
Speeding Up the Decision Making of Support Vector Classifiers

Jonathan Milgram – Mohamed Cheriet – Robert Sabourin
École de Technologie Supérieure, Montréal, Canada

milgram@livia.etsmtl.ca – {mohamed.cheriet – robert.sabourin}@etsmtl.ca

Abstract

In this paper, we propose a new approach for speeding
up the decision making of Support Vector Classifiers
(SVC) in the context of multi-class classification. A two-
stage system embedded within a probabilistic framework
is presented. In the first stage we pre-estimate the
posterior probabilities with a model-based approach and
we re-estimate only the highest probabilities with
appropriate SVCs in the second stage. We have tested our
system on the benchmark database MNIST and the results
show that our dynamic classification process allows to
speedup the full “pairwise coupling” SVCs by a factor of
7.7 while preserving the accuracy. In addition, although
the “one against all” strategy estimate slightly betters
probabilities, our modular architecture seems more
adapted to large multi-class problems.

1. Introduction

A recent benchmarking of state-of-the-art techniques
for handwritten digit recognition [8] has shown that
Support Vector Classifier (SVC) gives higher accuracy
than classical neural classifiers like Multi Layer
Perceptron (MLP) or Radial Basis Function (RBF)
networks. However, thanks to the improvement of the
computing power and the development of new learning
algorithms, it is now possible to train SVC in real world
applications. Unfortunately, the test phase of SVC is
extremely expensive in terms of computation time,
because it is necessary to evaluate the distance of a large
number of training examples called support vectors (SVs).
This is an important burden for real-time applications.
Thus, in this paper we propose to speed up the decision
making of SVCs in the context of multi-class problems.

Several approaches to overcome this burden have been
suggested in the literature. In order to improve the speed
in test phase of each SVC, a solution is to approximate the
decision surface of support vectors. Thus, in [2] the goal
is then to choose the smallest reduced set vectors, such
that any resulting loss in generalization performance
remains acceptable. The authors used an unconstrained
conjugate gradient method to find the reduced set.
Although this method allows to achieve a good speedup
in test phase by reducing the complexity of each SVC, the
classifying cost remain a problem. By different means, an

incremental procedure for growing SVC is proposed in
[10]. This approach allows fast classification by
sequential evaluation of SVs. The key point is that some
regions of the input space can be correctly classified using
only a highly reduced subset of the SVs. In addition, an
MLP-SVC combination architecture is suggested in [1].
The authors used a pairwise strategy to decompose the
multi-class problem in binary sub-problems. An ensemble
of specialized SVCs is constructed and during the
classification, an MLP is used to select the “good” SVC
that will be used to make decision. Thus, this architecture
is based on the idea that the correct class almost
systematically belongs to the two maximum MLP outputs.

In this paper, we take up the idea of two-stage
classification system to reduce the classifying cost of an
ensemble of SVCs. Unlike the architecture proposed in
[1], we don’t always use one SVC and only one. Indeed,
with the same idea that some regions of the input space
can be easily classified, we extend the notion of dynamic
test process proposed in [10] to multi-class problems and
we propose to fix the number of SVC used according to
the outputs of the first stage. Furthermore, we privileged a
modular approach which makes an accurate classification
possible when the number of classes is large. Indeed, as it
is shown in [9] a global approach like MLP network is not
effective to resolve classification problems like Korean
characters on postal address (352 classes). Thus, we
adopted in the first stage of our system a model-based
approach similar to the MQDF suggested in [6] which is
low cost and achieved good results for Chinese character
recognition where the number of classes was 927.
Moreover, we embed our system within a probabilistic
framework, because as mentioned in [11]: “The output of
a classifier should be a calibrated posterior probability to
enable post-processing”. Indeed, this type of confidence
measure is essential in many application, when the
classifier only contributes a small part of the final
decision or if it is preferable to make no decision when
the result of classification is uncertain. So, in the first
stage, we pre-estimate the probabilities with a model-
based approach and re-estimate only the highest
probabilities with appropriate SVCs in the second stage.

To evaluate our method, we chose a classical pattern
recognition problem: isolated handwritten digit
recognition. Thus, in our experiments, we used a well-
known benchmark database that is available at
http://yann.lecun.com/exdb/mnist/. The Modified NIST
dataset (MNIST) was extracted from the NIST special

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357598854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

database SD3 and SD7. The original binary images were
normalized into 20×20 gray-scale images with preserved
aspect ratio and the normalized images were centered by
center of mass in 28×28 images. On the other hand, to
compare the quality of the probabilities estimate by the
different methods, we use the Chow’s rule to evaluate
their error-reject tradeoff. Indeed, as it is shown in [4] this
rule provides the optimal error-reject tradeoff only if the
posterior probabilities of the data classes are exactly
known. But, in real applications, such probabilities are
affected by significant estimate errors. Thus, the better the
probabilities estimate is, the better the error-reject tradeoff
is.

2. Support Vector Classifier

The training and testing of all SVCs are performed
with the LIBSVM software of which all the algorithms
are described in [3]. We use the C-SVC with a Gaussian
kernel

!

K x
k
,x() = exp("# x

k
" x

2
) . The penalty parameter

C and the kernel parameter γ are empirically optimized.
The learning dataset has been divided into two subsets.
The first 50,000 samples have been used for training and
the next 10,000 for validation. Then, we have chosen
parameters that minimize the error rate on the validation
dataset (1.47 %) with a pairwise coupling and a voting
rule. Finally, for all subsequent experiments we used C =
10 and γ = 0.0185.

2.1. Estimate posterior probability

If an SVC can possibly make good decisions, these

output values are uncalibrated. But, a simple solution is
proposed in [11] to map the SVC outputs into posterior
probabilities. Given a training set of instance-label pairs

!

(xk,yk) : k =1,K,n{ } , where

!

x
k
" R

d and

!

yk " 1,#1{ }, the
unthresholded output of an SVC is

!

f (x) = yk"kK(xk,x)
k=1

n

+ $, (1)

where the samples with non-zero Lagrange multiplier αk
are called support vectors (SVs).
 Since the class-conditional between the margins are
apparently exponential the authors suggest to fit an
additional sigmoid function (eq. 2) to estimate
probabilities.

!

ˆ P (y =1 | x) =
1

1+ exp(a f (x) + b)
 (2)

The parameter a and b are derived by minimizing the
negative log likelihood of the training data, which is a
cross-entropy function:

!

" tk log ˆ P (yk =1 | xk)() + (1" tk)log 1" ˆ P (yk =1 | xk)()()
k=1

n

, (3)

where

!

tk =
yk +1

2

 denotes the probability target.

Then, to solve this optimization problem, the author
uses a model-trust minimization algorithm based on the
Levenberg-Marquardt algorithm. But, in a recent note [7]
it is shown that there are two problems in the pseudo-code
provided in [11]. One is the calculation of the objective
value, and the other is the implementation of the
optimization algorithm. Thus, the authors propose another
minimization algorithm based on a simple Newton’s
method with backtracking line search. As we can see in
the next sections, we tested the two algorithms on our
data and noticed that the later approach induces a bias in
the estimation of posterior probabilities.

2.2. One against all

SVC is a binary classifier, so it is necessary to
combine several SVCs to solve a multi-class problem. A
classical method is the “one against all” strategy in which
one SVC per class is constructed. Each classifier is
trained to distinguish the examples in a single class from
the examples in all remaining classes. Therefore, to
estimate posterior probabilities, it is possible to separately
optimize each sigmoidal function. Then, the posterior
probability of the j th class is obtain by

!

ˆ P (" j | x) =
1

1+ exp(a j f j (x) + b j)
 , (4)

where

!

f j (x) denotes the output of SVC “j against all”.
But, nothing guarantees that the sum of all probabilities

!

ˆ P " j | x()
j=1

c

is equal to one. In fact, we have obtained on

the MNIST validation dataset a mean of 0.98 and a
standard deviation of 0.11 with the sigmoidal functions
optimized by the method proposed in [7]. Thus, with the
objective to exploit the outputs of all SVCs to estimate
probabilities overall, we propose to use the softmax
function (eq. 5) which can be regarded as a generalization
of the sigmoidal function for multi-class case.

!

ˆ P (" j | x) =
exp(# f j (x))

exp(# f j ' (x))
j '=1

c

$

(5)

Then, we re-define for multi-class problem the cross-
entropy function, which takes form

!

" tk log ˆ P (# j | xk)() + (1" tk)log 1" ˆ P (# j | xk)()()
k=1

n

$
j=1

c

$

,

(6)

and we optimize the α parameter on the training samples.
We tested on validation dataset and obtained the smallest
cross-entropy error with softmax function (1,126.5 vs.
1,250.0 with sigmoid). Moreover, the error-reject tradeoff
shown in Fig.1 confirms that a global softmax function
estimates probabilities slightly better than several local

sigmoidal functions. In addition, Fig.1 shows that the
algorithm proposed in [11] is not accurate.

Figure 1. Error-reject tradeoff of "one against all"
on the validation dataset

Finally, we obtain on test dataset an error rate of

1.41 % that is comparable with those reported in [2] and
[8] when no artificial training examples are generated and
no discriminative features are extracted. Hence, we will
refer to this first approach for the next experiments.
Furthermore, we adopt the number of kernel evaluation
per pattern (KEPP) as a measure for the classifying cost,
since it is the main cause of the computation effort during
the test phase. Thus, the “one against all” strategy
requires 13 743 KEPP to make decision.

2.2. Pairwise coupling

Another method for multi-class classification is the

“pairwise coupling” strategy, which consists to construct
a classifier for each pair of classes. Thus, a c class
problem is decomposing in c(c-1)/2 binary sub-problems.
Generally, a voting rule can be use to make decision, but
we want to estimate posterior probabilities. With this
intention, we apply the “Resemblance Model” proposed
in [5] to combine posterior probability of each pairwise
classifier into posterior probability of multi-class
classifier. Then, since prior probabilities are all the same,
posterior probabilities can be estimated by

!

ˆ P (" j | x) =

ˆ P (" j | x #" j , j ')
j '$ j

%

ˆ P (" j '' | x #" j '', j ')
j '$ j ''

%
j ''=1

c

&

 , (7)

where

!

" j, j ' denotes the union of classes

!

" j and

!

" j ' .
Furthermore, as reported in [3], although we have to

train as many as c(c-1)/2 classifiers, as each problem is
easier, the total training time of “pairwise coupling” may
not be more than that of the “one against all” method.
Indeed, in our experiments, the learning of the 45
“pairwise coupling” SVCs is ten times faster than the
learning of only 10 “one against all” SVCs.

In terms of classifying cost, the “pairwise coupling”
strategy is slightly lighter than that of “one against all”

(11,118 KEPP vs. 13,743 KEPP). Moreover, as we can
see in Fig.2, firstly, the algorithm proposed in [11] is still
not satisfying, and secondly, the “one against all” strategy
with a softmax function estimates probabilities slightly
better than that of “pairwise coupling”.

Figure 2. Error-reject tradeoff of "pairwise coupling"
on the validation dataset

 Finally, we obtained on the test dataset an error rate of
1.48 % that is slightly better than that obtained with a
voting rule (1.54 %), but slightly worse than that obtained
with the “one against all” strategy (1.41 %).

3. Two-stage classification system

Although the “one against all” strategy is slightly more
accurate, since our objective is to speedup the decision
making, it seems better to use in the second stage of our
system a “pairwise coupling” approach, which is more
modular. Indeed, the idea of our two-stage classification
system is to pre-estimate the posterior probabilities with a
light classification approach and to reduce the number of
the plausible classes, for which we re-estimate the
posterior probabilities with appropriate SVCs. Thus, if we
use “one against all” SVCs in the second stage, we are
obliged to calculate the distances of a large number of
SVs belonging to the implausible classes, which increases
the classifying cost.

3.1. Pre-estimation of posterior probabilities with
a model-based approach

At the first stage of our system, we use a simple

method to model each class ωj with a hyperplane defined
by the mean vector µj, and the matrix Ψj of the k
eigenvectors of the covariance matrix Σj with the largest
eigenvalues. Thus, given a data point x of the feature
space, the class membership can be evaluated by the
distance dj from the point x to its projection fj (x) on the
hyperplane.

!

d j (x) = x " f j (x) (8)

!

f j (x) =(x "µ j)#j#j

$ + µ j
 (9)

This method required the optimization of only one
parameter: the number k of eigenvectors used. However,
this parameter strongly influences the accuracy of the
classification, as we shown Fig.3.

Figure 3. Effect of the dimensionality
of the hyperplane models

If k is too small, the models are not precise so we loose

too much information. Indeed, while k = 0, each class is
model by a simple prototype that is the mean vector µj of
training data. On the other hand, if the value of k is too
large, the models are not discriminative. At worst, if k =
d, where d is the dimension of the input pattern, the
hyperplane embeds all the points of the feature space.
Hence, for all point x, the projection distance will be null.

Thereafter, we can observe that the distribution of the
projection distances between the margins is apparently
exponential. Thus, as for the “one against all” SVCs, we
use the softmax function to map projection distance to
posterior probability:

!

ˆ P f (" j | x) =
exp(#$ d j (x))

exp(#$ d j ' (x))
j '=1

c

%

(10)

We optimize the α parameter on the training samples
and notice in Fig.4 that the use of the softmax function
improves significantly the error-reject tradeoff of the
model-based approach.

Figure 4. Error-reject tradeoff of the model-based
approach on the validation dataset

Moreover, we can see that half of the examples with
the highest confidence levels are correctly classified.
Finally, we obtain on test dataset an error rate of 4.09 %,
which is not satisfying, but still comparable to the 3.34 %
obtained by the nearest-neighbor rule.

3.2. Re-estimation of posterior probabilities with
Support Vector Classifiers

Thereafter, we determine the list of p classes

!

{"
l(1)
,K ,"

l(p)} of which the posterior probabilities
estimated in the first stage are higher than a threshold ε.
Hence,

!

l(j) is the index of the j th class that verifies

!

ˆ P f ("
l(j) | x) > # . Then, if p is superior to one, we use in the

second stage the appropriate SVCs to re-estimate the
posterior probabilities of the p classes.

In consequence, the final probabilities are not
homogeneous, since they can be estimated by different
approaches. However, it is not an important drawback.
Indeed, when p is superior to one, the first stage estimates
only the smallest probabilities, which are negligible, and
in this case the second stage estimates all the remaining
probabilities. These p significant probabilities are
obtained by

!

ˆ P s("l(j) | x) =

ˆ P s("l(j) | x #"
l(j),l(j ''))

j ''=1, j ''$ j

p

%

ˆ P s("l(j ') | x #"
l(j '),l(j ''))

j ''=1, j ''$ j '

p

%
j '=1

p

&

' 1(ˆ P f ("
l(j ') | x)

j '= p +1

c

&
)

*
+ +

,

-
. .

,

(11)

where the first term is related to the second stage, while
the second term is related to the first stage. The objective
of this second term is to maintain the sum of all the
probabilities equal to one.

3.3. Control of the accuracy-speed tradeoff

Finally, to classify a pattern, we use a dynamic number

p(p-1)/2 of SVCs. Hence, the smaller the threshold ε is,
the larger the number p will tend to be. Indeed, if ε is too
large, then we will never use the second stage of
classification. But, if ε is too small, then the system uses
unnecessary SVCs. Thus, this parameter controls the
tolerance level of the first stage of classification and
consequently the classifying cost. To fix it, we can
observe on the validation dataset the tradeoff before error
rate and KEPP and choose this value according to the
constraints fixed by the application.

As we can see in Fig.5, while using a threshold of 10-3,
it is possible to obtain the same error rate of 1.53% than
with the full “pairwise coupling”.

Figure 5. Accuracy-speed tradeoff
on the validation dataset

Moreover, the use of smaller threshold (ε = 10-4)

allows a slightly better error-reject tradeoff (see Fig.6),
but the number of KEPP is multiplied by two. For this
reason, we fix the tolerance threshold ε at 10-3, which
seems a good compromise between accuracy and speed.

Figure 6. Error-reject tradeoff of our two-stage
classification system on the validation dataset

Also, while the number p of SVCs used is dynamic, it

is interesting to observe the distribution of p. Hence, we
can see in Fig.7 that with our threshold of 10-3, the half of
the examples are processed without SVC, which confirms
the previous remark related to Fig.4.

Finally, our two-stage system uses a mean of 1,120.1
KEPP and obtained on the test dataset an error rate of
1.50 %, which is comparable to the result of the full
“pairwise coupling” (1.48 %).

Figure 7. Distribution of the number p of SVCs
used to classify the validation dataset

4. Conclusions and perspectives

With the objective to speeding up the decision making
of Support Vector Classifiers, in the context of multi-class
classification, we proposed a two-stage system embedded
within a probabilistic framework. The results on the
MNIST database show that the use of the first stage to
pre-estimate probabilities allows to reduce the classifying
cost by a factor 7.7, while preserving the accuracy of the
full “pairwise coupling”. Indeed, if we express the
computational complexity in number of floating point
operations (FLOPs), a kernel evaluation requires 2,355
FLOPs and a projection distance evaluation requires
81,510 FLOPs. Thus, the computational cost necessary to
classify a pattern is approximately 32.4 MFLOPs with the
“one against all” strategy, 26.2 MFLOPs with the
“pairwise coupling” strategy, only 0.8 MFLOPs with the
model-based approach and an average of 3.4 MFLOPs
with our dynamic two-stage process.

On the other hand, although the “one against all”
strategy estimates probabilities slightly better than the
“pairwise coupling” strategy, it seems less adapted to
large multi-class problems. Indeed, this approach is less
modular than the “pairwise coupling” and consequently,
the training is much slower and the test speedup related to
the use of a two-stage architecture is less effective.

Moreover, while this implementation is only a proof of
concept, several aspects can be improved in future works.
Indeed, the model-based approach used in the first stage is
not accurate. Thus, the use of a mixture of hyperplanes to
model each class instead of one single hyperplane per
class should improve significantly the accuracy of the first
stage and consequently to speedup the decision making.

Table 1. Results of the different approaches on the test dataset

error rate (%) 0.5 0.4 0.3 0.2 0.1
model-based approach 12.68 13.74 16.97 20.01 28.59

our two-stage system 3.31 3.99 4.94 6.57 9.85
“pairwise coupling” 3.29 4.00 5.13 6.34 9.55

re
je

ct
 r

at
e

(%
)

“one against all” 2.41 2.92 3.60 4.42 6.32

Furthermore, our method is complementary to the method
proposed in [2], which reduces the complexity of each
SVC, while our approach reduces the complexity of the
ensemble. Hence, the combination of the two approaches
would allow fast classification. In addition, to improve the
generalization performance, it is possible to incorporate
known invariance of the problem, as in [2] where the
authors generate artificial training examples, or as in [8]
where discriminative features are extracted and allows to
reduce the error-rate to only 0.4 %.

Finally, the probability estimation supposes the
absence of outliers or more exactly a negligible prior
probability of the corresponding class ω0. But, for certain
applications, it can be preferable to detect this type of
noise. In this context, the use of a model-based approach
at the first stage is another advantage, because as it is
shown in the literature, this type of approach is able to
reject efficiently the outliers.

5. References

[1] Bellili, A., Gilloux, M., Gallinari, P. (2003) An MLP-SVM
combination architecture for offline handwritten digit
recognition, International Journal on Document Analysis and
Recognition, 244-252.

[2] Burges, C.J.C., Scholkopf, B. (1997) Improving the
Accuracy and Speed of Support Vector Machines, Advances in
Neural Information Processing Systems, 375-381.

[3] Chang, C.-C., Lin, C.-J. (2001) LIBSVM : a library for
support vector machines. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

[4] Fumera, G., Roli, F., Giacinto, G. (2000) Reject option
with multiple thresholds, Pattern Recognition, 2099-2101.

[5] Hamamura, T., Mizutani, H., Irie, B. (2003) A multiclass
classification method based on multiple pairwise classifiers.
International Conference on Document Analysis and
Recognition, 809-813.

[6] Kimura, F., Takashina, K., Tsuruoka, S., Miyake, Y.
(1987) Modified Quadratic Discriminant Functions and the
Application to Chinese Character Recognition, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
149-152.

[7] Lin, H.-T., Lin, C.-J., Weng, R.C. (2003) A note on Platt's
probabilistic outputs for support vector machines. Technical
report, Department of computer science and information
engineering, National Taiwan University. Available at
http://www.csie.ntu.edu.tw/~cjlin/papers.html

[8] Liu, C.-L., Sako, H., Fujisawa, H. (2003) Handwritten
digit recognition: benchmarking of state-of-the-art techniques,
Pattern Recognition, 2271-2285.

[9] Oh, I.-S., Suen, C.Y. (2002) A class-modular feedforward
neural network for handwriting recognition. Pattern
Recognition, 229-244.

[10] Parrado-Hernandez, E., Mora-Jimenez, I., Arenas-Garcia,
J., Figuera-Vidal, A.-R., Navia-Vasquez, A. (2003) Growing
support vector classifiers with controlled complexity, Pattern
Recognition, 1479-1488.

[11] Platt, J. C. (1999) Probabilistic outputs for support vector
machines and comparisons to regularized likelihood methods,
Advances in Large Margin Classifiers, 61-74.

Figure 8. Overview of our two-stage classification system

