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We present a new procedure for the simulation of divergent light halos. The procedure uses rotational

symmetries to make a selected sampling of events that greatly improves the efficiency of the algorithm. We

can  typically generate a simulated display in minutes using a personal computer. The theory behind the

procedure also gives a quantitative explanation of the observational fact that a divergent light halo display

depends on the distance between the light source and the observer.  © 2002 Optical Society of America

OCIS codes: 010.1290, 010.2940, 010.3920

Introduction

There are very few attempts to make Monte Carlo simulations of divergent light halos 1-3.

With a divergent light halo it is not as with a parallel light halo, always possible to find a location

for the scattering crystal such that the scattered ray will hit the eye of the observer. With

divergent light there is a geometrical constraint that relates the locations of the light source, the

observer, and the scattering crystal. The procedure described below will find, if possible, where

to locate the crystal such that the scattered ray hits the eye of the observer. It will also take into

account the intensity dependence on the distances involved.
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The procedure

We represent the ray emitted from the source by a vector. The scattered ray is represented

by a second vector. The first geometrical constraint is that the sum of these vectors has a length

that is equal to the distance observer-source which we normalise to 1. By symmetry we are only

allowed to perform rotations of these vectors around two axises: a vertical axis and an axis

parallel to the crystal symmetry axis, the tilt axis. (We do not threat here the case of Parry

oriented crystals.) This is the second constraint. We will try to determine these rotations and the

lengths of the vectors such that  the scattered ray ends up in the eye of the observer.

Theory

Assume that we have a vertical hexagonal crystal that we tilt in a mathematically positive

direction around the horizontal x axis. Further assume that we have a generated a ray with

random direction k1  from the source that has been raytraced through the crystal and exits with

direction k2 . Both these vectors are unit vectors. The initial and scattered ray can then be

represented mathematically by
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where t1  and t2  are parameters, the parametric distances.

Consider a sphere with unit radius centered at the origin . We imagine two coordinate

systems on the sphere, one "equatorial" α δ,( )  and one "ecliptical" λ β,( ) . The ”vernal point” of

the two coordinate systems is on the x axis. The tilt will then correspond to the "obliquity" ε of

the "ecliptic". 
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Fig. 1. The coordinate systems

The vector from the source to a hitpoint on the sphere is

k k k= +1 1 2 2t t ,  k
2

1= (1)

The hitpoint has equatorial coordinates α δ,( )  given by the relations

k

k

k

x

y

z

=
=
=

cos cos
cos sin

sin

δ α
δ α
δ

(2)

Assume that the observer sits in 0 0,δ( ) . If we rotate the observer around the z axis, his "latitude"

will vary in the interval β β0 0, ,,max min[ ]  where
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When we vary t1 and t2 , the hitpoint will trace out a great circle on the sphere. However, because

of the condition k
2

1= , t1  and t2  are not independent. We have
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which gives

t at t a a2 1 1
2 2 1 2

1 21 1= − ± − −( )( ) = ⋅
/

, k k (5)

If a ≥ 0  we only have the one solution t at t a2 1 1
2 2 1 2

1 1= − + − −( )( ) /
. If a < 0  we have for t1 1>

both solutions in (5).  Further we have
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In the t t1 2,  plane the solution traces out part of a tilted ellipse, centered at the origin and passing

through the points (0,1) and (1,0). The ellipse degenerates into a straight line for a = 1.
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Fig. 2. The q-t-plane

To get a single-valued relation between the variables we introduce two new quantities q1  and q2

by

q t t q t t1 1 2 2 1 2= − = +, (7)

where
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The hitpoint has ecliptic coordinates λ β,( )  given by
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Using (1) and (5) we have

k k k k k= −( ) + +( )1
2 1 2 1

1
2 1 2 2q q (10)

The endpoints of the great circle are given by inserting t = ( )0 1,  and t = ( )t max1 0, ,  corresponding

to q = −( )1 1,  and q = ( )1 1,  respectively. Then (9) and (10) will give us a starting value,  βstart ,

and ending value, βend  for the latitude of the great circle. If β is a monotonous function of λ, we

know that the great circle latitude is confined in the interval β βstart end,[ ]. However, if β is not

monotonous, there will be an extremal value of β given by

d
dq
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From (9) we have
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Then from (11) the extremal value of β is realised by
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There is an extremal value within the allowed part of the great circle if q̂1 1≤ . q̂1  has the same

sign as ABD . From (10) we get the extremal value ˆ ˆβ β= ( )q1 . Then the interval in latitude in

which the hitpoint can vary, will be the largest of the intervals ˆ ,β βstart[ ] and ˆ ,β βend[ ] .

 We now find the intersection set Ωβ  between the intervals of the latitude of the observer

and the latitudes of the great circle. This can, in the non-monotonous case, result in two disjoint

intervals of β. If the intersection is zero, it is not possible to make the hitpoint coincide with the

observer. Finding this intersection and implementing it in program code is a quite tricky task.

The intersection region in latitud β will correspond to a certain region,

Ω Ωq q q= ( ) ∈{ }1 1; β β , (16)

possibly disjoint, in q1 . The equation for solving q1 as a function of β is (12) with solution
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If there is an extremum latitude within the allowed part of the great circle there will be two

solutions otherwise only one. We have to check the validity of the solutions by inserting them

back in (13).

We now want to select a scattering crystal anywhere in space along the line
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r k= ∈ [ ]1 1 1 10t t t max, , , (18)

and such that q1  belongs to the allowed region Ωq . However, we have a problem because the

relation between q1  and t1  is not single-valued for k k1 2 0⋅ = <a . If we trace the possible

corresponding regions in t1  we get something quite complicated. We avoid this problem by

using a single-valued variable ′t1  such that
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Fig 3. The definition of ′t1

This will ”fold out” the region t t max1 11∈ [ ], ,  and remove the redundancy. The region Ωq will

now map one-to-one on a region

Ω Ωt qt q t= ′ ′( ) ∈{ }1 1 1;   (21)

We generate a uniform random number ′t  in Ωt . Actually the probability should be

proportional to the square of the distance of the crystal from the origin, the number of crystals in
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a spherical shell being proportonal to the square of this distance,  but as the illumination of the

crystal is inversely proportional to the square of the same distance we can combine the two and

generate numbers uniformly which is a great simplification.  ′t  will correspond to a unique point

q  in the q plane. This will in turn by (9) and (10) correspond to a unique hitpoint λ β,( ) .

We now find a rotation α of the observer around the z axis and a rotation Λ around the

tilt axis such that the hitpoint coincides with the observer. The observer will then have equatorial

coordinates α δ, 0( )  and the hitpoint will have ecliptic coordinates λ β+( )Λ, . The condition is

that these points coincide. Using well-known relations between an equatorial and an ecliptic

system4 we have the equations:
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cos cos cos cos
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(22)

We can get sinα  from the first of these equations where it is now possible to choose randomly

between with two possible values for the angle, α1and  α π α2 1= − . Inserting the chosen value in

the remaining equations gives a corresponding rotation angle Λ.

Finally we perform two rotations on k2 , the direction of the scattered ray, first a rotation

Λ around the tilt axis, then a rotation −α  around the z axis. The rotated vector will be the

direction of a scattered ray that hits the observer.

Intensity

We have already taken into account the intensity decrease from the source to crystal path.

We now also want to take into account the intensity decrease because of the crystal-observer

distance. The light coming from the crystal will behave as if it passed a small hole and will thus

exhibit diffraction. If the observer is close to the crystal the light beam will be more or less

within the limits of the pupil of the observer. Far away only part of the beam will enter the eye.

We can make a simple model for this. We assume that the crystal can be approximated by a
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circular aperture with diameter d. The intensity integrated over the pupil area at distance D from

the crystal is then

I
J x

x
x dx
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λ  is the wave-length of the light and p the pupil diameter. J x1 ( )  is a Bessel function of the first

kind5.  It turns out that this integrated intensity can be quite well approximated by the simple

expression
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where we have normalised the intensity to 1 when D = 0.

Finally we use that D D tL= 2 , where DL  is the (real) distance source-observer and we can

write (25) in terms of the parametric distance as
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Given a fixed pupil size and wave-length this expression depends on the parameter

D dL / . It means that the halo display will change as we approach it, precisely what is observed

in the field. If we photograph the halo display with a camera aperture larger than the pupil, this

can by (26) be seen to  be equivalent of moving physically closer to the halo.  Observing a

divergent halo display far from the source will enhance the influence of crystals near the eye, the

display will be more similar to a parallel light halo.
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Concluding remarks

 It is interesting that the vector −k2 2t  will be the parametric location in space of the

scattering crystal relative to the observer. Saving a file with such vectors makes it possible to

reconstruct the halo display in three dimensions using for instance stereo pictures.

In most field situations, the ground will cut off rays coming from crystals that would be

located below ground level. This can easily be implemented by excluding rays with k tz1 1 less

than some fixed value.

For tilts that are exactly zero the program will not be able to find the rotations as they are

then dependent, only their sum can be determined. We can avoid this problem  by giving  the tilt

a very small non-zero value in this case.

We have implemented  the described routine together with a raytracing program that can

be run on a personal computer (iMac). Preliminary simulation runs show that the program can

rapidly and efficiently reproduce field observations of divergent halos with good accuracy. Also

the variation of the appearance of the halo display with distanec from the source agrees well with

our model to describe the intensity. We will present these results in a separate publication. The

source code in  PASCAL of the computer algorithm is available on the web at

http://www.thep.lu.se/~larsg/
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