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Abstract 
 

In this paper, we propose a new approach for speeding 
up the decision making of Support Vector Classifiers 
(SVC) in the context of multi-class classification. A two-
stage system embedded within a probabilistic framework 
is presented. In the first stage we pre-estimate the 
posterior probabilities with a model-based approach and 
we re-estimate only the highest probabilities with 
appropriate SVCs in the second stage. We have tested our 
system on the benchmark database MNIST and the results 
show that our dynamic classification process allows to 
speedup the full “pairwise coupling” SVCs by a factor of 
7.7 while preserving the accuracy. In addition, although 
the “one against all” strategy estimate slightly betters 
probabilities, our modular architecture seems more 
adapted to large multi-class problems. 
 
 
1. Introduction 
 

A recent benchmarking of state-of-the-art techniques 
for handwritten digit recognition [8] has shown that 
Support Vector Classifier (SVC) gives higher accuracy 
than classical neural classifiers like Multi Layer 
Perceptron (MLP) or Radial Basis Function (RBF) 
networks. However, thanks to the improvement of the 
computing power and the development of new learning 
algorithms, it is now possible to train SVC in real world 
applications. Unfortunately, the test phase of SVC is 
extremely expensive in terms of computation time, 
because it is necessary to evaluate the distance of a large 
number of training examples called support vectors (SVs). 
This is an important burden for real-time applications. 
Thus, in this paper we propose to speed up the decision 
making of SVCs in the context of multi-class problems. 

Several approaches to overcome this burden have been 
suggested in the literature. In order to improve the speed 
in test phase of each SVC, a solution is to approximate the 
decision surface of support vectors. Thus, in [2] the goal 
is then to choose the smallest reduced set vectors, such 
that any resulting loss in generalization performance 
remains acceptable. The authors used an unconstrained 
conjugate gradient method to find the reduced set. 
Although this method allows to achieve a good speedup 
in test phase by reducing the complexity of each SVC, the 
classifying cost remain a problem. By different means, an 

incremental procedure for growing SVC is proposed in 
[10]. This approach allows fast classification by 
sequential evaluation of SVs. The key point is that some 
regions of the input space can be correctly classified using 
only a highly reduced subset of the SVs. In addition, an 
MLP-SVC combination architecture is suggested in [1]. 
The authors used a pairwise strategy to decompose the 
multi-class problem in binary sub-problems. An ensemble 
of specialized SVCs is constructed and during the 
classification, an MLP is used to select the “good” SVC 
that will be used to make decision. Thus, this architecture 
is based on the idea that the correct class almost 
systematically belongs to the two maximum MLP outputs. 

In this paper, we take up the idea of two-stage 
classification system to reduce the classifying cost of an 
ensemble of SVCs. Unlike the architecture proposed in 
[1], we don’t always use one SVC and only one. Indeed, 
with the same idea that some regions of the input space 
can be easily classified, we extend the notion of dynamic 
test process proposed in [10] to multi-class problems and 
we propose to fix the number of SVC used according to 
the outputs of the first stage. Furthermore, we privileged a 
modular approach which makes an accurate classification 
possible when the number of classes is large. Indeed, as it 
is shown in [9] a global approach like MLP network is not 
effective to resolve classification problems like Korean 
characters on postal address (352 classes). Thus, we 
adopted in the first stage of our system a model-based 
approach similar to the MQDF suggested in [6] which is 
low cost and achieved good results for Chinese character 
recognition where the number of classes was 927. 
Moreover, we embed our system within a probabilistic 
framework, because as mentioned in [11]: “The output of 
a classifier should be a calibrated posterior probability to 
enable post-processing”. Indeed, this type of confidence 
measure is essential in many application, when the 
classifier only contributes a small part of the final 
decision or if it is preferable to make no decision when 
the result of classification is uncertain. So, in the first 
stage, we pre-estimate the probabilities with a model-
based approach and re-estimate only the highest 
probabilities with appropriate SVCs in the second stage. 

To evaluate our method, we chose a classical pattern 
recognition problem: isolated handwritten digit 
recognition. Thus, in our experiments, we used a well-
known benchmark database that is available at 
http://yann.lecun.com/exdb/mnist/. The Modified NIST 
dataset (MNIST) was extracted from the NIST special 
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database SD3 and SD7. The original binary images were 
normalized into 20×20 gray-scale images with preserved 
aspect ratio and the normalized images were centered by 
center of mass in 28×28 images. On the other hand, to 
compare the quality of the probabilities estimate by the 
different methods, we use the Chow’s rule to evaluate 
their error-reject tradeoff. Indeed, as it is shown in [4] this 
rule provides the optimal error-reject tradeoff only if the 
posterior probabilities of the data classes are exactly 
known. But, in real applications, such probabilities are 
affected by significant estimate errors. Thus, the better the 
probabilities estimate is, the better the error-reject tradeoff 
is. 
 
2. Support Vector Classifier 
 

The training and testing of all SVCs are performed 
with the LIBSVM software of which all the algorithms 
are described in [3]. We use the C-SVC with a Gaussian 
kernel 
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C and the kernel parameter γ are empirically optimized. 
The learning dataset has been divided into two subsets. 
The first 50,000 samples have been used for training and 
the next 10,000 for validation. Then, we have chosen 
parameters that minimize the error rate on the validation 
dataset (1.47 %) with a pairwise coupling and a voting 
rule. Finally, for all subsequent experiments we used C = 
10 and γ = 0.0185. 

 
2.1. Estimate posterior probability 

 
If an SVC can possibly make good decisions, these 

output values are uncalibrated. But, a simple solution is 
proposed in [11] to map the SVC outputs into posterior 
probabilities. Given a training set of instance-label pairs 
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where the samples with non-zero Lagrange multiplier αk 
are called support vectors (SVs). 
 Since the class-conditional between the margins are 
apparently exponential the authors suggest to fit an 
additional sigmoid function (eq. 2) to estimate 
probabilities. 
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ˆ P (y =1 | x) =
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1+ exp(a f (x) + b)
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The parameter a and b are derived by minimizing the 
negative log likelihood of the training data, which is a 
cross-entropy function: 
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 denotes the probability target. 

Then, to solve this optimization problem, the author 
uses a model-trust minimization algorithm based on the 
Levenberg-Marquardt algorithm. But, in a recent note [7] 
it is shown that there are two problems in the pseudo-code 
provided in [11]. One is the calculation of the objective 
value, and the other is the implementation of the 
optimization algorithm. Thus, the authors propose another 
minimization algorithm based on a simple Newton’s 
method with backtracking line search. As we can see in 
the next sections, we tested the two algorithms on our 
data and noticed that the later approach induces a bias in 
the estimation of posterior probabilities. 

 
2.2. One against all 
 

SVC is a binary classifier, so it is necessary to 
combine several SVCs to solve a multi-class problem. A 
classical method is the “one against all” strategy in which 
one SVC per class is constructed. Each classifier is 
trained to distinguish the examples in a single class from 
the examples in all remaining classes. Therefore, to 
estimate posterior probabilities, it is possible to separately 
optimize each sigmoidal function. Then, the posterior 
probability of the j th class is obtain by 
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ˆ P (" j | x) =
1

1+ exp(a j f j (x) + b j )
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where 

! 

f j (x)  denotes the output of SVC “j against all”. 
But, nothing guarantees that the sum of all probabilities 
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ˆ P " j | x( )
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c

#  is equal to one. In fact, we have obtained on 

the MNIST validation dataset a mean of 0.98 and a 
standard deviation of 0.11 with the sigmoidal functions 
optimized by the method proposed in [7]. Thus, with the 
objective to exploit the outputs of all SVCs to estimate 
probabilities overall, we propose to use the softmax 
function (eq. 5) which can be regarded as a generalization 
of the sigmoidal function for multi-class case. 
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Then, we re-define for multi-class problem the cross-
entropy function, which takes form 
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and we optimize the α parameter on the training samples. 
We tested on validation dataset and obtained the smallest 
cross-entropy error with softmax function (1,126.5 vs. 
1,250.0 with sigmoid). Moreover, the error-reject tradeoff 
shown in Fig.1 confirms that a global softmax function 
estimates probabilities slightly better than several local 



sigmoidal functions. In addition, Fig.1 shows that the 
algorithm proposed in [11] is not accurate. 
 

 
 

Figure 1. Error-reject tradeoff of "one against all" 
on the validation dataset 

 
Finally, we obtain on test dataset an error rate of 

1.41 % that is comparable with those reported in [2] and 
[8] when no artificial training examples are generated and 
no discriminative features are extracted. Hence, we will 
refer to this first approach for the next experiments. 
Furthermore, we adopt the number of kernel evaluation 
per pattern (KEPP) as a measure for the classifying cost, 
since it is the main cause of the computation effort during 
the test phase. Thus, the “one against all” strategy 
requires 13 743 KEPP to make decision. 

 
2.2. Pairwise coupling 

 
Another method for multi-class classification is the 

“pairwise coupling” strategy, which consists to construct 
a classifier for each pair of classes. Thus, a c class 
problem is decomposing in c(c-1)/2 binary sub-problems. 
Generally, a voting rule can be use to make decision, but 
we want to estimate posterior probabilities. With this 
intention, we apply the “Resemblance Model” proposed 
in [5] to combine posterior probability of each pairwise 
classifier into posterior probability of multi-class 
classifier. Then, since prior probabilities are all the same, 
posterior probabilities can be estimated by 
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where 
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" j ' . 
Furthermore, as reported in [3], although we have to 

train as many as c(c-1)/2 classifiers, as each problem is 
easier, the total training time of “pairwise coupling” may 
not be more than that of the “one against all” method. 
Indeed, in our experiments, the learning of the 45 
“pairwise coupling” SVCs is ten times faster than the 
learning of only 10 “one against all” SVCs. 

In terms of classifying cost, the “pairwise coupling” 
strategy is slightly lighter than that of “one against all” 

(11,118 KEPP vs. 13,743 KEPP). Moreover, as we can 
see in Fig.2, firstly, the algorithm proposed in [11] is still 
not satisfying, and secondly, the “one against all” strategy 
with a softmax function estimates probabilities slightly 
better than that of “pairwise coupling”. 

 

 
 

Figure 2. Error-reject tradeoff of "pairwise coupling" 
on the validation dataset 

 
 Finally, we obtained on the test dataset an error rate of 
1.48 % that is slightly better than that obtained with a 
voting rule (1.54 %), but slightly worse than that obtained 
with the “one against all” strategy (1.41 %). 

 
3. Two-stage classification system 
 

Although the “one against all” strategy is slightly more 
accurate, since our objective is to speedup the decision 
making, it seems better to use in the second stage of our 
system a “pairwise coupling” approach, which is more 
modular. Indeed, the idea of our two-stage classification 
system is to pre-estimate the posterior probabilities with a 
light classification approach and to reduce the number of 
the plausible classes, for which we re-estimate the 
posterior probabilities with appropriate SVCs. Thus, if we 
use “one against all” SVCs in the second stage, we are 
obliged to calculate the distances of a large number of 
SVs belonging to the implausible classes, which increases 
the classifying cost. 

 
3.1. Pre-estimation of posterior probabilities with 
a model-based approach 

 
At the first stage of our system, we use a simple 

method to model each class ωj with a hyperplane defined 
by the mean vector µj, and the matrix Ψj of the k 
eigenvectors of the covariance matrix Σj with the largest 
eigenvalues. Thus, given a data point x of the feature 
space, the class membership can be evaluated by the 
distance dj from the point x to its projection fj (x) on the 
hyperplane. 
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This method required the optimization of only one 
parameter: the number k of eigenvectors used. However, 
this parameter strongly influences the accuracy of the 
classification, as we shown Fig.3. 

 

 
 

Figure 3. Effect of the dimensionality 
of the hyperplane models 

 
If k is too small, the models are not precise so we loose 

too much information. Indeed, while k = 0, each class is 
model by a simple prototype that is the mean vector µj of 
training data. On the other hand, if the value of k is too 
large, the models are not discriminative. At worst, if k = 
d, where d is the dimension of the input pattern, the 
hyperplane embeds all the points of the feature space. 
Hence, for all point x, the projection distance will be null. 

Thereafter, we can observe that the distribution of the 
projection distances between the margins is apparently 
exponential. Thus, as for the “one against all” SVCs, we 
use the softmax function to map projection distance to 
posterior probability: 
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We optimize the α parameter on the training samples 
and notice in Fig.4 that the use of the softmax function 
improves significantly the error-reject tradeoff of the 
model-based approach. 

 

 
 

Figure 4. Error-reject tradeoff of the model-based 
approach on the validation dataset 

 

Moreover, we can see that half of the examples with 
the highest confidence levels are correctly classified. 
Finally, we obtain on test dataset an error rate of 4.09 %, 
which is not satisfying, but still comparable to the 3.34 % 
obtained by the nearest-neighbor rule. 

 
3.2. Re-estimation of posterior probabilities with 
Support Vector Classifiers 

 
Thereafter, we determine the list of p classes 
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l(p )}  of which the posterior probabilities 
estimated in the first stage are higher than a threshold ε.  
Hence, 

  

! 

l( j)  is the index of the j th class that verifies 
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ˆ P f ("
l( j ) | x) > # . Then, if p is superior to one, we use in the 

second stage the appropriate SVCs to re-estimate the 
posterior probabilities of the p classes. 

In consequence, the final probabilities are not 
homogeneous, since they can be estimated by different 
approaches. However, it is not an important drawback. 
Indeed, when p is superior to one, the first stage estimates 
only the smallest probabilities, which are negligible, and 
in this case the second stage estimates all the remaining 
probabilities. These p significant probabilities are 
obtained by  
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where the first term is related to the second stage, while 
the second term is related to the first stage. The objective 
of this second term is to maintain the sum of all the 
probabilities equal to one. 

 
3.3. Control of the accuracy-speed tradeoff 

 
Finally, to classify a pattern, we use a dynamic number 

p(p-1)/2 of SVCs. Hence, the smaller the threshold ε is, 
the larger the number p will tend to be. Indeed, if ε is too 
large, then we will never use the second stage of 
classification. But, if ε is too small, then the system uses 
unnecessary SVCs. Thus, this parameter controls the 
tolerance level of the first stage of classification and 
consequently the classifying cost. To fix it, we can 
observe on the validation dataset the tradeoff before error 
rate and KEPP and choose this value according to the 
constraints fixed by the application. 

As we can see in Fig.5, while using a threshold of 10-3, 
it is possible to obtain the same error rate of 1.53% than 
with the full “pairwise coupling”. 

 



 
 

Figure 5. Accuracy-speed tradeoff 
on the validation dataset 

 
Moreover, the use of smaller threshold (ε = 10-4) 

allows a slightly better error-reject tradeoff (see Fig.6), 
but the number of KEPP is multiplied by two. For this 
reason, we fix the tolerance threshold ε at 10-3, which 
seems a good compromise between accuracy and speed. 
 

 
 

Figure 6. Error-reject tradeoff of our two-stage 
classification system on the validation dataset 

 
Also, while the number p of SVCs used is dynamic, it 

is interesting to observe the distribution of p. Hence, we 
can see in Fig.7 that with our threshold of 10-3, the half of 
the examples are processed without SVC, which confirms 
the previous remark related to Fig.4. 

Finally, our two-stage system uses a mean of 1,120.1 
KEPP and obtained on the test dataset an error rate of 
1.50 %, which is comparable to the result of the full 
“pairwise coupling” (1.48 %). 

 
 

Figure 7. Distribution of the number p of SVCs 
used to classify the validation dataset 

 
4. Conclusions and perspectives 
 

With the objective to speeding up the decision making 
of Support Vector Classifiers, in the context of multi-class 
classification, we proposed a two-stage system embedded 
within a probabilistic framework. The results on the 
MNIST database show that the use of the first stage to 
pre-estimate probabilities allows to reduce the classifying 
cost by a factor 7.7, while preserving the accuracy of the 
full “pairwise coupling”. Indeed, if we express the 
computational complexity in number of floating point 
operations (FLOPs), a kernel evaluation requires 2,355 
FLOPs and a projection distance evaluation requires 
81,510 FLOPs. Thus, the computational cost necessary to 
classify a pattern is approximately 32.4 MFLOPs with the 
“one against all” strategy, 26.2 MFLOPs with the 
“pairwise coupling” strategy, only 0.8 MFLOPs with the 
model-based approach and an average of 3.4 MFLOPs 
with our dynamic two-stage process. 

On the other hand, although the “one against all” 
strategy estimates probabilities slightly better than the 
“pairwise coupling” strategy, it seems less adapted to 
large multi-class problems. Indeed, this approach is less 
modular than the “pairwise coupling” and consequently, 
the training is much slower and the test speedup related to 
the use of a two-stage architecture is less effective. 

Moreover, while this implementation is only a proof of 
concept, several aspects can be improved in future works. 
Indeed, the model-based approach used in the first stage is 
not accurate. Thus, the use of a mixture of hyperplanes to 
model each class instead of one single hyperplane per 
class should improve significantly the accuracy of the first 
stage and consequently to speedup the decision making.

 
Table 1. Results of the different approaches on the test dataset 

 

error rate (%) 0.5 0.4 0.3 0.2 0.1 
model-based approach 12.68 13.74 16.97 20.01 28.59 

our two-stage system 3.31 3.99 4.94 6.57 9.85 
“pairwise coupling” 3.29 4.00 5.13 6.34 9.55 

re
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) 

“one against all” 2.41 2.92 3.60 4.42 6.32 



Furthermore, our method is complementary to the method 
proposed in [2], which reduces the complexity of each 
SVC, while our approach reduces the complexity of the 
ensemble. Hence, the combination of the two approaches 
would allow fast classification. In addition, to improve the 
generalization performance, it is possible to incorporate 
known invariance of the problem, as in [2] where the 
authors generate artificial training examples, or as in [8] 
where discriminative features are extracted and allows to 
reduce the error-rate to only 0.4 %. 

Finally, the probability estimation supposes the 
absence of outliers or more exactly a negligible prior 
probability of the corresponding class ω0. But, for certain 
applications, it can be preferable to detect this type of 
noise. In this context, the use of a model-based approach 
at the first stage is another advantage, because as it is 
shown in the literature, this type of approach is able to 
reject efficiently the outliers. 
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Figure 8. Overview of our two-stage classification system 


