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Third-Order Hydrodynamic Loads 
on an Oscillating Vertical 
Cylinder Water 
The third-harmonic component of  the third-order hydrodynamic loads on a vertical 
circular cylinder oscillating in water is calculated by a conventional perturbation method 
within the framework of a potential theory. Although the third-order forces are expressed 
in terms of  the first, second, and third-order components of  the velocity potential, the 
latter is not directly required for the calculation. It is replaced by a properly defined 
linearized radiation potential via Haskind-like theorem. The results of  the study are 
applicable to the analysis of  high-frequency resonances of  deepwater offshore structures 
under earthquake excitation or under steep waves (ringing problem). 

Introduction 
The problem considered is directly related to the prediction 

of nonlinear loads on cylindrical structures (also offshore struc- 
tures) founded on the sea bottom in seismically active regions. 
The high-frequency components of nonlinear hydrodynamic 
forces due to earthquake-induced motions of the structure may 
excite structural responses at natural frequencies substantially 
higher than the dominant frequencies of an earthquake spec- 
trum. 

The present study has also been motivated by the high-fre- 
quency dynamical effects (so-called ringing) which have re- 
cently been observed on some deepwater offshore structures 
such as tension-leg platforms and gravity-based towers. 

The association of the nonlinear radiation problem with the 
ringing problem seems to be, at first glance, astonishing. The 
existing theoretical analyses (Faltinsen et al., 1995; Malenica 
and Molin, 1995) look for the reasons of ringing in the third- 
harmonic components of diffraction loads, which become im- 
portant when an incoming wave steepens. However, the experi- 
mental simulations of the phenomenon (Stansberg, 1997; and 
Scolan et al., 1997) show that the structure may oscillate with 
a dominating wave frequency before a transient high-frequency 
ringing response occurs. Thus, the high-frequency nonlinear 
loads may result not only from the wave diffraction, but from 
the radiated wave field as well. In that sense, a third-order 
solution obtained in the present work may be viewed as a com- 
plementary one to the diffraction solution by Malenica and 
Molin. 

The hydrodynamic loads induced by the motion of bottom 
founded cylindrical structures in water have been studied for 
more than five decades in the context of earthquake engineering. 
The early investigations, concerned with cylindrical tanks and 
piers, assumed the structure to be rigid and water to be incom- 
pressible. Later investigations were concerned with flexible 
towers (Liaw and Chopra, 1973) and with the influence of water 
compressibility on hydrodynamic loads (Nilrat, 1980). Until 
the late eighties, the linear computational models dominated 
(see, e.g., Goyal et al., 1989), followed then by some examples 
of nonlinear computations in the time domain (Wang and 
Chwang, 1989; Chen and Huang, 1997). The nonlinear forces 
in the frequency domain have not been calculated so far. 
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It is obvious that the nonlinear radiation of waves by a mov- 
ing cylinder appears also in the analysis of second-order wave 
loads on floating systems; but the calculated second-order forces 
are either due to the diffraction of an incident wave or due to 
the interaction among diffraction and radiation potentials, or 
due to the interaction between the slow-drift motion and waves 
(Molin, 1994). This is not surprising, since despite the fact that 
the second-order pressure due to the horizontal oscillations of 
the cylinder does exist, the resultant second-order force van- 
ishes. 

Therefore, in order to compute the nonlinear forces on a 
horizontally oscillating axisymmetfic structure, one has to carry 
out the perturbation analysis up to third order in the frequency 
domain. Such an analysis has been completed in the present 
work. It is focused on the third-harmonic force and on those 
components of the radiation potential which contribute to this 
force. 

Problem Formulation 

Consider the radiation of nonlinear gravity Waves in water 
of constant depth h due to the forced oscillatory motion of a 
circular cylinder extending from the bottom SBot to the free 
surface SF. The origin of a fixed coordinate system (x, y, z) is 
located at the undisturbed free surface z = 0 and the vertical z- 
axis is positive upward (Fig. 1 ). It is assumed that the cylinder 
is rigid. 

The oscillation of the cylinder axis are described by the dis- 
placement function u(t)  = Uo cos wt in the direction of the x- 
coordinate. Assuming that Uo < R, R being the cylinder radius, 
one can describe the instantaneous position of the cylinder sur- 
face SB (Fig. 2) in cylindrical coordinates (r,  0% z) by 

r = u(t) cos ~9 + x/R 2 - u 2 ( t )  sin2z9 = R + ~(zg, t) (1) 

The hydrodynamic forces F on the cylinder can be calculated 
through integration of the pressure p over the instantaneous 
wetted cylinder surface SB(t). Under assumption that potential 
theory is applicable, the pressure p can be expressed in terms 
of the radiation potential 4' by the Bernoulli equation. This leads 
to 

f s (  ° ° '  ) F = - p g z  - p - ~  - ~ p(V~b) 2 ffdS (2) 
8(0 

where ff denotes generalized unit normal vector pointing into 
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Fig. 1 Definition sketch 

the cylinder, p is the water density, and g is the gravitational 
acceleration. 

The governing equations for 6 are 

V 2 6 = 0  • ( R + ~ < r < o G O - - < O < 2 7 r , - h < z < 7 7 )  (3) 

6tt "~ gt~ + 2Vt"V~bt + ½ V t " V ( V t )  2 = 0 (z = 77) (4) 

6~=  ¢ ,+  V t " V ~  ( r = R  + ¢) (5) 

6z = 0 (z = - h )  (6) 

and an appropriate radiation condition must be satisfied at infin- 
ity. 

The free-surface elevation r/is described in an implicit man- 
ner 

~7 = - - 1  (6,+½(Vqb) 2) (z = ~7) (7) 
g 

In our analysis we assume that the relevant characteristic length 
of the structure (radius R) is comparable to the wavelength k, 
and thus kR = O(1),  k being the wavenumber k = 27r/h. 
Assuming that the amplitude u0 of forced oscillation of the 
cylinder is small in comparison to R, i.e., uolR "~ 1, we define 
e = kuo ~ 1 as a small parameter. 

C a l c u l a t i o n  o f  F o r c e s - - B a s i c  S t e p s  
The following procedure is applied to the calculation of 

forces. 
Firstly, assuming that u( t ) ,  6,  and r/are small quantities we 

expand 6 and ~7 at the exact free surface, and 6 at the actual 
position of the cylinder in Taylor series about z = 0 and r = 
R, respectively. 

Then, we introduce the perturbation series with respect to the 
previously defined small parameter e 

6 = ~6 ~') + 

r 7 = e~7(a) + 

U = EU (1) 

E2~ (2) + E3~ (3) + O(~  4) 

e26(2) + e36< 3) + O(e 4) 

e2r/(2) + e3r/(3) + O(e 4) (8) 

where the components of the forcing function ~ follow from 
the Taylor expansion of ( 1 ) and are given by 

e~ (1) = uo~e{e  -i°'} COS 0 

e2~ (2) = u°2 (1 - cos 20) - u°z - 8--R ~ (1 - cos 2 0 ) ~ e { e  -~2~'} 

c3~ (3) = 0 (9) 

Inserting the series (8) into the boundary value problems ( 3 ) -  

(6), we obtain a sequence of linear boundary value problems 
in Eulerian description. For instance, at third order, we have 

V26 (3) = 0 (in fluid) (10) 

0 V6 (2)) 1 6}? ) + g6z (3) = - 2  ~-~ (V6 (')" + - v-,~(l)t'h(2),,e,,~ 
g 

1 
+ g 6 ~  2)) + - ,w,z¢~(l) + g6~'))(6~ 2) + ½(Vt° ) )  2 

g 

02 _ _1 6 } . 6 } ~ ) )  + 1 ~?)  (V6 ( . ) 2  
g g ~ z  

- ½V6°)'V(¶Tq~(1)) 2 (on z = O) (11 )  

I ( ( , ) ) 2 6 ~ )  R)  (12)  + ~ ( l ) V ~ ( 1 ) ' V 6 ~  1) - ~ ~ (on  r = 

6~ 3)= 0 ( o n z = - h )  (13) 

Third-order hydrodynamic pressure follows from the Bernoulli 
equation 

p(3) = _p(6}3)-'b V~(1)'VI~) (2)) (14) 

The solution of the boundary value problems at each order of 
approximation considered would complete the second step of 
the force calculation procedure. 

The next step is the transformation of the quantities, given 
in Eulerian description in terms of fixed coordinates (r, 0, z), 
into a local coordinate system moving with the cylinder. This 
enables us to carry out exact integration over the instantaneous 
cylinder surface in a simple manner. For the points of the cylin- 
der surface, the mapping (r, 0, z) ~ (R, 0' ,  z) (Fig. 2) is 
given by 

r = ~/R 2 + u2(t) + 2Ru( t )  cos O' 

= R +  eu (1) cosO' + (eu(1))2sin20 ' + O(e 3) (15) 
2R 

R sin 0'  ) 
0 =arctan u( t )  + R c o s O '  

= O' - - -  eum sin 0 '  + (eu(~))2 R - - - 7 -  sin 20' + O(e 3) (16) 

With the use of (15) and (16), the pressure p and the exact 
free surface ~7 can be expressed in terms of local coordinates 
(R, 0' ,  z) via Taylor expansion. In order to retain all relevant 
terms, the expansion up to second order is necessary. 

The unit normal vector has simple time-independent compo- 
nents in the local coordinate system 

Y r = R + ~ ( u , t )  

°- j /  

Fig. 2 Instantaneous position of the cylinder surface 
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ff(O') = [ - c o s  ~' ,  - s i n  0 ' ,  0] r (17) 

For the sake of simplicity, the components corresponding to the 
hydrodynamic moments have been neglected. 

Denoting by/~(R, ~' ,  z, t) the truncated Taylor expansion 
of p ( r ,  O, z, t) and by ~/(R, zg', t) the similar expansion for 
r/(r, ~, t),  we can express the forces by 

F ( t )  = l~(R, 0 ' ,  z,  t ) f f (~ ' )Rd~ 'dz  (18) 
--h 

The hydrostatic component of p can be integrated exactly. For 
the other components the integration with respect to z coordinate 
can be approximated by 

f [ ~ ] d z  ~ [ ~ ] d z  + ~[~]lz=0 + ~2[~] lz=0  (19)  
h h 

Inserting (15) and (16) in (18), using Bernoulli equation, in- 
voking (8) and (19), we can separate out the force components 
up to third order 

F ( t )  = F (°) + eft (1) + e2ff (2) + ff3F(3) + O(e  4) (20) 

where F (°) denotes a buoyancy force. 
The calculation is straightforward in principle (though te- 

dious), but care must be taken to retain all terms of relevant 
order. One may prove that the second-order force F (2) is identi- 
cally equal to zero for the problem considered. 

The third-order force is obtained in terms of the first, second, 
and third-order components of the velocity potential. The 
boundary value problems for these components admit the fol- 
lowing solutions in terms of complex quantities: 

e[$, F]  (l) = ~¢{ [qo, ,.:~](l>e-i~'} 

E211~, j~](2) = [~, ~ ] ( 2 )  + ~¢{  [~, ~ ] ( 2 ) e - i 2 w t  } 

e3[~b, F]  °) = 9~e{ [~p, ~]~3)e- '~ '} + ~e{ [~p, ~]~3~e-'3~'} 

(21) 

The first-harmonic third-order potential is only a small O(e 2) 
correction to the first-order potential and will not be considered 
in further analysis. Consequently, the time-independent second- 
order potential which contributes only to this third-order compo- 
nent can also be neglected. 

The complex amplitude of the third-harmonic third-order hy- 
drodynamic force is given by 

~(3 )  .~ ~ 3 )  .~ ~(23) + ~(33) (22) 

where ~ 3 )  results from triple products of first-order potentials 

= pRuof2  f0 
"-~-"do d-hi. 

+ Vqo ~V~o ~) sin 0 '  + iuow [ qo ~ cos 20'  
- R E 

m • 2 , ( R ) s i n 2 O ' q )  , 
- ~ I ~ ffdzd --Wzz sin /9 + qO(o ') "~q0~ ) R 3 J  I ~=~ 

0='0' 

iov - ~pR [~  (1)(V~p (1))2 + v2(~p (1))3] 

O)(qO(r~) COS 0 '  'a) sin 0 '  \ ] + -- ~o~ - - - -~ - - /}  ffdtg' (23) U0//~O 
\ -~ ] J Ir=R,'~=~ 9' 

Z=0 

~3) comes from products of first-order and second-order quan- 
tities 

J Ir=n 

f? - pR {vqo(l~o (2~} f ide '  (24) 

z=0 

and ~ 3 )  is due to the third-order potential 

~(33) = 3iwpR {~(33)}ffdzd~9 ' (25) 
h Ir=R 

0=~' 

where v = w2/g.  In comparison to third-order diffraction forces 
(Malenica and Molin, 1995 ), some new terms due to the motion 
of the cylinder appear in the components ~ 3 )  and o ~  3~. 

S o l u t i o n  f o r  the  R a d i a t i o n  P o t e n t i a l s  

Although the third-order force is given in terms of the radia- 
tion potentials up to third order, only the first-order and the 
second-order radiation potentials are explicitly required. The 
contribution from the third-order potential will be calculated in 
an indirect manner, as shown in the next section. 

The well-known solution for the first-order radiation potential 
(Liaw and Chopra, 1973) is given as an infinite series of radial 
eigenfunctions (here Hankel and modified Bessel functions of 
the first order) 

qo (1) = { aoH~l)(klr)Zo(klz) 

+ ~ alKl(Klr)Zl(xlZ)} COS ~9 (26) 
l=l 

where kl and iKt are real and imaginary roots of the dispersion 
relation ov2/g = k tanh kh. 

The eigenfunctions Zt corresponding to kl and iKt are 

cosh k l ( z  + h) cos Kt(z + h) 
Zo(k,z)  = , Zt(Ktz) (27) 

cosh k~h cos Klh 

and the expansion coefficients at are given by 

-2iuow sinh 2klh 
ao = ( 2 8 )  

kl(2k~h + sinh 2 k l h ) H [ ( k l R )  

-2iuoov sin 2Kth 
at = (29) 

Kt(2Kth + sin 2Kih)K[(KtR) 

The second-harmonic component of the radiation potential rele- 
vant here can be calculated either by Weber integral transform 
or by an eigenfunction expansion method. We use the latter one 
and decompose the total second-harmonic potential into 

tp (2) = qo~ 2~ + qo~ 2~ (30) 

where the " locked" component ~o~ 2) satisfies the inhomoge- 
neous free-surface boundary condition 

~ ' - 4 v q o V ' =  E ~ ~ A , p q ( r )  cosnz9 ( o n z = 0 )  (31) 
n=0,2 p=0 q=0 

and the "forced" component ~p~2> satisfies the homogeneous 
free-surface boundary condition 

~p(2) _ 4vqo~2~ = 0 (on z = 0) (32) ez 

Both potentials satisfy the Laplace equation in fluid, no-flow 
condition on the bottom and jointly the inhomogeneous bound- 
ary condition on the wetted cylinder surface 
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qo(2) ,~(2) ~ [C,(z) + ~ D,p(r, z)] cos nO Lr ~ ~p" Fr 
n=0,2 p=0 

( o n r  = R) (33) 

The function Anpq(r ) is due to quadratic contribution from the 
first-order potential (26). C,(z) and D,p(r, z) are due to the 
second-order forcing function ~¢2~ (see Eq. (9)),  and to the 
products of the first-order potential and the first-order forcing 
function ~ ¢~) (or their derivatives). 

The asymptotic analysis of the second-order boundary value 
problem reveals that the far-field behavior of ~o ~2~ is 

qo(z ~ ~ 0~2)(0) cosh kz(z + h) eik2 r "4- O(r_~) 
k~2r cosh k2h 

at r ~ ¢ ¢  (34) 

where k2 is the second-order wavenumber satisfying the disper- 
sion relation 4w2/g = k2 tanh k2h. It follows that the total 
second-order radiation potential satisfies usual Sommerfeld ra- 
diation condition. 

Turning back to the "locked" potential, we may try to find 
the solution using the method of eigenfunction expansion devel- 
oped by Huang and Eatock Taylor (1996) for diffraction prob- 
lems. Proceeding similarly, we obtain the solution in terms of 
the eigenfunctions Zm(fimZ) satisfying the homogeneous bound- 
ary conditions on the free surface and on the bottom 

~(L 2) = Z Z Zm(l~mZ) COS nO × J R  { Z Z Umq(t ~2 
n=0,2 m=0 p=0 q=0 

- e~z)a.pq(p)}G.m(r, p)dp (35) 

where the eigenvalues/3z (real and imaginary) fulfill the rela- 
tion 4v =/3~ tanh ~zh, and G.m(r, p) denotes the Green func- 
tion of the Bessel equation 

! ipH~')(flmP)J~(flmr) for r < p 
Gnm (36) [ ipH(nl)(flmr)Jn(flmp) for r > p 

The coefficients 1)mq are given by 

1)mq : VqZmdZ Z ,2.dz 
h --h 

(37) 

with 

Denoting 

C.(z) + ~ D.p(r, z) = E.(r, z) 
p=O 

Y~ Y~ Umq(l~ 2 -- ot~)Anpq(p) = B .m(p)  
p=O q=0 

and inserting (35) into (33), we eventually obtain 

ann = 

f f  E.(R, Z)Zm(j~mZ)dZ 
h 

~mnnt(~m e ) Z2m(~mZ)dZ 
h 

_ 

dR ~ m ~ - R )  

1 cosh aq(Z + h) cosh fim(Z "~ h) 
Vq(OlqZ) : , Zm(~mZ ) : 

v cosh olqh cosh flmh 
27.3066 

(38) 
27.3065 

in which another set of eigenvalues O/q satisfies the relation O/q 
tanh otqh = 5y. 

The "forced" potential ~O~F 2) can be expressed in terms of the 27.3066 
same eigenfunctions as the "locked" component 

27.3064 

q0(F 2) = Z ~ anmHn(flmr)Zm(13mZ) cos n 0  (39 )  
n=0,2 m=O 27.3064 

in which H. = H~l)(k2r) for m = 0, and 14. = K.(fimr) for m 27.306,3 - 
> 0. The solution (39) fulfills the Laplace equation and all 40 
required boundary conditions, except for the boundary condition 
on the wetted cylinder surface (33). Satisfying this condition, 
we are able to calculate the unknown expansion coefficients 
anm. 

OGnm(r, p)  

Or 
dp (40) 

Force  Due to Third-Order  Potential  
Instead of calculating the third-order radiation potential di- 

rectly, we determine its contribution to the third-order force 
(25) in an indirect manner introducing assisting third-harmonic 
linearized radiation potentials q! <') = ~e { ~b (')e -3i~t }, which 
on the cylinder surface satisfy 

_(O0~X~ O0 ~" ) 
~" = \ Or ' Or , 0  

= - ( c o s  O', sin O', O) r = f f  (41) 

(a) 
0.011706 

0.011704 

0.011702 

0.0117 

0.011696 

0.011696 

0.011694 

0.011692 

0.01169 
30 35 40 45 50 55 60 65 

KR 

(b) 
27.3066 

60 80 100 120 140 160 180 200 
KR 

Fig. 3 Convergence of the modulus of the free-surface integral for (a) 
second space harmonic component of ~p[2), (b) third-order horizontal 
force ~ 3 ) .  H = 10R; k R  = 1.  
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Fig. 4 Third-order horizontal radiation force. (a) Dimensionless magni- 
tude of the total  fo rce  (I ~ (3 )  I I(pgu~)), (b) three dimensionless compo- 
nents. Points in (a) give the values of  the diffraction force (I ,~  (3) I I(pgA a)) 
computed by Malenica and Molin (1995). H = 10R. 

The analysis is in principle the same as in the paper by Molin 
(1979) with minor differences concerning the boundary condi- 
tion on the wetted cylinder surface. Using Green's theorem, we 
obtain the final formula for the component ~ 3 )  of the third- 
order force 

{f:f  ~3)= 3iwp R (-~3r)~)clzdO' 
h [r=R ~=~' 

+ ~;~ f~a(3~rdrdO'~ (42) 
Iz=0 J ~=0' 

where c~ (3) denotes the expression on the right-hand side of 
the free-surface boundary condition (11) in a complex form. 
Similarly, ~(3) W3r can be replaced by the expression on the right- 
hand side of the boundary condition on the cylinder surface 
(also in complex notation). 

Numerical Resul ts  

The numerical results for the third-order horizontal radiation 
force on an offshore cylinder (R = 10 m, H = 100 m) are 
presented. As in previous works (Chau and Eatock Taylor, 
1992; Malenica and Molin, 1995; Huang and Eatock Taylor, 
1996), the main difficulty in the numerical implementation is 
associated with the calculation of integrals over the free surface, 
which have highly oscillatory integrands (in r). Such integrals 
appear in the expressions for qo (2) and o~33) (see Eqs. (35), 

(39), and (42)). In order to calculate them efficiently with the 
preservation of sufficient accuracy, we make use of the richness 
of experience gathered in the aforementioned works. 

Having no possibility to validate our computer program by 
comparison with other results (there are no such results), we 
carefully check during computations the convergence of inte- 
grals involved in the second-order radiation potential, then the 
convergence of the potential itself, and finally the convergence 
of the integrals appearing in the formula for the third-order 
force (42). 

The typical convergence tests for integrals are presented in 
Fig. 3. Figure 3(a)  shows the convergence of the free-surface 
integral involved in the calculation of qo ~2) for the most"danger- 
ous" combination of eigenfunctions in the integrand (a tfipple 
product of Hankel functions). Figure 3(b) shows the conver- 
gence of the free-surface integral appearing in the third compo- 
nent ~33) of the third-order force. 

The results for the total dimensionless third-order force 
(l~(3)[/(pgu~)) and its three components ( ~ 3 ) [ ( p g u ~ ) )  are 
given in Fig. 4. One can observe that the component resulting 
from the third-order potential is the biggest one. The third-order 
force increases with increasing dimensionless frequency (kR); 
but one should notice that the wave steepness, which can be 
assessed by the value of the small parameter e, also increases 
in that case. In Fig. 5, the magnitudes of the first-order force 
and of the total third-order forces are compared for the constant 
e = 0.1 and for the constant amplitude Uo = 0.33 m of forced 
horizontal oscillations. Both forces are nondimensionalized by 
(pgV) with V being displaced volume of water. One can see 

fie 
O m 0.1 

0.01 

(a) 

FIRST-ORDER 

THIRD-ORDER - - -  

I | I I 

0.5 1 1.5 2 2.5 
KR 

(b) 

FIRST.ORDER - -  

THIRD-ORDER - - -  

0.1 1 -  

uJ / /  

0 0.01 

0.001 
$ 4 ~  S S  

i J 
S 

r 

0.0001 , , ' ' 
0.5 1 1.5 2 2.5 

KR 

Fig. 5 Dimensionless magnitudes of the first-order ( ) and third- 
order ( . . . . .  ) horizontal radiation forces for (a) constant ~ = 0.1, (b)  
constant Uo = 0.33 m. H = 1OR. 
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that the ratio of both forces remains approximately constant for 
a constant value of e. However, the third-order force increases 
faster than the first-order force when the oscillation amplitude 
is kept constant. 

Concluding Remarks 
The main objective of the work was the calculation of the 

third harmonic of the nonlinear hydrodynamic force on a verti- 
cal cylinder oscillating horizontally in water. To complete the 
task, the second-order radiation potential had to be derived, 
whereas an indirect method could be applied to avoid the calcu- 
lation of the third-order radiation potential. 

The magnitude of the third-order radiation force is propor- 
tional to third power of the oscillation amplitude of the cylinder 
[ ~ 3 )  [ = pglXR(i~v)]Uo 3. The analogous force due to diffrac- 
tion is proportional to third power of the incident wave ampli- 
tude I ~  ~) I = PglXo (iw)[A 3 (see Malenica and Molin, 1995 ). 

In applications to earthquake engineering, Uo corresponds to 
the response amplitude of the structure in water at the dominant 
frequency of an earthquake excitation. For floating or bottom 
founded offshore structures under waves, u0 corresponds to the 
response amplitude of the structure in horizontal direction. This 
amplitude can, in linear approximation, be related to the incident 
wave amplitude A through an appropriate frequency response 
function H(iLv): 1~3) 1 = pgIXR(i~v)[" [H(iw)I3A 3. There- 
fore, the analysis of the relevance of third-order radiation loads 
for this application requires the comparison of I xR(iw)[" I 
H(iw)[ 3 with IXD(i~')I. Some values of the function Xo = 
i~>l/pgA 3 computed by Malenica and Molin (1995, Fig. 7) 
are additionally presented as points in Fig. 4 (a ) .  Companng 
these values with the present results for IxR(i0~)I -- 
[7~3)[/pguo 3 (Fig. 4 (a ) ) ,  we may notice that IXR(i~v)l >> 
Ixo(i~v)[ in the frequency range considered. This allows to 
conclude that third-order radiation loads cannot be neglected if 
the frequency response function of the structure is not small for 
dominant frequencies of a wave spectrum. 
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