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Developments of Multistep
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In the paper, the multistep inverse finite element method (FEM) has been introduced to
improve the accuracy of simulation in sheet metal stamping. Furthermore, the multistep
inverse FEM can be used to obtain the strain/thickness distribution and shape of blank in
the intermediate configurations. But there are three key problems, which are essential to
implement multistep inverse FEM: the fist one is how to obtain the intermediate configu-
rations of intermediate steps, the second one is how to find the corresponding Z coordi-
nates in the sliding constraint surface, and the last one is how to update strain/stress
distribution in the intermediate configurations in a fast and reliable way. Based on the
known configurations of punch and die of the current step, the strategy of area minimi-
zation coupled with feasible sequential quadratic programming code is used to obtain
initial intermediate configurations. An efficient walk-through point location algorithm
with its complexity O�n1/d� per point (d means the space dimension) is used to deal with
contact searching problem and restrain the movement of corresponding nodes of inter-
mediate configurations. In order to preserve the computational efficiency of inverse FEM,
a pseudodeformation theory of plasticity based constitutive equation is proposed, which
can well reflect the actual forming condition such as elastic/plastic deformation or
loading/unloading condition. The above-mentioned improvements are implemented in our
in-house inverse analysis software INVERSTAMP/MULTISTEP module. The presented algo-
rithms are applied to a two-step cylinder cup deep-drawing product and three-step S-rail
forming case. The numerical results compared with explicit dynamic solver LS-DYNA3D
confirm its validity in formability prediction of intermediate shapes and final workpiece.
�DOI: 10.1115/1.4001868�

Keywords: sheet metal forming, inverse FEM, contact searching, constitutive equations,
point location algorithm
Introduction
A large number of parts on automobile body are deformed by

tamping process. During the last decade, numerical simulation
as been widely used to evaluate process and tool design as well
s forming defects such as fracture and wrinkling �1�. Improve-
ent of the design and tryout procedures using numerical simu-

ations have a significant impact on the cost of the tools and on the
eduction in the total time from design to manufacture with also
he possibility to provide better solutions than those determined
rom purely experimental tryout procedures.

There are mainly two approaches for sheet metal forming simu-
ation: an incremental approach and an inverse finite element

ethod �FEM�. For most of automobile industrial parts, incremen-
al approach is time consuming and involves expensive computer
esources while the inverse FEM is simple and very efficient. In
he automobile industry, the two approaches are usually used at
ifferent design stage and are complemented to each other. The
ne-step inverse FEM is based on the knowledge of the final
orkpiece. The assumption of proportional loading and simplified
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tool actions lead to a “one-step” algorithm. With the known infor-
mation of the final configuration, a Newton–Raphson resolution
scheme is used to find the original node positions on the initial flat
blank satisfying the equilibrium in the final configuration, thus,
the strain and stress tensors are obtained. When the sheet metal is
drawn over a die radius, the material is subjected to stretching-
bending/unbending deformation, which strongly influences the
sheet formability. In order to take into account the deformation
history, some realistic intermediate configurations are determined
and considered.

The multistep inverse FEM has been developed recently in or-
der to consider the loading history and to improve the stress esti-
mation in keeping the simplicity and efficiency of one-step in-
verse FEM. Based on the assumption of ideal forming theory and
plain stress, Majlessi and Lee �2� formulated the FE equations for
axisymetric multistep deep-drawing inverse FEM with linear
membrane element and the rigid-plastic material model with no
consideration of boundary conditions such as friction and
blankholder forces. Lee and Cao �3� presented an axisymetric
shell element for the multistep inverse FEM for more accurate
prediction of the design variables, such as initial blank shape,
strain distributions, intermediate shapes, etc., but their published
paper was only restricted to axisymetric deep-drawing parts. Guo
et al. �4� developed the pseudo-inverse approach, taking into ac-

count the loading history. 3D workpiece was divided into several
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ectors, treated as 2D case in a sector and regrouped by linear
nterpolation. However, this approach was found to be very time
onsuming and to need expensive computer and human resources.
hey implanted the flow theory of plasticity into constitutive
quation, which leads to a considerable improvement of the stress
valuation but relatively low computational efficiency. Lee and
uh �5� estimated shape and nonshape parameters in sheet metal

orming for an oil pan and a front fender and suggested a linear
apping technique for the general three-dimensional multistage

nalysis and compared the result with the one-step analysis result.
he principle of virtual work was adopted to get the equilibrium
quations about initial nodal positions. Kim and Huh �6� used
nite element inverse analysis approach to simulate multistage
eep-drawing processes in order to calculate the thickness strain
istribution in each intermediate shape and to design the interme-
iate die shapes. The concept of sliding constraint surface, which
s needed to carry out the multistep analysis, was introduced and
he corresponding procedure was also been described. The intro-
uction of the sliding constraint surface and the adoption of three
oordinate systems were relatively difficult to implement and was
time consuming task. Huang et al. �7� proposed a modified arc-

ength search method to obtain the initial solutions on the inter-
ediate three-dimensional configurations by mapping the arc-

ength of the final part onto intermediate sliding constraint
urfaces. It was efficient to solve simple deep-drawing examples,
uch as axisymetric multistep deep drawings, while it showed
eak stability toward complex drawing cases. Tang et al. �8� pro-
osed a double section curve expanding method to get initial so-
utions of intermediate configurations, which can take into ac-
ount of plastic deformation characteristics. They also proposed a
ocal and global combined searching scheme to restrain the mov-
ng of corresponding nodes but the double section curve expand-
ng method showed its limitation when dealing with complicated
tamping panels. The local and global combined searching scheme
as also time consuming in this case.
In this paper, the authors first reviewed the assumptions and the
ain formulation of multistep inverse FEM including bending

ffects and then three developments are proposed to improve the
eliability and efficiency of multistep inverse FEM:

Outlines of Multistep Inverse FEM
The traditional inverse FEM is based on the knowledge of the

nal workpiece. Its computation is carried out in one step by
irectly comparing the initial and final configurations with the
esults of node positions in the initial blank and the thickness and
train distributions in the final workpiece. However, a single-step
pproximation for a multistage forming process may not give a
alid result. The multistep inverse FEM is developed from the
asic idea of traditional one-step inverse FEM. The total strains on
n intermediate configuration in the multistep inverse FEM are
alculated in one step by directly comparing the initial flat blank
nd current intermediate contours. The strain increment between
wo successive configurations is obtained based on the relative
isplacement increment between them. In each step, the lower
onfiguration is noted as the initial state and the adjacent higher
ne is noted as the final state. The node positions are updated in
he initial state and other results, such as thickness and strain
istribution, are updated in the final state.

The analysis is based on the idea of dividing the deformation
istory into several steps while applying the total strain theory of
lasticity in each step. Suppose there are three configurations to
e considered: initial flat blank C0, curved intermediate, and final
onfigurations C1, C as shown in Fig. 1. Suppose q is a material
oint on the final configuration, q1 is the point on curved interme-
iate configuration, q0 is the point on the initial flat blank corre-
pondingly. Point p is situated on the known sheet midsurface
ith the corresponding point on curved intermediate and initial

1 0
at configuration p and p , respectively.
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Position vector of node q in the thickness is expressed as fol-
lows:

xq = xp + zn �1�

Introducing two unit orthogonal tangent vectors t1 and t2 onto
the curved deformed middle surface as local curvilinear coordi-
nates, then,

dxq = �t1 + znp,x�dx + �t2 + znp,y�dy + ndz �2�
The kinematic equation of a material point on the intermediate

surface can be written as

xq
1 = xp − up + z1n1 �3�

with u the vector displacement, thus,

dxq
1 = �t1 − up,x�dx + �t2 − up,y�dy +

n1

�3
dz �4�

Translate into matrix form

dxq
1 = �Fx

1�−1dx �5�
with

�Fx
1�−1 = �t1 − up,x t2 − up,y

n1

�3
� �6�

After further deduction, the inverse deformation gradient tensor
�F�−1 of point q toward point q1 is the same as that of point q
toward point q0. The elastoplastic deformation is assumed to be
independent of the loading path. The eigenvalue calculation and
the incompressibility assumption allow obtaining the three princi-
pal stretches and the logarithmic strains. The Hencky–Ilyushin
deformation theory of plasticity is employed for the calculation of
Cauchy stress in the present displacement-based finite element
analysis with given strain. In one-step inverse FEM, the displace-
ment of node in vertical direction is known and remains constant
during whole Newton–Raphson iterations. However, in multistep
inverse FEM, the intermediate constraint surface is a three-
dimensional part and the solution must be converged onto the
surface Z= f�X ,Y�, which means the vertical displacement of node
is changeable with its horizontal movement.

3 Key Issues in Multistep Inverse FEM

3.1 Generation of Intermediate Configurations. In one-step
inverse FEM, only the initial solution of the flat blank is needed

qxpx

pu
qu

0h

0n 0z

0p

0q

0
px

0
qx

1n 1z

1q
1p

1
px

1
qx

1
h 0

qu 0
pu

n z

0C

1C

C

Fig. 1 The kinematics relations of a thin shell model with in-
termediate configuration
during the whole procedure. However, in multistep inverse FEM,
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ot only is the initial solution of the flat blank needed, but also,
he initial solutions of intermediate configurations and the inter-

ediate constraint surfaces are needed for the iteration solution to
onsider the deformation paths. As the shape of the tools and their
ositions are known during the forming process, a geometrical
ethod can be used to generate the initial intermediate

onfigurations.
Suppose a thin sheet metal is constrained between the punch

nd die and tensioned as a membrane in agreement with the tools
eometrically �Fig. 2�. For the deformation of most of automobile
anels are mainly stretching, this simplification sounds reasonable
4�. The information of the die can be easily obtained by the
nown discretized final workpiece. Mesh under binder is sepa-
ated and the remaining mesh is moved along Z direction to be
efined as punch. The contours of intermediate configurations can
e determined by the minimization of area of the surfaces. The
bject function and the corresponding constraint condition are as
ollows:

J = Min�
e

Ae

zp
i � zs

i � zd
i �7�

here Ae is area of an element surface, zp
i , zs

i , and zd
i represent the

ertical coordinates of the nodes of the punch, sheet, and die,
espectively, and zs

i are the design variables.
A generalization of Newton’s method named sequential qua-

ratic programming is used to solve this minimization problem.
igure 3�a� is the known final workpiece with 40 mm drawing
epth. The intermediate configurations with punch travels of 30
m and 20 mm are shown in Figs. 3�b� and 3�c�. The present
ethod gives intermediate meshes independent each other, that is

o say, the nodes having the same number in different meshes do
ot represent the same material point. This problem can be over-
ome by the relocalization of the nodes on the geometrical mesh
4�.

3.2 Constraint Strategies on Sliding Constraint Surfaces.
n the one-step inverse FEM, the flat plane is the constraint sur-
ace for the update and convergence of initial flat blank. Likewise,
he sliding constraint surface is introduced to guide the movement
f nodes on intermediate configurations in the multistep FEM.
he shape and position of the current die face serve as the sliding
onstraint surface. The initial displacement of node can be ob-
ained with the initial solution obtained in the previous section.
owever, the node position after displacement increment should

i
pz

i
dz

i
sz

ig. 2 Generation of intermediate sheet configuration with
nown die and punch profiles
lso satisfy the expression of constraint surface. The problem be-

ournal of Manufacturing Science and Engineering
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comes, how to find the corresponding point on the sliding con-
straint surface in each iteration and obtain the vertical displace-
ment of the specified node.

Figure 4 shows the update of node position from point P to
point Q on the constraint surface with the displacement increment
along X and Y directions �UP

i and �VP
i , respectively. Points M

and N are the projected points of points P and Q on XOY plane,
respectively. At step i, the node with initial displacements UP

i and
VP

i will be converged to another position on the constraint surface
�in Fig. 4, the corresponding point is Q�.

UP
i+1 = UP

i + �UP
i

VP
i+1 = VP

i + �VP
i �8�

In order to determine WP
i+1 along Z direction, the location of

point Q should be first decided. After finding the element that
point Q belongs to, its Z coordinate is readily obtained using
linear interpolation by the node coordinates of the element. But
how to determine the node position on the three-dimensional dis-
cretized mesh in a short time is still a problem. If the global
searching schemes are taken, all the elements on the constraint

(a)

(b)

(c)

Fig. 3 Two mesh system of final and intermediate configura-
tion: „a… 40 mm punch travel, „b… 30 mm punch travel, and „c… 20
mm punch travel

Fig. 4 Walk-through algorithm to constrain the node

movement
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urface will be judged to enclose the node or not. The complexity
f the method is O�n� �n is the element number�. Actually, for a
iven node, only several elements have the possibility to be met
ith. If the number of element is small, this method could be

cceptable. But for complex forming examples, fast and reliable
earching scheme should be implemented. Point location is a fun-
amental problem in computational geometry. In order to simplify
he problem, the mesh system of the current sliding constraint
urface is projected vertically onto the XOY plane to form another
esh. In this study, we present a point location algorithm, walk-

hrough algorithm, to locate the point quickly �Fig. 5�.
Walk-through methods solve point localization by walking a

eries of decisions to move into adjacent triangles judged closer to
he query point �9�. The key element in walk-through algorithms
s the decision step. A walk-through algorithm is based on travers-
ng the triangulation using adjacency relation between triangles.
he starting point is chosen to be any point already located in the

riangulation; for instance a node. The decision to cross over to a
eighboring triangle is determined by segment intersection test or
y orientation test. Using barycentric coordinates to extract local
nformation about the location of the query point allow a gradient
escentlike walk toward the goal. The complexity of these single
oint location algorithm is O��n� in R2.
Consider a triangular element named ABC �in counterclockwise

CCW� shown in Fig. 5� and the area of the triangle is defined as
ollows:

�ABC =
1

2
	 xA − xC yA − yC

xB − XC yB − yC
	 �9�

Suppose if the nodes A ,B ,C are CCW arranged, �ABC�0, oth-
rwise it is negative. The barycentric coordinates �r ,s , t� of point
with respect to the triangle ABC can be expressed by the ratio of

wo triangular areas.

r =
�PBC

�ABC
, s =

�PCA

�ABC
, t =

�PAB

�ABC
�10�

� �, ,P r s t

(a) (b)

ig. 5 Barycentric coordinates and their signs: „a… point in a
riangular and „b… signs of barycentric coordinates

P

(a) (
Fig. 6 Walk-through algorithm bas
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where r, s and t satisfy the equation r+s+ t=1.
For example, if the point P locates on the right of directional

edge AB, the sign of r associated to edge AB is negative �denoted
as “−”�, r�0. When P lies on the left, r is positive �denoted as
“+”�, r�0. If P is on edge AB, r=0 �also denoted as “+”�. Then
we can conclude that if point P is inside of the triangle element
ABC, all barycentric coordinates are positive �denoted as “+++”�.
Any barycentric coordinate is positive means no possibility to go
through the element. The case with all the signs negative “− − −”
does not exist.

As shown in Fig. 6, the sign + indicate that the searching path
“goes in” the triangular and the sigh − means that the searching
path “goes out” of the triangle. The case �a� +++ means the end of
the search because it has no more go out possibility. The case �b�
“−++” and the case �c� “−+−” have both go in and go out possi-
bilities to continue the searching paths. In case �c�, searching path
cross over to the neighboring triangle bordering the edge that
represents the lowest of the barycentric coordinates. The proce-
dure can be summarized below.

�1� Compute the barycentric coordinates �r ,s , t� of the query
point P with respect to the current triangle element ABC.

�2� Searching path walk through the edge that represents by the
lowest of the barycentric coordinates. In case of Fig. 6�b�,
r�PBC��0, s�PCA��0, and t�PAB��0, cross over the
edge BC.

�3� Stop when all the barycentric coordinates are positive,
r�PBC��0, s�PCA��0, and t�PAB��0.

3.3 Constitutive Equations for Multistep FEM. The tradi-
tional one-step inverse FEM, the stress-strain rate relation, which
is derived from the associated flow rule and Hill’s anisotropic
yield criterion in plane stress, can be expressed as an integrated
form �10�.

f = �TP� − �̄2 = 0 �11�

with �T= 
�x �y �xy�, where �̄ is the equivalent yield stress. The
matrix P is in function of the mean anisotropic coefficient r̄ ob-
tained from the three anisotropic coefficients.

P = �
1 −

r̄

1 + r̄
0

−
r̄

1 + r̄
1 0

0 0
2�1 + 2r̄�

1 + r̄



r̄ =

1

4
�r0 + 2r45 + r90� �12�

The proportional loading assumption allows obtaining the total
plastic strains in terms of the total stresses.

P

(c)
P

b)
ed on barycentric coordinates
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�p =
�̄p

�̄
P� �13�

ith �̄p= ��p
TP−1�p�1/2 the equivalent plastic strain.

If we assume the above anisotropy and incompressibility to be
alid also for the small elastic deformation, then the Poisson co-
fficient is related to the mean anisotropy coefficient r̄.

� =
r̄

1 + r̄
�14�

The total constitutive equation takes the following simple form:

� = EsP
−1� �15�

here Es is the secant modulus of the uniaxial stress-strain curve

Es =
�̄

�̄
; �̄ = ��TP−1��1/2 �16�

With the estimation of the total strains ���, we can compute �̄,
, and Es, then estimate the stresses. This expression is fundamen-

al for the stress-strain behavior in inverse FEM formulation for
hich a proportional loading form initial and final configurations
as been assumed. This operation is performed for each numerical
ntegration point through the thickness.

In the paper, some realistic intermediate configurations are in-
roduced in the multistep inverse FEM to take into account the
oading deformation paths. The Newton–Raphson iteration is con-
ucted during all steps from the flat blank to the final workpiece.
he first step is conducted between the initial solution of the flat
lank and the first intermediate configuration restricted to the cur-
ent sliding constraint surface. In each step, the lower configura-
ion is noted as the initial state and the adjacent higher is noted as
he final state. The procedure is more like that of flow theory of
lasticity. In the incremental approaches, the stress increments are
ften calculated by an implicit algorithm of plastic integration,
alled return-mapping algorithm proposed by Simo and Taylor
11�, but the plastic integration is very time consuming. In order to
reserve the computational efficiency of inverse FEM, a
seudodeformation theory of plasticity based constitutive equation
s proposed.

Figure 7 shows the uniaxial stress-strain curve for multistep
orming process. In order to simplify the expression of multistep

�

�

s0E
s0H

0 e0 p0( )� � �� 1�e0�

E

s1E
0�

1�

e0� e1�1��

E

E

ig. 7 Uniaxial tress-strain curve for multistep forming
rocess
onstitutive equations, only one intermediate configuration is in-

ournal of Manufacturing Science and Engineering
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troduced. The intermediate state “0” defined by the total strain �0
is started from a zero plastic strain. Strain �0 is composed of
equivalent elastic strain �̄e0 and equivalent plastic strain �̄p0. The
corresponding secant modulus is Es0. State ”1” defined by the
total strain �1 expresses the state of final workpiece. The corre-
sponding equivalent elastic strain, equivalent plastic strain and
secant modulus are noted as �̄e1, �̄p1, and Es1, respectively. To find
the middle stress state �0, the traditional one-step inverse FEM
can be carried out. Now, the question is: “Starting from the state 0,
how to proceed to reach another state defined by �1, assuming a
proportional loading between states 0 and 1?”

For the continuity of deformation from flat blank to final work-
piece, the secant modulus Es1 can be obtained in a simple form
based on Fig. 7.

Es1 =
�̄1 − �̄0

�̄1 − �̄0

=
�̄��̄1� − �̄��̄0�

�̄1 − �̄0

�17�

Thus, the stress tensor of state 1 can be evaluated

�1 = �0 + Es1P−1��1 − �0� �18�
To determine the stress and strain of state 1, the procedure can

be summarized as follows:

�1� Compute the displacement, strain, and stress of state 0:
u0 ,�0 ,�0.

�2� Compute displacement and strain increment

�u1 = u1 − u0��1 = �1 − �0��̄1 = �̄1 − �̄0

�3� If �̄1��s, the deformation is elastic, the stress increment
can be expressed as

��1 = De��1

where De is the elastic matrix.
�4� If �̄1	�s, the deformation is plastic, the stress increment is

��1 = Es1P−1��1

where P is the anisotropic matrix defined by the average
planar anisotropy.

�5� If ��̄1	0, it is a loading process. The stress tensor of state
1can be obtained

�1 = �0 + ��1 = �0 + Es1P−1��1

�6� If ��̄1�0, it is a unloading process. The stress tensor of
state 1 will become

�1 = �0 + ��1 = �0 + De��1

The procedure will continue until the convergence criterion for
the global iterations are achieved.

4 Implementation of Multistep Inverse FEM
The flowchart of multistep inverse FEM is shown in Fig. 8. In

order to get the initial solutions on flat plane and all other con-
straint surfaces, area minimization algorithm, and node relocaliza-
tion technique are implemented geometrically without considering
the effect of process and material parameters on forming process.
The Newton–Raphson iteration is conducted during all steps from
the flat blank to the final workpiece. In step n, the lower configu-
ration is noted as the initial state and the adjacent higher one is
noted as the final state. After a converged iteration for the current
step n, the position of nodes is updated in the initial state and
strain and thickness distribution are updated in the final state. All
the information on the final state becomes the preliminary initial
state of step n+1. The iteration of each step is terminated until the
displacement or residual force convergence criterion is satisfied.

��U

U
� � �D �19�
2
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�R�2 � �F �20�

here �D and �F are small positive value defined as 10−5 and 10−2,
espectively.

The convergence criterion for the global iterations is

�
n=1

final step

��U�2

total no. of steps
� �G �21�

here �G is defined between 10−1 and 10−2.

Numerical Validations
The presented algorithms described above have been imple-
ented in a finite element code, INVERSTAMP, and applied to sev-

ral examples of sheet metal stamping. In the paper, a two-step
eep-drawing of cylinder cup and a three-step drawing S-rail are
dopted to confirm the validity of the proposed developments.

5.1 Two-Step Cylinder Cup Drawing. The computer aided
esign �CAD� model and geometry of the final cup for benchmark
est is illustrated in Fig. 9. The material properties and the process
ariables for the analysis of the cylinder cup drawing are as fol-
ows: stress-strain curve �̄=729.09�0.01345+ �̄�0.1657 MPa, elas-
ic modulus E=200 GPa, Poisson’s ratio �=0.3, Lankford value
=0.95, initial sheet thickness t0=0.70 mm, friction coefficient
=0.13, and blankholder force Fb=15.0 kN.

Fig. 8 Flowchart of multistep inverse FEM
The model of the two-step deep-drawing cup is discretized by

41013-6 / Vol. 132, AUGUST 2010
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9480 discrete Kirchhoff triangular �DKT� shell elements. Area
minimization algorithm and node relocalization technique are car-
ried out to get the intermediate configuration. The geometry of the
current die face is discretized by 13,864 triangular elements and
treated as sliding constraint surface. The mesh of initial flat blank
was obtained with energy based algorithm proposed in Ref. �12�.

Figures 10 show the thickness distribution obtained from two-
step inverse analysis and incremental analysis. Figure 10�a� shows
the thickness distribution of intermediate configuration with one-
step inverse analysis method. The comparison shows well agree-
ment between the two results. They both witness the thinning in
the area around punch radius and thickening in the area under the
binder. The maximum discrepancy in thickness distribution is
about 0.03 mm. Figure 10�b� shows the thickness distribution for
the final workpiece obtained from two-step inverse analysis and is
compared with that of incremental analysis. The comparison dem-
onstrates that the results of two-step inverse analysis are in better
agreement with those of incremental analysis than those of one-
step inverse analysis. However, the thickness distribution from
two-step inverse analysis in the wall and flange region still dis-
agree with that of incremental analysis, as shown in Fig. 10�b�.
The increment of the number of step is required to consider more
accurate deformation path and the boundary conditions and im-
prove the accuracy of the results from inverse analysis.

5.2 Three-Step S-Rail Forming. The CAD model and geom-
etry of the S-rail is the same as Numisheet ’96 �13�. The material
properties and the process variables for the analysis of the S-rail
forming are as follows: stress-strain curve �̄=648�0.004
+ �̄�0.220 MPa, elastic modulus E=207 GPa, Poisson’s ratio �
=0.28, Lankford value r=1.65, initial sheet thickness t0
=0.80 mm, friction coefficient 
=0.15, and blankholder force
Fb=300 kN.

Figures 11 and 12 show the configuration and location of die
and punch with 10 mm and 20 mm drawing depth, respectively.
The CAD model of punch and die are discretized with triangular
meshes. With the proposed area minimization algorithm and node
relocalization technique, the initial solutions of two intermediate
configurations are obtained, shown in Figs. 13 and 14, and the

(a)

(b)

Fig. 9 Two-step forming workpiece: „a… CAD modeling of final
workpiece and „b… dimensions of half of the final workpiece
sliding constraint surfaces are the die face, correspondingly. The

Transactions of the ASME

s of Use: http://www.asme.org/about-asme/terms-of-use



fi
T
e
e

a
o
c

ed

J

Downloaded From:
nal workpiece is shown in Fig. 15 with 40 mm drawing depth.
he figures demonstrate that the initial solutions are obtained ad-
quately with the proposed algorithm although the punch geom-
try is very complicated with inclination of large angle.

In order to verify the reliability of the proposed developments,
direct elastic-plastic finite element analysis using LS-DYNA3D,
ne-step inverse FEM and multistep inverse FEM are used for
omparison. According to our experience or the analysis results of

(a

(b

Fig. 10 Comparisons of thickness distribution between pro
blank to intermediate sheet and „b… from flat blank to interm

Fig. 11 Tools location with 10 mm drawing depth
Fig. 12 Tools location with 20 mm drawing depth
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LS-DYNA3D, sections AB and CD are the large deformation
zones �Fig. 16�. Predicting the thickness distribution along the two
sections accurately will evaluate the effectiveness of the
developments.

Because the LS-DYNA3D code is based on an updated La-
grangian formulation and a small increment method, it is a quite
reliable simulation tool �14�. All the other calculated results are
compared with those simulated with LS-DYNA3D. Figures 17
and 18 show the thickness distribution simulated by one-step
/multistep inverse FEM and a direct elastic-plastic finite element
analysis LS-DYNA3D. The figures indicate that although the ten-
dencies of three curves are the same, the thickness obtained from

ed algorithm and incremental based FEM code: „a… from flat
iate sheet and then final workpiece

Fig. 13 Initial solution of intermediate configuration with 10
mm drawing depth

Fig. 14 Initial solution of intermediate configuration with 20
)

)

pos
mm drawing depth
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ultistep inverse analysis is closer to that of LS-DYNA3D than
he one obtained from one-step inverse analysis. The maximum
iscrepancy of multistep inverse analysis compared with LS-
YNA3D is within 5% while the one of one-step inverse analysis

xceed 10% to some extent.

Conclusion
A strategy of area minimization coupled with feasible sequen-

ial quadratic programming code is used to obtain initial interme-
iate configurations based on the known configurations of punch
nd die of the current step. An efficient walk-through point loca-
ion algorithm is used to deal with contact searching problem and

Fig. 15 Final workpiece with 40 mm drawing depth

ig. 16 Contour of final workpiece with cutting sections AB
nd CD
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ig. 17 Comparison of thickness distribution „along AB sec-

ion line…
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restrain the movement of corresponding nodes of intermediate
configurations. A pseudodeformation theory of plasticity based
constitutive equation is proposed, which can well reflect the actual
forming condition such as elastic/plastic deformation or loading/
unloading condition. Comparisons of numerical simulation results
between the proposed multistep inverse FEM and LS-DYNA3D
verify the feasibility of the proposed developments. Furthermore,
the multistep inverse FEM is proved to be more accurate that
one-step inverse FEM.
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