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ABSTRACT. We introduce a class of multiscale orthonormal matricesH(m) of orderm×m, m =
2, 3, . . . . For m = 2N , N = 1, 2, . . . , we get the well known Haar wavelet system. The term
“multiscale” indicates that the construction ofH(m) is achieved in different scales by an iteration
process, determined through the prime integer factorization of m and by repetitive dilation and
translation operations on matrices. The new Haar transforms allow us to detect the underlying
ergodic structures on a class of Cantor-type sets or languages. We give a sufficient condition on finite
data of lengthm, or step functions determined on the intervals [k/m, (k+1)/m) , k = 0, . . . , m−1
of [0, 1), to be written as a Riesz-type product in terms of the rows of H(m). This allows us to
approximate in the weak-* topology continuous measures by Riesz-type products.

1. Introduction

A matrix is a concise and useful way of treating linear transforms and an extremely important
concept in time series analysis (see [5]). In order to analyze data, we prefer linear transforms
whose corresponding matrices have the ability to handle a large amount of information with
fast computations. Sparse matrices (matrices with a small number of nonzero elements),
have the ability to reduce computational cost (see [7, 10]). Thus, in [1] and [2] we introduced
new classes of sparse invertible matrices, capable of revealing local information and suitable
for providing multiscale analysis on finite data.
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The initial idea of this work emerged from the observation that the Gram Schmidt
orthonormalization process of the following sparse matrices (see [1] and [2]):

U(1)=
(

1 1
1 0

)
, U(2)=




1 1 1 1
1 1 0 0
1 0 0 0
0 0 1 0


 , U(3)=




1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0



, . . . ,

derives the Haar matrices:

H(1) =

 1√

2
1√
2

1√
2

− 1√
2


 , H(2) =




1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1√
2

− 1√
2

0 0

0 0 1√
2

− 1√
2



,

H(3) =




1
2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
− 1

2
√

2
− 1

2
√

2
− 1

2
√

2
− 1

2
√

2
1
2

1
2 − 1

2 − 1
2 0 0 0 0

0 0 0 0 1
2

1
2 − 1

2 − 1
2

1√
2

− 1√
2

0 0 0 0 0 0

0 0 1√
2

− 1√
2

0 0 0 0

0 0 0 0 1√
2

− 1√
2

0 0

0 0 0 0 0 0 1√
2

− 1√
2




, . . . .

Since the sparse matrices introduced in [1] are created by a multiscale construction, we
wanted to check if we can get a similar construction to create Haar matrices. In Section 2,
we build a class of orthonormal matrices H(m) of order m×m (m = 2, 3, . . . ), using an
iteration in scales, determined by the prime integer factorization ofm. The matricesH(m)
can be considered as a generalization of the usual Haar matrices, since the rows of H(m)
are unbalanced Haar wavelets, as introduced in [4, 9], and [12].

The construction ofH(m), wherem = p1p2 · · ·pN is the prime integer factorization
ofm, p1 ≥ p2 ≥ . . . ≥ pN , starts with a matrixH(p1), whose all rows, except for the first
row, have zero mean. H(p1p2 · · ·pk) is obtained from H(p1p2 · · ·pk−1) by joining two
matrices, derived by a dilation and a translation process on H(p1p2 · · ·pk−1). As a result,
we get a multiresolution analysis and a Haar transform:

{tn : n = 1, . . . , m} ↔ {〈t, hn〉 : n = 1, . . . , m} ,
where 〈., .〉 is the usual inner product and hn are the rows of H(m).

In Section 3, we use the Haar transform to identify a Cantor-type language. A Cantor-
type language of length N in an alphabet A = {α0, α1, . . . , αp−1} of p letters, is the set
of all words {ε1ε2 . . . εN : εi ∈ A′ ⊂ A, i = 1, . . . , N}. The corresponding Cantor set on
[0, 1) is the set

{
x = ∑N

i=1 εip
−i , εi ∈ B}

, where B = {i ∈ {0, . . . , p − 1} : ai ∈ A′}.
In Theorem 2 we prove that any Cantor language can be identified:
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(a) By the sequence
{〈t, h1〉, . . . , 〈t, hp〉

}
of the first p Haar coefficients of t , where t

is the indicator sequence (see Definition 6) of the Cantor language and

(b) by the set of zeros of the Haar transform of t .

In Section 4 we deal with Riesz-type products based on Haar matrices H(m). We prove
that to any step function f (x) on [0, 1) satisfying f (x) = tn, x ∈ [

n−1
m
, n
m

)
, n = 1, . . . , m,

there corresponds a unique sequence of numbers {an : n = 1, . . . , m} and a representation:

f (x) =
m∏
k=1

(1 + akhk(x)) ,

where hk(x) = hk,n, x ∈ [
n−1
m
, n
m

)
, k, n = 1, . . . , m and hk,n is the (k, n) entry of

the matrix H(m), provided that 〈f, hk〉 	= 0. In other words, we prove that any data
{tn : n = 1, . . . , m} satisfying 〈t, hn〉 	= 0, can be expressed as a product:

tn =
m∏
k=1

(
1 + akhk,n

)
,

called Haar-Riesz product associated with the coefficients {an}. Thus, we introduce a non
linear transform:

{tn : n = 1, . . . , m} ↔ {an : n = 1, . . . , m} ,
which can be implemented by a fast computational algorithm.

We should note here that the original Riesz’s construction associated with a sequence
{an}, was to point that the pointwise limit of the functions:

FN(x) =
∫ x

0

N∏
n=1

(
1 + an cos

(
2π4nt

))
dt

is a continuous function F of bounded variation in [0, 2π ], whose Fourier-Stieltjes coeffi-
cients do not vanish at infinity. Riesz’s construction was the source of powerful ideas for
producing many examples of measures with desired properties, by replacing cos(2πt)with
trigonometric polynomials (see [11]), or other generating functions (see [6]). Recently,
the authors of [8] presented a new perspective for constructing Riesz products. From their
point of view, the original Riesz product emerged from a Ruelle Perron-Frobenious operator
acting on the well known low pass filter function of wavelets.

The common thread among the aforementioned approaches is a multiscale Riesz
product defined in Benedetto-Bernstein and Konstantinidis work (see [3]). Their definition
consists of a homomorphism T : G → G, G being a locally compact Abelian group with
Haar measure m and a real valued function H on G called generating function, such that:

dµN =
N∏
n=1

(
1 + anH

(
T n−1x

))
dm

converges weak-* to a continuous measure. They prove a dichotomy theorem and examine
the support properties of measures based on this construction. Thus, our approach to
make multiscale Haar-Riesz products is different and hopefully suitable for examining the
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characteristic properties of singular measures as well as hidden ergodic structures. We will
treat this problem in a future occasion.

The article is organized in the following sections:
In Section 2, Definitions 1–2, we introduce new dilation and translation operations

on matrices. In Lemma 2 we prove that these operators are orthonormal. In Definition 5
we construct the matrix H(m) in terms of a recursion equation. Theorem 1 states that the
matrices H(m) are orthonormal.

In Section 3, Proposition 1, we compute the Haar coefficients of the indicator sequence
t of a Cantor language in terms of the firstpHaar coefficients of t . In Theorem 2 we compute
the set of zeros of the Haar transform of t and we present the reconstruction formula for t .

In Section 4, we define the Haar-Riesz product corresponding to the matrix H(m).
In Proposition 2 we compute the Haar-Riesz coefficients and in Theorem 3 we prove
their uniqueness.

2. The Iteration Process for the Construction of the
Haar Matrices H(m)

In order to construct the orthonormal matrices H(m), we need to determine new dilation
and translation operators on the space of matrices. We use the following notation.

Notation. Let Mn,m be the space of matrices of order n × m over the field of complex
numbers. If n = m, then Mn,m is abbreviated to Mn. A matrix M ∈ Mn,m is orthonormal,
if its rows form an orthonormal set. We denote Mi = {Mij : j = 1, . . . , m} to be the i
row of the matrix M ∈ Mn,m. The support of the row Mi is: supp{Mi} = {j = 1, . . . , m :
Mi,j 	= 0}. Finally, we denote by [x] the lowest integer which is greater than or equal to a
real number x.

Let p = 2, 3, . . . , we define the following operators Dp and Tp on the space Mn,m.

Definition 1. Let Dp : Mn,m → Mn,pm be the following dilation operator:

Dp(M) =
{
M
i,
[
j
p

], i = 1, . . . , n, j = 1, . . . , pm

}
.

Example 1. D2

((
1 2
3 4

))
=

(
1 1 2 2
3 3 4 4

)
,D3

((
1 2
3 4

))
=

(
1 1 1 2 2 2
3 3 3 4 4 4

)
.

Definition 2. Let Tp : Mk,l → Mpk,pl be the following translation operator:

Tp(M) =






M[
i
p

]
,Mod(j−1,l)+1

, whenever Mod(i − 1, p)+ 1 = [ j
l

]
0, otherwise

, i = 1, . . . , pk, j = 1, . . . , pl


 .

Example 2. T3

((
b11 b12

b21 b22

))
=




b11 b12 0 0 0 0

0 0 b11 b12 0 0

0 0 0 0 b11 b12

b21 b22 0 0 0 0

0 0 b21 b22 0 0

0 0 0 0 b21 b22




.

Remark 1. The operatorDp(M) createsp replicas of any column of the matrixM , while
the matrix Tp(M), M ∈ Mk,l has:
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(i) k generator rows:

(
Tp(M)

)
rp+1 =

{
M(r+1),j j = 1, . . . , l

0, j = l + 1, . . . , pl
, r = 0, . . . , k − 1 ,

(ii) each row (Tp(M))rp+s , s = 2, . . . , p is an (s − 1)l-translation of the row
(
Tp

(M)
)
rp+1.

Lemma 1. The operators Dp, Tp satisfy the following properties:

(i) DpDq = Dpq .

(ii) DpTq = TqDp.

(iii) If the rows of the matrix M ∈ Mn,m form an orthonormal set, then both operators
p−1/2Dp and Tp preserve orthonormality.

Proof.
(i) and (ii) are straightforward applications of Definitions 1 and 2.

(iii) If the rows of M form an orthonormal set, then:

1

p

〈(
Dp(M)

)
i
,
(
Dp(M)

)
j

〉
= 1

p

pm∑
l=1

M
i,
[
l
p

]M
j,
[
l
p

] =
m∑
l=1

Mi,lMj,l = δi,j .

In order to prove that Tp is orthonormal we use Remark 1:

〈(
Tp(M)

)
i
,
(
Tp(M)

)
j

〉
=




〈
M[

i
p

],M[
j
p

]〉 , |i − j | = cp

0, |i − j | 	= cp

, c = 1, . . . , n− 1

and the result follows as a consequence of the orthonormality of M .

Definition 3. Let S : Mn,m ×Mk,m → Mn+k,m be the following block matrix operator:

S(M,N) =
{{

Mi,j , i = 1, . . . n, j = 1, . . . m

N(i−n),j , i = n+ 1, . . . , n+ k, j = 1, . . . m

}
.

Example 3. S


(

1 1 1 0
0 0 0 2

)
,


 1 0 0 0

0 2 0 0
0 0 3 0





 =




1 1 1 0
0 0 0 2
1 0 0 0
0 2 0 0
0 0 3 0


.

Definition 4. Letp = 2, 3, . . . , we define the following matrix�p = (ψ
p
ij ) of order (p−

1)× p :

ψ
p
ij =




1√
p−i

1√
p−i+1

, whenever 1 ≤ j ≤ p − i

−
√
p−i√
p−i+1

, whenever j = p − i + 1 ,

0, whenever p − i + 1 < j ≤ p

i = 1, . . . , p − 1 . (2.1)
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Example 4. �2 =
(

1√
2

− 1√
2

)
, �3 =


 1√

6
1√
6

−
√

2
3

1√
2

− 1√
2

0


,

�5 =




1
2
√

5
1

2
√

5
1

2
√

5
1

2
√

5
− 2√

5

1
2
√

3
1

2
√

3
1

2
√

3
−

√
3

2 0

1√
6

1√
6

−
√

2
3 0 0

1√
2

− 1√
2

0 0 0



.

Lemma 2. The matrix �p satisfies the following properties:

(i)
∑p

j=1 ψ
p
ij = 0, for any i = 1, . . . , p − 1.

(ii) ψpi ψ
p
j = ψ

p

i,1ψ
p
j , whenever i < j .

(iii) The matrix S
( 1√

p
(1, . . . , 1)1×p,�p

)
is orthonormal.

(iv) Let r, q = 2, 3, . . . and let i < j , then:

(
Tr

(
Dq

(
�p

)))
i

(
Tr

(
Dq

(
�p

)))
j

= c
(
Tr

(
Dq

(
�p

)))
j
,

where c =
{
ψ
p[
i
r

]
,1
, j − i = sr

0, j − i 	= sr
, s = 0, . . . , p − 2.

Proof.
(i) Obvious, see (2.1).

(ii) Let i < j , then p − j + 1 ≤ p − i. Since ψpi,n has the same non zero value for all

n ≤ p − i and since ψpj,n = 0 for all n > p − j + 1, we have: ψpi ψ
p
j = ψ

p

i,1ψ
p
j .

(iii) Elementary application of (ii) and Equation (2.1).

(iv) Let Mq,p = Dq(�
p). We suppose that i < j and we use Remark 1 to deduce that

supp
{
Tr

(
Mq,p

)
i

}⋂
supp

{
Tr

(
Mq,p

)
j

}
= ∅

whenever j − i 	= sr, s = 0, . . . , p − 2. If j − i = sr , then:

supp
{
Tr

(
Mq,p

)
i

}⋂
supp

{
Tr

(
Mq,p

)
j

}
= supp

{
M[

i
r

]}⋂
supp

{
M[

j
r

]} .

Since M[
i
r

] M[
j
r

] = ψ
p[
i
r

]
,1
ψ
p[
j
r

] as a consequence of part (ii) and Equation (2.1), the

result follows.

From now on, we consider the prime integer factorization of m > 0:

m = p1p2 · · ·pN , (2.2)

where p1 ≥ p2 ≥ . . . ≥ pN .
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Definition 5. Let m be as in (2.2). For any n = 1, . . . , N we define a sequence of block
matrices Hm(n) of order

(∏n
i=1 pi

) × (∏n
i=1 pi

)
:

Hm(n) =


S

(
1√
p1
(1, . . . , 1)1×p1 , �

p1

)
, n = 1

S
(

1√
pn
Dpn

(
Hm(n− 1)

)
, T(p1···pn−1)

(
�pn

))
, n = 2, . . . , N .

For the case n = N we use the notation H(m).

Example 5. Let m = 12, then p1 = 3, p2 = 2, p3 = 2 and we have:

H12(1)=




1√
3

1√
3

1√
3

1√
6

1√
6

−
√

2
3

1√
2

− 1√
2

0


 , H12(2) =




1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1
2
√

3
1

2
√

3
1

2
√

3
1

2
√

3
− 1√

3
− 1√

3
1
2

1
2 − 1

2 − 1
2 0 0

1√
2

− 1√
2

0 0 0 0

0 0 1√
2

− 1√
2

0 0

0 0 0 0 1√
2

− 1√
2




,

H12(3)=




1√
12

1√
12

1√
12

1√
12

1√
12

1√
12

1√
12

1√
12

1√
12

1√
12

1√
12

1√
12

1
2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
1

2
√

6
− 1√

6
− 1√

6
− 1√

6
− 1√

6
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
− 1

2
√

2
− 1

2
√

2
− 1

2
√

2
− 1

2
√

2
0 0 0 0

1
2

1
2 − 1

2 − 1
2 0 0 0 0 0 0 0 0

0 0 0 0 1
2

1
2 − 1

2 − 1
2 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 − 1

2 − 1
2

1√
2

− 1√
2

0 0 0 0 0 0 0 0 0 0

0 0 1√
2

− 1√
2

0 0 0 0 0 0 0 0

0 0 0 0 1√
2

− 1√
2

0 0 0 0 0 0

0 0 0 0 0 0 1√
2

− 1√
2

0 0 0 0

0 0 0 0 0 0 0 0 1√
2

− 1√
2

0 0

0 0 0 0 0 0 0 0 0 0 1√
2

− 1√
2




.

Theorem 1. The matrices Hm(n), n = 1, . . . , N are orthonormal.

In order to prove Theorem 1 we need the following lemmas.

Lemma 3. Let n = 2, . . . , N , then

1√
pn
Dpn

(
Hm(n− 1)

) = S (A0, A1, . . . , An−2) ,

where A0 = 1√
pn···p2

D(pn···p2)

(
Hm(1)

)
and Ak = 1√

pn···pk+2
T(p1···pk)

(
D(pn···pk+2)

(
�pk+1

))
,

k > 0.

Proof. We use Lemma 1 (i)–(ii) and Definition 5 to get:
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1√
pn
Dpn

(
Hm(n−1)

) = 1√
pn
Dpn

(
S

(
1√
pn−1

Dpn−1

(
Hm(n− 2)

)
, T(p1···pn−2)

(
�pn−1

)))

= S

(
1√

pnpn−1
D(pnpn−1)

(
Hm(n− 2)

)
, An−2

)

= S

(
1√

pnpn−1pn−2
D(pnpn−1pn−2)

(
Hm(n− 3)

)
, An−3, An−2

)

= . . . = S
(
A0, A1, . . . , An−2

)
.

Lemma 4. Let 1 ≤ n < l ≤ m, then hnhl = hn,l0hl , where hl,l0 is the first nonzero
element of the l-row of the matrix H(m).

Proof. H(m) = S(A0, . . . , AN−2, AN−1) as a result of Lemma 3.

Step 1. Let n < l and let hn, hl ∈ A0, then: hn,ihl,i = ψ
p1

n,
[

i
p2 ...pN

]hl,i = ψ
p1
n,1hl,i .

Step 2. Let n < l and let hn, hl ∈ Ak, (k = 1, . . . , N − 1), then Lemma 2 (iv) yields the
result.

Step 3. If hn is a row of the submatrixAk and hl is a row of the submatrixAm where k < m,
then either supp{hl}⋂

supp{hn} = ∅ or supp{hl}⋂
supp{hn} = supp{hl}. Since the row

hn has the same entries within the support of the row hl , we have hn hl = c hl , where

c =
{
hn,l0 , whenever supp{hl}⋂

supp{hn} = supp{hl}
0, whenever supp{hl}⋂

supp{hn} = ∅ .

Proof of Theorem 1. We proceed by induction. The matrixHm(1) is orthonormal as a
result of Lemma 2 (iii). LetHm(n−1) (n = 2, . . . , N−1) be an orthonormal matrix, then
the rows of both matrices p−1/2

n Dpn (H
m(n− 1)) and T(p1...pn−1) (�

pn) form orthonormal
sets as a consequence of Lemma 1 (iii) and the inductive hypothesis, thus it suffices to
prove that 〈hk, hl〉 = 0 whenever hk ∈ p−1/2

n Dpn (H
m(n− 1)) and hl ∈ T(p1...pn−1) (�

pn).
Indeed, we have:

〈hk, hl〉 =
m∑
r=1

hk,rhr,l = c

pn∑
j=1

ψ
pn[

r
p1 ...pn−1

]
,j

= 0 ,

so the matrix Hm(n) is orthonormal.

Remark 2. The multiresolution structure arised fromH(pN), wherep is a prime number
and N = 2, 3, . . . .

Let VN be the space of all real-valued sequences of length pN and let hi be the i-row
of the Haar matrix H(pN), then any element t = {t (n), n = 1, . . . , m} ∈ VN can be
written as:

t (n) =
pN∑
i=1

〈t, hi〉hn,i .

For any j = 0, . . . , N−1, k = 1, . . . , p−1, we define the subspacesWj,k = span{hkpj+s :
s = 1, . . . , pj }. Let V0 be the space of constant sequences, then we have the following de-
composition:

VN = V0 ⊕N−1
j=0 ⊕p−1

k=1Wj,k .
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Example 6. Letm = 33, thenVm = V0+W0,1+W0,2+W1,1+W1,2+W2,1+W2,2, where:

V0 = span{h1},W0,1 = span{h2},W0,2 = span{h3} ,
W1,1 = span{h4, h5, h6},W1,2 = span{h7, h8, h9} ,
W2,1 = span{h10, . . . , h18},W2,2 = span{h19, . . . , h27} .

3. Haar Coefficients of Cantor-Type Sets

For the rest of the text we assume that hi is a row of the Haar matrixH(m) and p is a prime
number. A Cantor-type language of length N in an alphabet A = {a0, a1, . . . , ap−1} of p
letters, is the set of all words {ε1ε2 . . . εN : εi ∈ A′ ⊂ A, i = 1, . . . , N}:

(i) A′ has at least two elements.

(ii) a0 ∈ A′, a1 /∈ A′.

The corresponding Cantor set on [0, 1) is the set
{
x = ∑N

n=1 εnp
−n : εn ∈ B}

, where

B = {
i ∈ {0, . . . , p − 1} : ai ∈ A′} . (3.1)

Obviously: 0 ∈ B, 1 /∈ B.

Definition 6. We call indicator sequence of a Cantor-type language, the sequence t =
{t1, t2, . . . , tpN } satisfying:

tn =
{

1, whenever n = 1 + ∑N
i=1 εip

N−i , εi ∈ B
0, otherwise

.

Example 7. Let p = 5, N = 2, A = {a0, . . . , a4}, A′ = {a0, a2, a4}, then:

t = {1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1} .
The indicator sequence t emerges from an iteration process presented below.
Let Vi be the set of all real sequences of length pi (i = 1, . . . , N − 1). We define

the mapping:

Xi : Vi → Vi+1,
(
Xi (e)

)
n

=
{

0, whenever n = 1 + ∑i
j=1 εj p

i−j , εi /∈ B
eMod(n−1,pi )+1, otherwise

n = 1, . . . , pi+1 ,

where B is defined in (3.1). If g = {g1, . . . , gp}:

gn =
{

1, whenever αn−1 ∈ A′
0, whenever αn−1 ∈ A− A′ ,

then the indicator sequence t satisfies:

t = XN−1XN−2 . . . X1(g) .

We list the following properties of t :

Lemma 5.
(i) Let e = Xj−1 . . . X1(g), (j = 2, . . . , N), g being defined above, then:
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tn =
{

0, whenever n = 1 + ∑N
i=1 εip

N−i , εi /∈ B for any i = 1, . . . , N − j

e
Mod(n−1,pj )+1

, otherwise
, n = 1, . . . , pN .

(ii) If
∑p

n=1 gn = c, 2 ≤ c < p, then:
∑pj

n=1 en = cj .

(iii) tn = 0 for all n satisfying: pi−1 + 1 ≤ n ≤ 2pi−1, i = 1, . . . , N .

Proof.
(i) and (ii) are elementary.

(iii) Since 1 /∈ B [see (3.1)], we have tn = 0 whenever εi = 1, i.e., tn = 0 whenever pi−1 +
1 ≤ n ≤ 2pi−1.

Lemma 6. Let t be the indicator sequence of a Cantor language, then:

(a) 〈t, hr 〉 	= 0 for any r = 1, . . . , p.

(b) Let j = 1, . . . , N − 1, s = 1, . . . , pj . If
〈
t, hpj+s

〉 	= 0, then
〈
t, hkpj+s

〉 	= 0 for
any k = 1, . . . , p − 1.

(c)
〈
t, hpj+s

〉 = 0 ⇔ tn = 0 for all n satisfying n = (s − 1)pN−j + 1, . . . , spN−j .

(d)
〈
t, hpj+s

〉 = 0 ⇔ 〈
t, hkpj+s

〉 = 0 for any k = 1, . . . , p − 1.

Proof.
(a) The case r = 1 is obvious (see Lemma 5 (ii) for j = N ). For r = 2, . . . , p, we have:

〈t, hr 〉 = hr,1

(p−r+1)pN−1∑
l=1

tl − hr,(p−r+1)pN−1+1

(p−r+2)pN−1∑
l=(p−r+1)pN−1+1

tl . (3.2)

First case: If (p−r+1) /∈ B, then Lemma 5 (i) implies that the last term in the right-hand

side of Equation (3.2) vanishes, so: 〈t, hr 〉 = hr,1
∑(p−r+1)pN−1

l=1 tl > 0.

Second case: If (p − r + 1) ∈ B, then we apply Lemma 5 (i) in Equation (3.2) and
we have:

〈t, hr 〉 = (
(p − r + 1)hr,1 − hr,(p−r+1)pN−1+1

) pN−1∑
l=1

(XN−2 . . . X1(g))l ,

so 〈t, hr 〉 < 0 as a result of Lemma 5 (iii).
(b) We suppose that

〈
t, hpj+s

〉 	= 0. Since supp{hkpj+s} ⊆ {n : n = (s − 1)pN−j +
1, . . . , spN−j } for any k = 1, . . . , p − 1 and since the row hkpj+s is an spN−j translation
of the row hkpj+1, we have:

〈
t, h

kpj+s
〉
=

spN−j∑
l=(s−1)pN−j+1

(
XN−j−1 . . . X1(g)

)
l
h
kpj+s,l =

pN−j∑
l=1

(
XN−j−1 . . . X1(g)

)
l
h
kpj+1,l

= h
kpj+1,1

(p−k)pN−j−1∑
l=1

(
XN−j−1 . . . X1(g)

)
l
− h

kpj+1,(p−k)pN−j−1+1

(p−k+1)pN−j−1∑
l=(p−k)pN−j−1+1

(
XN−j−1 . . . X1(g)

)
l
.
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We use the same methodology as in part (a) to deduce that forp−k /∈ B we get
〈
t, hkpj+s

〉
>

0, whereas for p − k ∈ B we get
〈
t, hkpj+s

〉
< 0.

(c) It suffices to examine the case:

〈
t, hpj+s

〉 = 0 ⇒ tn = 0 for all n satisfying: n = (s − 1)pN−j + 1, . . . , spN−j .

If
∑spN−j
l=(s−1)pN−j+1

tl 	= 0, then the proof presented in part (b) indicates that
〈
t, hpj+s

〉 	= 0,
which is a contradiction.

(d) Obvious, combine parts (b) and (c).

Proposition 1. For any k = 1, . . . , p − 1, the indicator sequence t of a Cantor-type
language satisfies:

〈t, hk+1〉 = cj√
pj

〈
t, hkpj+s

〉
, j = 1, . . . , N − 1, s = 1, . . . , pj ,

provided that
〈
t, hkpj+s

〉 	= 0. Notice that c is the cardinality of the support of the set B
defined in (3.1).

Proof. Let
〈
t, hkpj+s

〉 	= 0, then Lemma 6 (d) indicates that
〈
t, hkpj+s

〉 = 〈
t, hkpj+1

〉
, thus

it suffices to prove: 〈t, hk+1〉 = cj√
pj

〈
t, hkpj+1

〉
. We denote by Mp,j =

1√
pN−j−1

DpN−j−1 (�p) and we observe that hkpj+1 = (
Mp,j

)
k
. Moreover, hkpj+1 = 0

for all n > pN−j . Now, we calculate:

〈
t, hk+1

〉 =
pN∑
r=1

tr hk+1,r = 1√
pN−1

pN∑
r=1

tr

(
D
pN−1

(
�p

))
k,r

= 1√
pN−1

pN−j−1∑
q=0

pj∑
ν=1

t
qpj+ν

(
D
pN−1

(
�p

))
k,qpj+ν = 1√

pj

pN−j−1∑
q=0

pj∑
ν=1

t
qpj+ν

(
D
pj

(
Mp,j

))
k,qpj+ν

= 1√
pj

pN−j−1∑
q=0

pj∑
ν=1

t
qpj+ν

(
Mp,j

)
k,q+1

= 1√
pj

pN−j∑
q=1

(
Mp,j

)
k,q

pj∑
ν=1

t
(q−1)pj+ν

= 1√
pj

pN−j∑
q=1

q=1+∑N−j
i=1 εip

N−j−i ,εi /∈ B for any i < N − j ,

(
Mp,j

)
k,q

pj∑
ν=1

(
Xj−1 . . . X1(g)

)
ν

= 1√
pj

pN−j∑
q=1

(
Mp,j

)
k,q

(
XN−j−1 . . . X1(g)

)
q

pj∑
ν=1

(
Xj−1 . . . X1(g)

)
ν

= cj√
pj

pN−j∑
q=1

(
Mp,j

)
k,q

(
XN−j−1 . . . X1(g)

)
q

= cj√
pj

〈
t, h

kpj+1

〉
.

Theorem 2. Let Q be the set of zeros of the Haar coefficients of the indicator sequence
t of a Cantor language, then:

(a)

Q =
N−1⋃
j=1

(
Rj + Sj

)
,



208 N. D. Atreas and C. Karanikas

where Rj = {rpj : r = 0, . . . , p − 2} and Sj = {
k = pj + 1 + ∑j−1

s=0 εsp
j−1−s :

at least one εs /∈ B
}
.

(b)

tn =
N−1∑
i=0

pi+1∑
m=pi+1
m/∈(Ri+Si)

√
pi

ci

〈
t, h[ m

pi

]〉hn,m ,

where c is the cardinality of the support of the set B defined in (3.1).

Proof.
(a) Let Qj = {pj + 1 ≤ k ≤ pj+1 : 〈t, hk〉 = 0}, j = 0, . . . , N − 1. Lemma 6 (a)
indicates that Q0 = ∅. Lemma 6 (d) implies that:

Qj = {
s + rpj : s ∈ Sj , r = 0, . . . , (p − 2)

}
,

where Sj = {
pj + 1 ≤ s ≤ 2pj+1 : 〈

t, hpj+s
〉 = 0

}
. Lemma 6 (c) indicates that〈

t, hpj+s
〉 = 0 if and only if tn = 0 for all n satisfying n = (s − 1)pN−j + 1, . . . , pN−j

and so by Lemma 5 (i), Sj can be written as:

Sj =

k = pj + 1 +

j−1∑
s=0

εsp
j−1−s : at least one εs /∈ B


 .

(b) It is clear that

tn =
N−1∑
i=0

pi+1∑
m=pi+1

〈t, hm〉hn,m =
N−1∑
i=0

pi+1∑
m=pi+1
m/∈(Ri+Si)

〈t, hm〉hn,m .

Proposition 1 completes the proof.

4. Haar-Riesz Products Associated to the Matrices H(m)

Let m = 2, 3, . . . , we call Haar-Riesz product associated to the sequence of complex
numbers a = {an : n = 1, . . . , m} the expression:

tn =
m∏
k=1

(1 + akhk,n) ,

where hk are rows of the matrix H(m). In Proposition 2 we show the relation between t
and a and in Theorem 3 we present an iteration process for the computation of a. First, we
need the following lemma.

Lemma 7. Let 1 ≤ r1 < r2 < . . . < rq ≤ m be a strictly increasing sequence of positive
integers, then:

q∏
n=1

hrn =

q−1∏
n=1

hrn,q0


hrq ,
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where hrq,q0 is the first nonzero element of the rq -row of the matrix H(m).

Proof. Immediate consequence of Lemma 4.

Proposition 2. Let {a1, . . . , am} be the sequence of Haar-Riesz coefficients associated
to the Haar-Riesz product tn = ∏m

k=1

(
1 + akhk,n

)
. If 〈t, h1〉 	= 0, then:

〈t, hs〉 =
{
a1 + √

m, s = 1

as
∏s−1
k=1

(
1 + akhk,s0

)
, s = 2, . . . , m

,

where hs,s0 is the first nonzero element of the row hs .

Proof. tn = ∏m
k=1

(
1 + akhk,n

)

= 1 +
m∑
k=1

akhk,n +
m−1∑
k1=1

m∑
k2=k1+1

ak1ak2hk1,nhk2,n + . . .+ (a1 . . . am)(h1,n . . . hm,n).

We apply Lemma 7 and we have:

tn=1 +
m∑
k=1

akhk,n+
m−1∑
k1=1

m∑
k2=k1+1

ak1ak2hk1,k
0
2
hk2,n + . . .+(a1 . . . am)


m−1∏
j=1

hkj ,k0
m


hm,n ,

where hki ,ki0
is the first nonzero element of the row hki .

If s = 1, then 〈t, h1〉 = 〈1, h1〉 + ∑m
k=1 ak 〈hk, h1〉 + 0 + . . .+ 0 = √

m+ a1.
Let s > 1. Definehs,s0 the first nonzero element of the rowhs , then the orthonormality

of the matrix H(m) implies that:

〈t, hs 〉 = as +
m−1∑
k1=1

m∑
k2=k1+1

ak1
ak2

h
k1,k

0
2
δk2,s

+ . . .+ (a1 . . . as )


s−1∏
j=1

hkj ,s0




= as


1 +

s−1∑
k1=1

ak1
hk1,s0

+
m−2∑
k1=1

m−1∑
k2=k1+1

ak1
ak2


 2∏
j=1

hkj ,s0


 + . . .+ (a1 . . . as−1)


s−1∏
j=1

hkj ,s0







= as

s−1∏
k=1

(
1 + akhk,s0

)
.

Theorem 3. Let t = {t1, . . . , tm} be a sequence of complex numbers such that 〈t, hi〉 	=
0, for any i = 1, . . . , m, then there exists a unique sequence of coefficients {an : n =
1, . . . , m} satisfying:

tn =
m∏
k=1

(
1 + akhk,n

)
.

Moreover, the coefficients {an} satisfy:

an =



〈t, h1〉 − √
m n = 1

〈t,hn〉∏n−1
k=1

(
1+akhk,n0

) , n = 2, . . . , m ,

where hn,n0 is the first nonzero entry of the row hn.

Proof. Obvious, see Proposition 2. The fact that the matrixH(m) is orthonormal ensures
the uniqueness of the coefficients.
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Remark 3. The assumption that all inner products must be non zero, can be relaxed
as follows: Given t as above and ε > 0, there exists a Haar-Riesz product such that∣∣tn − ∏m

k=1

(
1 + akhk,n

)∣∣ < ε. In fact, replace t with a data t ′ such that |t − t ′| < ε and
whose all inner products are nonzero.

Proposition 3. Any continuous positive measure µ on [0, 1] can be approximated in the
weak-* topology by a sequence of Haar-Riesz products {µm,m = 2, 3, . . . }:

dµm =
m∏
k=1

(1 + akhk(x)) dx ,

where hk(x) = hk,n, x ∈ [
n−1
m
, n
m

)
, k, n = 1, . . . , m, hk,n is the (k, n) entry of the matrix

H(m) and ak are the corresponding coefficients.

Proof. Apply Theorem 3 and Remark 3 on t = {tk : k = 1, . . . , m}, where tm ={ ∫ (k+1)/m
k/m

dµ, k = 1, . . . , m
}
.
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