $\left.s=1, \ldots, p^{j}\right\}$. Let V_{0} be the space of constant sequences, then we have the following decomposition:

$$
V_{N}=V_{0} \oplus_{j=0}^{N-1} \oplus_{k=1}^{p-1} W_{j, k}
$$

Example 6. Let $m=3^{3}$, then $V_{m}=V_{0}+W_{0,1}+W_{0,2}+W_{1,1}+W_{1,2}+W_{2,1}+W_{2,2}$, where:

$$
\begin{aligned}
V_{0} & =\operatorname{span}\left\{h_{1}\right\}, W_{0,1}=\operatorname{span}\left\{h_{2}\right\}, W_{0,2}=\operatorname{span}\left\{h_{3}\right\}, \\
W_{1,1} & =\operatorname{span}\left\{h_{4}, h_{5}, h_{6}\right\}, W_{1,2}=\operatorname{span}\left\{h_{7}, h_{8}, h_{9}\right\} \\
W_{2,1} & =\operatorname{span}\left\{h_{10}, \ldots, h_{18}\right\}, W_{2,2}=\operatorname{span}\left\{h_{19}, \ldots, h_{27}\right\}
\end{aligned}
$$

3. Haar Coefficients of Cantor-Type Sets

For the rest of the text we assume that h_{i} is a row of the Haar matrix $H(m)$ and p is a prime number. A Cantor-type language of length N in an alphabet $A=\left\{a_{0}, a_{1}, \ldots, a_{p-1}\right\}$ of p letters, is the set of all words $\left\{\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{N}: \varepsilon_{i} \in A^{\prime} \subset A, i=1, \ldots, N\right\}$:
(i) A^{\prime} has at least two elements.
(ii) $a_{0} \in A^{\prime}, a_{1} \notin A^{\prime}$.

The corresponding Cantor set on $[0,1)$ is the set $\left\{x=\sum_{n=1}^{N} \varepsilon_{n} p^{-n}: \varepsilon_{n} \in B\right\}$, where

$$
\begin{equation*}
B=\left\{i \in\{0, \ldots, p-1\}: a_{i} \in A^{\prime}\right\} . \tag{3.1}
\end{equation*}
$$

Obviously: $0 \in B, 1 \notin B$.
Definition 6. We call indicator sequence of a Cantor-type language, the sequence $t=$ $\left\{t_{1}, t_{2}, \ldots, t_{p^{N}}\right\}$ satisfying:

$$
t_{n}= \begin{cases}1, & \text { whenever } n=1+\sum_{i=1}^{N} \varepsilon_{i} p^{N-i}, \varepsilon_{i} \in B \\ 0, & \text { otherwise }\end{cases}
$$

Example 7. Let $p=5, N=2, A=\left\{a_{0}, \ldots, a_{4}\right\}, A^{\prime}=\left\{a_{0}, a_{2}, a_{4}\right\}$, then:

$$
t=\{1,0,1,0,1,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,1,0,1,0,1\}
$$

The indicator sequence t emerges from an iteration process presented below.
Let V_{i} be the set of all real sequences of length $p^{i}(i=1, \ldots, N-1)$. We define the mapping:

$$
X_{i}: V_{i} \rightarrow V_{i+1},\left(X_{i}(e)\right)_{n}=\left\{\begin{array}{ll}
0, & \text { whenever } n=1+\sum_{j=1}^{i} \varepsilon_{j} p^{i-j}, \varepsilon_{i} \notin B \\
e_{\operatorname{Mod}\left(n-1, p^{i}\right)+1}, & \text { otherwise }
\end{array} \quad n=1, \ldots, p^{i+1},\right.
$$

where B is defined in (3.1). If $g=\left\{g_{1}, \ldots, g_{p}\right\}$:

$$
g_{n}= \begin{cases}1, & \text { whenever } \alpha_{n-1} \in A^{\prime} \\ 0, & \text { whenever } \alpha_{n-1} \in A-A^{\prime}\end{cases}
$$

then the indicator sequence t satisfies:

$$
t=X_{N-1} X_{N-2} \ldots X_{1}(g)
$$

We list the following properties of t :

Lemma 5.

(i) Let $e=X_{j-1} \ldots X_{1}(g),(j=2, \ldots, N), g$ being defined above, then:

$$
t_{n}=\left\{\begin{array}{ll}
0, & \text { whenever } n=1+\sum_{i=1}^{N} \varepsilon_{i} p^{N-i}, \varepsilon_{i} \notin B \text { for any } i=1, \ldots, N-j \\
e_{\operatorname{Mod}\left(n-1, p^{j}\right)+1}, & \text { otherwise }
\end{array} \quad, n=1, \ldots, p^{N}\right.
$$

(ii) If $\sum_{n=1}^{p} g_{n}=c, 2 \leq c<p$, then: $\sum_{n=1}^{p^{j}} e_{n}=c^{j}$.
(iii) $t_{n}=0$ for all n satisfying: $p^{i-1}+1 \leq n \leq 2 p^{i-1}, i=1, \ldots, N$.

Proof.

(i) and (ii) are elementary.
(iii) Since $1 \notin B$ [see (3.1)], we have $t_{n}=0$ whenever $\varepsilon_{i}=1$, i.e., $t_{n}=0$ whenever $p^{i-1}+$ $1 \leq n \leq 2 p^{i-1}$.
Lemma 6. Let the the indicator sequence of a Cantor language, then:
(a) $\left\langle t, h_{r}\right\rangle \neq 0$ for any $r=1, \ldots, p$.
(b) Let $j=1, \ldots, N-1, s=1, \ldots, p^{j}$. If $\left\langle t, h_{p^{j}+s}\right\rangle \neq 0$, then $\left\langle t, h_{k p^{j}+s}\right\rangle \neq 0$ for any $k=1, \ldots, p-1$.
(c) $\left\langle t, h_{p^{j}+s}\right\rangle=0 \Leftrightarrow t_{n}=0$ for all n satisfying $n=(s-1) p^{N-j}+1, \ldots, s p^{N-j}$.
(d) $\left\langle t, h_{p^{j}+s}\right\rangle=0 \Leftrightarrow\left\langle t, h_{k p^{j}+s}\right\rangle=0$ for any $k=1, \ldots, p-1$.

Proof.

(a) The case $r=1$ is obvious (see Lemma 5 (ii) for $j=N$). For $r=2, \ldots, p$, we have:

$$
\begin{equation*}
\left\langle t, h_{r}\right\rangle=h_{r, 1} \sum_{l=1}^{(p-r+1) p^{N-1}} t_{l}-h_{r,(p-r+1) p^{N-1}+1} \sum_{l=(p-r+1) p^{N-1}+1}^{(p-r+2) p^{N-1}} t_{l} . \tag{3.2}
\end{equation*}
$$

First case: If $(p-r+1) \notin B$, then Lemma 5 (i) implies that the last term in the right-hand side of Equation (3.2) vanishes, so: $\left\langle t, h_{r}\right\rangle=h_{r, 1} \sum_{l=1}^{(p-r+1) p^{N-1}} t_{l}>0$.
Second case: If $(p-r+1) \in B$, then we apply Lemma 5 (i) in Equation (3.2) and we have:

$$
\left\langle t, h_{r}\right\rangle=\left((p-r+1) h_{r, 1}-h_{r,(p-r+1) p^{N-1}+1}\right) \sum_{l=1}^{p^{N-1}}\left(X_{N-2} \ldots X_{1}(g)\right)_{l},
$$

so $\left\langle t, h_{r}\right\rangle<0$ as a result of Lemma 5 (iii).
(b) We suppose that $\left\langle t, h_{p^{j}+s}\right\rangle \neq 0$. Since $\operatorname{supp}\left\{h_{k p^{j}+s}\right\} \subseteq\left\{n: n=(s-1) p^{N-j}+\right.$ $\left.1, \ldots, s p^{N-j}\right\}$ for any $k=1, \ldots, p-1$ and since the row $h_{k p^{j}+s}$ is an $s p^{N-j}$ translation of the row $h_{k p^{j}+1}$, we have:

$$
\begin{aligned}
& =h_{k p}{ }^{j}+1,1 \quad \sum_{l=1}^{(p-k) p^{N-j-1}}\left(x_{N-j-1} \ldots x_{1}(g)\right)_{l}-h_{k p j}+1,(p-k) p^{N-j-1}+\sum_{l=(p-k) p^{N-j-1}+1}^{(p-k+1) p^{N-j-1}}\left(x_{N-j-1} \ldots X_{1}(g)\right)_{l} .
\end{aligned}
$$

We use the same methodology as in part (a) to deduce that for $p-k \notin B$ we get $\left\langle t, h_{k p^{j}+s}\right\rangle>$ 0 , whereas for $p-k \in B$ we get $\left\langle t, h_{k p^{j}+s}\right\rangle<0$.
(c) It suffices to examine the case:

$$
\left\langle t, h_{p^{j}+s}\right\rangle=0 \Rightarrow t_{n}=0 \text { for all } n \text { satisfying: } n=(s-1) p^{N-j}+1, \ldots, s p^{N-j} .
$$

If $\sum_{l=(s-1) p^{N-j}+1}^{s p^{N-j}} t_{l} \neq 0$, then the proof presented in part (b) indicates that $\left\langle t, h_{p^{j}+s}\right\rangle \neq 0$, which is a contradiction.
(d) Obvious, combine parts (b) and (c).

Proposition 1. For any $k=1, \ldots, p-1$, the indicator sequence t of a Cantor-type language satisfies:

$$
\left\langle t, h_{k+1}\right\rangle=\frac{c^{j}}{\sqrt{p^{j}}}\left\langle t, h_{k p^{j}+s}\right\rangle, j=1, \ldots, N-1, s=1, \ldots, p^{j}
$$

provided that $\left\langle t, h_{k p^{j}+s}\right\rangle \neq 0$. Notice that c is the cardinality of the support of the set B defined in (3.1).

Proof. Let $\left\langle t, h_{k p^{j}+s}\right\rangle \neq 0$, then Lemma 6(d) indicates that $\left\langle t, h_{k p^{j}+s}\right\rangle=\left\langle t, h_{k p^{j}+1}\right\rangle$, thus it suffices to prove: $\left\langle t, h_{k+1}\right\rangle=\frac{c^{j}}{\sqrt{p^{j}}}\left\langle t, h_{k p^{j}+1}\right\rangle$. We denote by $M^{p, j}=$ $\frac{1}{\sqrt{p^{N-j-1}}} D_{p^{N-j-1}}\left(\Psi^{p}\right)$ and we observe that $h_{k p^{j}+1}=\left(M^{p, j}\right)_{k}$. Moreover, $h_{k p^{j}+1}=0$ for all $n>p^{N-j}$. Now, we calculate:

$$
\begin{aligned}
& \left\langle t, h_{k+1}\right\rangle=\sum_{r=1}^{p^{N}} t_{r} h_{k+1, r}=\frac{1}{\sqrt{p^{N-1}}} \sum_{r=1}^{p^{N}} t_{r}\left(D_{p^{N-1}}\left(\Psi^{p}\right)\right)_{k, r} \\
& =\frac{1}{\sqrt{p^{N-1}}} \sum_{q=0}^{p^{N-j}} \sum_{v=1}^{p^{j}} t_{q p^{j}+v}\left(D_{p^{N-1}}\left(\Psi^{p}\right)\right)_{k, q p^{j}+v}=\frac{1}{\sqrt{p^{j}}} \sum_{q=0}^{p^{N-j}} \sum_{v=1}^{p^{j}} t_{q p^{j}+v}\left(D_{p^{j}}\left(M^{p, j}\right)\right)_{k, q p^{j}+v} \\
& =\frac{1}{\sqrt{p^{j}}} \sum_{q=0}^{p^{N-j}} \sum_{v=1}^{p^{j}} t_{q p^{j}+v}\left(M^{p, j}\right)_{k, q+1}=\frac{1}{\sqrt{p^{j}}} \sum_{q=1}^{p^{N-j}}\left(M^{p, j}\right)_{k, q} \sum_{v=1}^{p^{j}} t_{(q-1) p^{j}+v} \\
& =\frac{1}{\sqrt{p^{j}}} \quad \sum_{q=1}^{p^{N-j}} \quad\left(M^{p, j}\right)_{k, q} \sum_{v=1}^{p^{j}}\left(X_{j-1} \ldots X_{1}(g)\right)_{v} \\
& q=1+\sum_{i=1}^{N-j} \varepsilon_{i} p^{N-j-i}, \varepsilon_{i} \notin \mathrm{~B} \text { for any } i<N-j, \\
& =\frac{1}{\sqrt{p^{j}}} \sum_{q=1}^{p^{N-j}}\left(M^{p, j}\right)_{k, q}\left(X_{N-j-1} \ldots X_{1}(g)\right)_{q} \sum_{v=1}^{p^{j}}\left(X_{j-1} \ldots X_{1}(g)\right)_{v} \\
& =\frac{c_{j}}{\sqrt{p^{j}}} \sum_{q=1}^{p^{N-j}}\left(M^{p, j}\right)_{k, q}\left(X_{N-j-1} \ldots X_{1}(g)\right)_{q}=\frac{c_{j}}{\sqrt{p^{j}}}\left\langle t, h_{k p^{j}+1}\right\rangle .
\end{aligned}
$$

Theorem 2. Let Q be the set of zeros of the Haar coefficients of the indicator sequence t of a Cantor language, then:
(a)

$$
Q=\bigcup_{j=1}^{N-1}\left(R_{j}+S_{j}\right)
$$

where $R_{j}=\left\{r p^{j}: r=0, \ldots, p-2\right\}$ and $S_{j}=\left\{k=p^{j}+1+\sum_{s=0}^{j-1} \varepsilon_{s} p^{j-1-s}:\right.$ at least one $\left.\varepsilon_{s} \notin B\right\}$.
(b)

$$
t_{n}=\sum_{i=0}^{N-1} \sum_{\substack{m=p^{i}+1 \\ m \notin\left(R_{i}+S_{i}\right)}}^{p^{i+1}} \frac{\sqrt{p^{i}}}{c^{i}}\left\langle t, h_{\left[\frac{m}{p^{i}}\right]}\right\rangle h_{n, m}
$$

where c is the cardinality of the support of the set B defined in (3.1).

Proof.

(a) Let $Q_{j}=\left\{p^{j}+1 \leq k \leq p^{j+1}:\left\langle t, h_{k}\right\rangle=0\right\}, j=0, \ldots, N-1$. Lemma 6 (a) indicates that $Q_{0}=\emptyset$. Lemma 6 (d) implies that:

$$
Q_{j}=\left\{s+r p^{j}: s \in S_{j}, r=0, \ldots,(p-2)\right\}
$$

where $S_{j}=\left\{p^{j}+1 \leq s \leq 2 p^{j+1}:\left\langle t, h_{p^{j}+s}\right\rangle=0\right\}$. Lemma 6 (c) indicates that $\left\langle t, h_{p^{j}+s}\right\rangle=0$ if and only if $t_{n}=0$ for all n satisfying $n=(s-1) p^{N-j}+1, \ldots, p^{N-j}$ and so by Lemma 5 (i), S_{j} can be written as:

$$
S_{j}=\left\{k=p^{j}+1+\sum_{s=0}^{j-1} \varepsilon_{s} p^{j-1-s}: \text { at least one } \varepsilon_{s} \notin B\right\}
$$

(b) It is clear that

$$
t_{n}=\sum_{i=0}^{N-1} \sum_{m=p^{i}+1}^{p^{i+1}}\left\langle t, h_{m}\right\rangle h_{n, m}=\sum_{i=0}^{N-1} \sum_{\substack{m=p^{i}+1 \\ m \notin\left(R_{i}+S_{i}\right)}}^{p^{i}+1}\left\langle t, h_{m}\right\rangle h_{n, m} .
$$

Proposition 1 completes the proof.

4. Haar-Riesz Products Associated to the Matrices $\boldsymbol{H}(\boldsymbol{m})$

Let $m=2,3, \ldots$, we call Haar-Riesz product associated to the sequence of complex numbers $a=\left\{a_{n}: n=1, \ldots, m\right\}$ the expression:

$$
t_{n}=\prod_{k=1}^{m}\left(1+a_{k} h_{k, n}\right)
$$

where h_{k} are rows of the matrix $H(m)$. In Proposition 2 we show the relation between t and a and in Theorem 3 we present an iteration process for the computation of a. First, we need the following lemma.
Lemma 7. Let $1 \leq r_{1}<r_{2}<\ldots<r_{q} \leq m$ be a strictly increasing sequence of positive integers, then:

$$
\prod_{n=1}^{q} h_{r_{n}}=\left(\prod_{n=1}^{q-1} h_{r_{n}, q_{0}}\right) h_{r_{q}}
$$

where $h_{r_{q}, q_{0}}$ is the first nonzero element of the r_{q}-row of the matrix $H(m)$.
Proof. Immediate consequence of Lemma 4.
Proposition 2. Let $\left\{a_{1}, \ldots, a_{m}\right\}$ be the sequence of Haar-Riesz coefficients associated to the Haar-Riesz product $t_{n}=\prod_{k=1}^{m}\left(1+a_{k} h_{k, n}\right)$. If $\left\langle t, h_{1}\right\rangle \neq 0$, then:

$$
\left\langle t, h_{s}\right\rangle= \begin{cases}a_{1}+\sqrt{m}, & s=1 \\ a_{s} \prod_{k=1}^{s-1}\left(1+a_{k} h_{k, s_{0}}\right), & s=2, \ldots, m\end{cases}
$$

where $h_{s, s_{0}}$ is the first nonzero element of the row h_{s}.
Proof. $\quad t_{n}=\prod_{k=1}^{m}\left(1+a_{k} h_{k, n}\right)$

$$
=1+\sum_{k=1}^{m} a_{k} h_{k, n}+\sum_{k_{1}=1}^{m-1} \sum_{k_{2}=k_{1}+1}^{m} a_{k_{1}} a_{k_{2}} h_{k_{1}, n} h_{k_{2}, n}+\ldots+\left(a_{1} \ldots a_{m}\right)\left(h_{1, n} \ldots h_{m, n}\right)
$$

We apply Lemma 7 and we have:

$$
t_{n}=1+\sum_{k=1}^{m} a_{k} h_{k, n}+\sum_{k_{1}=1}^{m-1} \sum_{k_{2}=k_{1}+1}^{m} a_{k_{1}} a_{k_{2}} h_{k_{1}, k_{2}^{0}} h_{k_{2}, n}+\ldots+\left(a_{1} \ldots a_{m}\right)\left(\prod_{j=1}^{m-1} h_{k_{j}, k_{m}^{0}}\right) h_{m, n},
$$

where $h_{k_{i}, k_{0}^{i}}$ is the first nonzero element of the row $h_{k_{i}}$.
If $s=1$, then $\left\langle t, h_{1}\right\rangle=\left\langle 1, h_{1}\right\rangle+\sum_{k=1}^{m} a_{k}\left\langle h_{k}, h_{1}\right\rangle+0+\ldots+0=\sqrt{m}+a_{1}$.
Let $s>1$. Define $h_{s, s_{0}}$ the first nonzero element of the row h_{s}, then the orthonormality of the matrix $H(m)$ implies that:

$$
\begin{aligned}
\left\langle t, h_{s}\right\rangle & =a_{s}+\sum_{k_{1}=1}^{m-1} \sum_{k_{2}=k_{1}+1}^{m} a_{k_{1}} a_{k_{2}} h_{k_{1}, k_{2}^{0}} \delta_{k_{2}, s}+\ldots+\left(a_{1} \ldots a_{s}\right)\left(\prod_{j=1}^{s-1} h_{k_{j}, s_{0}}\right) \\
& =a_{s}\left(1+\sum_{k_{1}=1}^{s-1} a_{k_{1}} h_{k_{1}, s_{0}}+\sum_{k_{1}=1}^{m-2} \sum_{k_{2}=k_{1}+1}^{m-1} a_{k_{1}} a_{k_{2}}\left(\prod_{j=1}^{2} h_{k_{j}, s_{0}}\right)+\ldots+\left(a_{1} \ldots a_{s-1}\right)\left(\prod_{j=1}^{s-1} h_{k_{j}, s_{0}}\right)\right) \\
& =a_{s} \prod_{k=1}^{s-1}\left(1+a_{k} h_{k, s_{0}}\right) .
\end{aligned}
$$

Theorem 3. Let $t=\left\{t_{1}, \ldots, t_{m}\right\}$ be a sequence of complex numbers such that $\left\langle t, h_{i}\right\rangle \neq$ 0 , for any $i=1, \ldots, m$, then there exists a unique sequence of coefficients $\left\{a_{n}: n=\right.$ $1, \ldots, m\}$ satisfying:

$$
t_{n}=\prod_{k=1}^{m}\left(1+a_{k} h_{k, n}\right)
$$

Moreover, the coefficients $\left\{a_{n}\right\}$ satisfy:

$$
a_{n}= \begin{cases}\left\langle t, h_{1}\right\rangle-\sqrt{m} & n=1 \\ \frac{\left\langle t, h_{n}\right\rangle}{\prod_{k=1}^{n-1}\left(1+a_{k} h_{k, n_{0}}\right)}, & n=2, \ldots, m\end{cases}
$$

where $h_{n, n_{0}}$ is the first nonzero entry of the row h_{n}.
Proof. Obvious, see Proposition 2. The fact that the matrix $H(m)$ is orthonormal ensures the uniqueness of the coefficients.

Remark 3. The assumption that all inner products must be non zero, can be relaxed as follows: Given t as above and $\varepsilon>0$, there exists a Haar-Riesz product such that $\left|t_{n}-\prod_{k=1}^{m}\left(1+a_{k} h_{k, n}\right)\right|<\varepsilon$. In fact, replace t with a data t^{\prime} such that $\left|t-t^{\prime}\right|<\varepsilon$ and whose all inner products are nonzero.
Proposition 3. Any continuous positive measure μ on $[0,1]$ can be approximated in the weak-* topology by a sequence of Haar-Riesz products $\left\{\mu_{m}, m=2,3, \ldots\right\}$:

$$
d \mu_{m}=\prod_{k=1}^{m}\left(1+a_{k} h_{k}(x)\right) d x
$$

where $h_{k}(x)=h_{k, n}, x \in\left[\frac{n-1}{m}, \frac{n}{m}\right), k, n=1, \ldots, m, h_{k, n}$ is the (k, n) entry of the matrix $H(m)$ and a_{k} are the corresponding coefficients.
Proof. Apply Theorem 3 and Remark 3 on $t=\left\{t_{k}: k=1, \ldots, m\right\}$, where $t_{m}=$ $\left\{\int_{k / m}^{(k+1) / m} d \mu, k=1, \ldots, m\right\}$.

References

[1] Atreas, N. D., Karanikas, C., and Polychronidou, P. A class of sparse unimodular matrices generating multiresolution and sampling analysis for data of any length, submitted.
[2] Atreas, N. D. and Polychronidou, P. A class of sparse invertible matrices and their use for nonlinear prediction of nearly periodic time series with fixed period, submitted.
[3] Benedetto, J. J., Bernstein, E., and Konstantinidis, I. (2005). Multiscale Riesz Products and their support properties, Acta Appl. Math. 88, 201-227.
[4] Benedetto, J. J. and Pfander, G. E. (2002). Periodic wavelet transforms and periodicity detection, SIAM J. Appl. Math. 62, 1329-1368.
[5] Berry, M. W., Drmac, Z., and Jessup, E. R. (1999). Matrices, vector spaces and information retrieval, SIAM Review 41(2), 335-362.
[6] Bisbas, A. and Karanikas, C. (1990). On the Hausdorff dimension of Rademacher Riesz products, Monat. Fur Math. 110, 15-21.
[7] Dangarra, J. (2000). Sparse matrix storage formats, in Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Bai, Z., et al., SIAM, Philadelphia, electronic version available at: (http://www.cd.utk.edu/dongarra/etemplates/node372.html).
[8] Dutkay, D. and Jorgensen, P. Wavelets and fractals, Rev. Mat. Iberoamericana, to appear.
[9] Girardi, M. and Sweldens, W. (1997). A new class of unbalanced Haar wavelets that form an unconditional basis for L_{p} on general measure spaces, J. Fourier Anal. Appl. 3(4), 457-474.
[10] Montagne, E. and Ekambaram, A. (2004). An optimal storage format for sparse matrices, Inform. Process. Lett. 90(2), 87-92.
[11] Peyriere, J. (1973). Sur le produits de Riesz, C. R. Acad. Sci. Paris Ser. A-B 276, A1417-A1419.
[12] Sweldens, W. (1998). The lifting scheme: A construction of second generation wavelets, SIAM J. Appl. Math., 511-546.

Received May 23, 2006
Revision received November 10, 2006
Technological Institution of West Macedonia, Department of General Sciences, 501-00
Koila Kozanis, Kozani, Greece
e-mail: natreas@csd.auth.gr
Department of Informatics, Aristotle University of Thessaloniki, 54-124, Thessaloniki, Greece
e-mail: karanika@csd.auth.gr

[^0]: Math Subject Classifications. 42C10, 65T99, 65F30, 37N25.
 Keywords and Phrases. Discrete transforms, Haar system, Riesz products, matrix operators, Cantor-type languages.
 Acknowledgements and Notes. Research supported by the G. S. R. T. program "Pythagoras II."

