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We propose some relaxed implicit and explicit viscosity approximation methods for hierarchical fixed point problems for a
countable family of nonexpansive mappings in uniformly smooth Banach spaces. These relaxed viscosity approximation methods
are based on the well-known viscosity approximation method and hybrid steepest-descent method. We obtain some strong
convergence theorems under mild conditions.

1. Introduction

Let𝑋 be a real Banach space and𝑈 the unit sphere of𝑋; that
is, 𝑈 = {𝑥 ∈ 𝑋 : ‖𝑥‖ = 1}. Recall that 𝑋 is said to be smooth
if the limit

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡

(1)

exists for all 𝑥, 𝑦 ∈ 𝑈; in this case, 𝑋 is also said to have a
Gâteaux differentiable norm. 𝑋 is said to have a uniformly
Gâteaux differentiable norm if for each 𝑦 ∈ 𝑈, the limit
is attained uniformly for 𝑥 ∈ 𝑈. Moreover, it is said to be
uniformly smooth if this limit is attained uniformly for 𝑥, 𝑦 ∈
𝑈. The norm of 𝑋 is said to be the Fréchet differential if for
each 𝑥 ∈ 𝑈, this limit is attained uniformly for 𝑦 ∈ 𝑈. In
addition, we define a function 𝜌 : [0,∞) → [0,∞) called
the modulus of smoothness of𝑋 as follows:

𝜌 (𝜏) = sup {1
2
(
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) − 1 : 𝑥, 𝑦 ∈ 𝑋,

‖𝑥‖ = 1,
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 𝜏} .

(2)

It is known that 𝑋 is uniformly smooth if and only if
lim
𝜏→0

𝜌(𝜏)/𝜏 = 0.

Let 𝑋 be a real Banach space and let 𝐽 denote the
normalized duality mapping from𝑋 to 2𝑋

∗

given by

𝐽 (𝑥) = {𝑥
∗
∈ 𝑋
∗
: ⟨𝑥, 𝑥

∗
⟩ = ‖𝑥‖

2
=
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

2

} , ∀𝑥 ∈ 𝑋,

(3)

where 𝑋∗ denotes the dual space of 𝑋 and ⟨⋅, ⋅⟩ denotes
the generalized duality pairing. We use Fix(𝑇) to denote the
set of fixed points of the mapping 𝑇. It is well known that
if 𝑋 is smooth, then 𝐽 is single-valued and norm-to-weak∗
continuous, whereas if 𝑋 is a Banach space with a uniformly
Gâteaux differentiable norm, then 𝐽 is single-valued and
norm-to-weak∗ uniformly continuous on bounded subsets of
𝑋. Further, if 𝑋 is a uniformly smooth Banach space, then 𝐽
is single-valued and norm-to-norm uniformly continuous on
bounded subsets of𝑋. In what follows, we still denote by 𝐽 the
single-valued normalized duality mapping.

Let 𝐶 be a nonempty closed convex subset of 𝑋. Recall
that a mapping 𝑇 : 𝐶 → 𝐶 is said to be 𝐿-Lipschitzian if
there exists a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (4)
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In particular, if 𝐿 = 1, then 𝑇 is said to be nonexpansive; that
is,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (5)

We use the notation⇀ to indicate the weak convergence and
the one → to indicate the strong convergence.

Definition 1. Let𝐴 : 𝐶 → 𝑋 be a mapping of 𝐶 into𝑋. Then
𝐴 is said to be

(i) accretive if for each 𝑥, 𝑦 ∈ 𝐶, there exists 𝑗(𝑥 − 𝑦) ∈
𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0, (6)

where 𝐽 is the normalized duality mapping;
(ii) 𝛼-strongly accretive if for each 𝑥, 𝑦 ∈ 𝐶, there exists

𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, (7)

for some 𝛼 ∈ (0, 1);
(iii) pseudocontractive if for each 𝑥, 𝑦 ∈ 𝐶, there exists

𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

; (8)

(iv) 𝛽-strongly pseudocontractive if for each 𝑥, 𝑦 ∈ 𝐶,
there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤ 𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, (9)

for some 𝛽 ∈ (0, 1);
(v) 𝜆-strictly pseudocontractive if for each𝑥, 𝑦 ∈ 𝐶, there

exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 𝜆
󵄩󵄩󵄩󵄩𝑥 − 𝑦 − (𝐴𝑥 − 𝐴𝑦)

󵄩󵄩󵄩󵄩

2

,

(10)

for some 𝜆 ∈ (0, 1).

In a real smooth Banach space 𝑋 we say that an operator
𝐴 is strongly positive [1] if there exists a constant 𝛾 > 0 with
the property

⟨𝐴𝑥, 𝐽 (𝑥)⟩ ≥ 𝛾‖𝑥‖
2
,

‖𝑎𝐼 − 𝑏𝐴‖ = sup
‖𝑥‖≤1

|⟨(𝑎𝐼 − 𝑏𝐴) 𝑥, 𝐽 (𝑥)⟩| ,

𝑎 ∈ [0, 1] , 𝑏 ∈ [−1, 1] ,

(11)

where 𝐼 is the identity mapping.
Recently, the problem of convergence of implicit iterative

algorithms to a commonfixed point for a family of nonexpan-
sive mappings and its extensions to Hilbert spaces or Banach
spaces have been considered by many authors; see [1–9] and
the references therein.

Yao et al. [10] introduced the following Halpern-type
implicit iterative algorithm,

𝑥
𝑛
= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛−1
+ 𝛾
𝑛
𝑇𝑥
𝑛
, ∀𝑛 ≥ 1, (12)

and proved a strong convergence theorem under suitable
conditions.

On the other hand, let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻 and let 𝐴 : 𝐶 → 𝐻

be a nonlinear mapping. The classical variational inequality
problem (VIP) is to find 𝑥∗ ∈ 𝐶 such that

⟨𝐴𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (13)

If we assume that𝐶 is the fixed point set of a nonexpansive
mapping 𝑇 and 𝑆 is another nonexpansive mapping (not
necessarily with fixed points), the problem (13) becomes the
VIP of finding 𝑥∗ ∈ Fix(𝑇) such that

⟨(𝐼 − 𝑆) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Fix (𝑇) , (14)

introduced first by Moudafi and Maingé in [11], which is
called hierarchical fixed point problem.

In particular, whenever Fix(𝑆) ̸= 0, all elements of Fix(𝑆)
are solutions of VIP (14). If 𝑆 is a 𝜌-contraction (i.e., ‖𝑆𝑥 −
𝑆𝑦‖ ≤ 𝜌‖𝑥 − 𝑦‖ for some 𝜌 ∈ (0, 1)), the set of solutions
of VIP (14) is a singleton and it is well known as a viscosity
problem,whichwas first introduced byMoudafi [12] and then
developed by several authors [13, 14].

Very recently, Cai and Bu [1] investigated a general
hierarchical fixed point problem for a countable family of
continuous pseudocontractions, which covers as a special
case of the problem considered in [10]. For this purpose, they
first established strong convergence of an implicit iterative
scheme for solving a hierarchical fixed point problem for
a continuous pseudocontractive mapping in a uniformly
smooth Banach space.

In this paper, let 𝐶 be a nonempty closed convex subset
of a uniformly smooth Banach space𝑋 such that 𝐶 ± 𝐶 ⊂ 𝐶.
Let 𝑇 : 𝐶 → 𝐶 be a nonexpansive mapping with Fix(𝑇) ̸= 0

and let 𝑓 : 𝐶 → 𝐶 be a fixed contractive mapping with
contractive coefficient 𝛽 ∈ (0, 1). Let 𝐹 : 𝐶 → 𝐶 be
𝛼-strongly accretive and 𝜆-strictly pseudocontractive with
𝛼 + 𝜆 > 1 and let 𝐴 : 𝐶 → 𝐶 be a 𝛾-strongly positive
linear bounded operator. First of all, we introduce a relaxed
implicit viscosity scheme for solving a hierarchical fixed point
problem for a nonexpansive mapping 𝑇:

𝑥
𝑡
= (𝐼 − 𝜃

𝑡
𝐹)𝑇𝑥

𝑡
+ 𝜃
𝑡
[𝑓 (𝑥
𝑡
) − 𝑡 (𝐴𝑓 (𝑥

𝑡
) − 𝑇𝑥

𝑡
)] , (15)

where lim
𝑡→0

𝜃
𝑡
= 0. It is proven that as 𝑡 → 0, {𝑥

𝑡
}

converges strongly to a point 𝑧 ∈ Fix(𝑇), which is the unique
solution in Fix(𝑇) to the VIP:

⟨(𝐹 − 𝑓) 𝑧, 𝐽 (𝑧 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Fix (𝑇) . (16)

On the other hand, let {𝑇
𝑛
}
∞

𝑛=0
be a countable family of

nonexpansive mappings from 𝐶 to itself such that Ω =
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⋂
∞

𝑖=0
Fix(𝑇
𝑖
) ̸= 0. We propose a relaxed implicit viscosity iter-

ative algorithm for solving a hierarchical fixed point problem
for a countable family of nonexpansive mappings {𝑇

𝑛
}:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑦
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴) (𝐼 − 𝜖

𝑛
𝐹)𝑇
𝑛
𝑦
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑓 (𝑦
𝑛
) + (𝐼 − 𝜎

𝑛
𝐴)𝑇
𝑛
𝑦
𝑛
, ∀𝑛 ≥ 0,

(17)

where {𝛼
𝑛
}, {𝛽
𝑛
}, {𝜖
𝑛
}, and {𝜎

𝑛
} are four sequences in (0, 1). It

is proven that under mild conditions {𝑥
𝑛
} converges strongly

to a point 𝑧 ∈ Ω, which is the unique solution inΩ to the VIP:

⟨(𝐴 − 𝑓) 𝑧, 𝐽 (𝑧 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Ω. (18)

Furthermore, we also propose a relaxed explicit viscosity iter-
ative algorithm for solving another hierarchical fixed point
problem for a countable family of nonexpansive mappings
{𝑇
𝑛
}:

𝑥
0
∈ 𝐶 chosen arbitrarily,

𝑥
𝑛+1

= (𝐼 − 𝛽
𝑛
𝐹)𝑇
𝑛
𝑥
𝑛

+ 𝛽
𝑛
[𝑓 (𝑥
𝑛
) − 𝛼
𝑛
(𝐴𝑓 (𝑥

𝑛
) − 𝑇
𝑛
𝑥
𝑛
)] , ∀𝑛 ≥ 0,

(19)

where {𝛼
𝑛
} and {𝛽

𝑛
} are two sequences in (0, 1). It is proven

that under appropriate assumptions, {𝑥
𝑛
} converges strongly

to a point 𝑧 ∈ Ω, which is the unique solution inΩ to the VIP:

⟨(𝐹 − 𝑓) 𝑧, 𝐽 (𝑧 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Ω. (20)

The above relaxed viscosity algorithms are based on the well-
known viscosity approximation method (see, e.g., [4–6, 9])
and hybrid steepest-descent method (see, e.g., [14–17]). Our
results extend, improve, supplement, and develop the recent
results announced by many authors.

2. Preliminaries

We list some lemmas that will be used in the sequel. Lemma 2
can be found in [18]. Lemma 3 is an immediate consequence
of the subdifferential inequality of the function (1/2)‖ ⋅ ‖2.

Lemma 2. Let {𝑠
𝑛
} be a sequence of nonnegative real numbers

satisfying

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑠
𝑛
+ 𝛼
𝑛
𝛽
𝑛
+ 𝛾
𝑛
, ∀𝑛 ≥ 0, (21)

where {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} satisfy the following conditions:

(i) {𝛼
𝑛
} ⊂ [0, 1], ∑

∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝛽
𝑛
≤ 0;

(iii) 𝛾
𝑛
≥ 0 (∀𝑛 ≥ 0), ∑

∞

𝑛=0
𝛾
𝑛
< ∞.

Then lim sup
𝑛→∞

𝑠
𝑛
= 0.

Lemma 3. In a smooth Banach space 𝑋, there holds the
following inequality:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2
+ 2 ⟨𝑦, 𝐽 (𝑥 + 𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (22)

Let LIM be a continuous linear functional on 𝑙
∞

and (𝑎
0
, 𝑎
1
, . . .) ∈ 𝑙

∞. We write LIM 𝑎
𝑛

instead of
LIM ((𝑎

0
, 𝑎
1
, . . .)). LIM is said to be Banach limit if LIM

satisfies ‖LIM‖ = LIM 1 = 1 and LIM 𝑎
𝑛+1

= LIM 𝑎
𝑛
for all

(𝑎
0
, 𝑎
1
, . . .) ∈ 𝑙

∞. It is well known that for Banach limit LIM
the following holds:

(i) for all 𝑛 ≥ 1, 𝑎
𝑛
≤ 𝑐
𝑛
implies that LIM 𝑎

𝑛
≤ LIM 𝑐

𝑛
;

(ii) LIM 𝑎
𝑛+𝑁

= LIM 𝑎
𝑛
for any fixed positive integer𝑁;

(iii) lim inf
𝑛→∞

𝑎
𝑛
≤ LIM 𝑎

𝑛
≤ lim sup

𝑛→∞
𝑎
𝑛
for all

(𝑎
0
, 𝑎
1
, . . .) ∈ 𝑙

∞.

It is easy to see that there holds the following conclusion.

Lemma 4 (see [19]). Let (𝑎
0
, 𝑎
1
, . . .) ∈ 𝑙

∞. If LIM 𝑎
𝑛
= 0, then

there exists a subsequence {𝑎
𝑛
𝑘

} of {𝑎
𝑛
} such that 𝑎

𝑛
𝑘

→ 0 as
𝑘 → ∞.

Recall that a Banach space 𝑋 is said to satisfy Opial’s
condition, if whenever {𝑥

𝑛
} is a sequence in 𝑋 which

converges weakly to 𝑥 as 𝑛 → ∞, then

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝑋, 𝑦 ̸= 𝑥.

(23)

Lemma5 (Demiclosedness principle; see [20,Theorem 10.3]).
Let 𝑋 be a reflexive Banach space satisfying Opial’s condition,
𝐶 a nonempty closed convex subset of 𝑋, and 𝑇 : 𝐶 → 𝐶 a
nonexpansive mapping. Then the mapping 𝐼 − 𝑇 is demiclosed
on 𝐶, where 𝐼 is the identity mapping; that is, if {𝑥

𝑛
} is a

sequence of 𝐶 such that 𝑥
𝑛
⇀ 𝑥 and (𝐼 − 𝑇)𝑥

𝑛
→ 𝑦, then

(𝐼 − 𝑇)𝑥 = 𝑦.

The following lemma can be derived by the standard
argument and hence its proof will be omitted.

Lemma 6. Let 𝐶 be a nonempty closed convex subset of a real
smooth Banach space 𝑋 and let 𝐹 : 𝐶 → 𝑋 be a mapping.

(i) If 𝐹 : 𝐶 → 𝑋 is 𝛼-strongly accretive and 𝜆-
strictly pseudocontractive with 𝛼 + 𝜆 ≥ 1, then 𝐼 −
𝐹 nonexpansive and 𝐹 is Lipschitz continuous with
constant 1 + 1/𝜆;

(ii) If 𝐹 : 𝐶 → 𝑋 is 𝛼-strongly accretive and 𝜆-strictly
pseudocontractive with 𝛼 + 𝜆 > 1, then for any fixed
𝜏 ∈ (0, 1), 𝐼−𝜏𝐹 is contractive with coefficient 1−𝜏(1−
√(1 − 𝛼)/𝜆).

3. Relaxed Implicit Viscosity Scheme for
Hierarchical Fixed Point Problem for
a Nonexpansive Mapping

In this section, we introduce our relaxed implicit viscosity
scheme for solving hierarchical fixed point problem for a
nonexpansive mapping and show the strong convergence
theorem. First, we list several useful and helpful lemmas.

Lemma 7 (see [21]). Let 𝑋 be a Banach space, 𝐶 a nonempty
closed and convex subset of 𝑋, and 𝑇 : 𝐶 → 𝐶 a continuous
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and strong pseudocontraction.Then 𝑇 has a unique fixed point
in 𝐶.

Lemma 8 (see [19]). Let {𝑎
𝑛
} be a sequence of nonnegative real

numbers satisfying the property 𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
)𝑎
𝑛
+ 𝛾
𝑛
𝛽
𝑛
, ∀𝑛 ≥

0, where {𝛾
𝑛
} ⊂ (0, 1) and {𝛽

𝑛
} ⊂ R such that (i) ∑∞

𝑛=0
𝛾
𝑛
= ∞

and (ii) lim sup
𝑛→∞

𝛽
𝑛
≤ 0. Then {𝑎

𝑛
} converges to zero as

𝑛 → ∞.

Lemma9 (see [22]). Let𝐶 be a nonempty closed convex subset
of a real Banach space 𝑋 and 𝑇 : 𝐶 → 𝐶 a continuous
pseudocontractive map. We denote 𝐵 = (2𝐼 − 𝑇)−1. Then the
following holds.

(i) The map 𝐵 is a nonexpansive self-mapping on 𝐶.

(ii) If lim
𝑛→∞

‖𝑥
𝑛
−𝑇𝑥
𝑛
‖ = 0, then lim

𝑛→∞
‖𝑥
𝑛
−𝐵𝑥
𝑛
‖ =

0.

Lemma 10 (see [23]). Assume that 𝐴 is a strongly positive
linear bounded operator on a smooth Banach space 𝑋 with
coefficient 𝛾 > 0 and 0 < 𝜌 ≤ ‖𝐴‖−1. Then ‖𝐼 − 𝜌𝐴‖ ≤ 1 − 𝜌𝛾.

We now state and prove our first result.

Theorem 11. Let 𝐶 be a nonempty closed convex subset of a
uniformly smooth Banach space𝑋 such that𝐶±𝐶 ⊂ 𝐶. Let 𝑇 :
𝐶 → 𝐶 be a nonexpansive mapping with Fix(𝑇) ̸= 0 and 𝐹 :
𝐶 → 𝐶 𝛼-strongly accretive and 𝜆-strictly pseudocontractive
with 𝛼 + 𝜆 > 1. Let 𝑓 : 𝐶 → 𝐶 be a fixed contractive mapping
with contractive coefficient𝛽 ∈ (0, 𝛾

0
), 𝛾
0
= 1−√(1 − 𝛼)/𝜆. Let

𝐴 : 𝐶 → 𝐶 be a 𝛾-strongly positive linear bounded operator
with 𝛾𝛽 < 1. Let {𝑥

𝑡
} be defined by

𝑥
𝑡
= (𝐼 − 𝜃

𝑡
𝐹)𝑇𝑥

𝑡
+ 𝜃
𝑡
[𝑓 (𝑥
𝑡
) − 𝑡 (𝐴𝑓 (𝑥

𝑡
) − 𝑇𝑥

𝑡
)] , (24)

where lim
𝑡→0

𝜃
𝑡
= 0. Then, as 𝑡 → 0, {𝑥

𝑡
} converges strongly

to some fixed point 𝑧 of 𝑇, which is the unique solution in
Fix(𝑇) to the VIP:

⟨(𝐹 − 𝑓) 𝑧, 𝐽 (𝑧 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Fix (𝑇) . (25)

Proof. First, we claim that 𝛾
0
< 𝛼. Indeed, it is known

that strongly accretive constant 𝛼 ∈ (0, 1) and strictly
pseudocontractive constant 𝜆 ∈ (0, 1). Moreover, observe
that

√(1 − 𝛼) 𝜆 < 1 ⇐⇒ 1 − 𝛼 < √
1 − 𝛼

𝜆
⇐⇒ 𝛾

0
< 𝛼. (26)

Let us show that the net {𝑥
𝑡
} is defined well. As a matter

of fact, we define the mapping 𝑆
𝑡
: 𝐶 → 𝐶 as follows:

𝑆
𝑡
𝑥 = (𝐼 − 𝜃

𝑡
𝐹)𝑇𝑥 + 𝜃

𝑡
[𝑓 (𝑥) − 𝑡 (𝐴𝑓 (𝑥) − 𝑇𝑥)] , ∀𝑥 ∈ 𝐶.

(27)

Since lim
𝑡→0

𝜃
𝑡
= 0, we may assume, without loss of

generality, that 𝜃
𝑡
∈ (0, 1) for all 𝑡 ∈ (0, 𝜖

0
), where 𝜖

0
=

min{(𝛾
0
− 𝛽)/2(1 − 𝛾𝛽), ‖𝐴‖

−1
}. Utilizing Lemmas 6 and 10,

we obtain that for each 𝑡 ∈ (0, 𝜖
0
)

⟨𝑆
𝑡
𝑥 − 𝑆
𝑡
𝑦, 𝐽 (𝑥 − 𝑦)⟩

= ⟨(𝐼 − 𝜃
𝑡
𝐹)𝑇𝑥 − (𝐼 − 𝜃

𝑡
𝐹)𝑇𝑦, 𝐽 (𝑥 − 𝑦)⟩

+ 𝜃
𝑡
⟨(𝐼 − 𝑡𝐴) 𝑓 (𝑥) − (𝐼 − 𝑡𝐴) 𝑓 (𝑦) , 𝐽 (𝑥 − 𝑦)⟩

+ 𝜃
𝑡
𝑡 ⟨𝑇𝑥 − 𝑇𝑦, 𝐽 (𝑥 − 𝑦)⟩

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝜃𝑡𝐹)𝑇𝑥 − (𝐼 − 𝜃𝑡𝐹)𝑇𝑦

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡

󵄩󵄩󵄩󵄩(𝐼 − 𝑡𝐴) 𝑓 (𝑥) − (𝐼 − 𝑡𝐴) 𝑓 (𝑦)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡
𝑡
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

≤ (1 − 𝜃
𝑡
(1 − √

1 − 𝛼

𝜆
))

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡
(1 − 𝑡𝛾)

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + 𝑡𝜃𝑡

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜃
𝑡
𝛾
0
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑡
(1 − 𝑡𝛾) 𝛽

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝑡𝜃
𝑡

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

= [1 − 𝜃
𝑡
(𝛾
0
− 𝛽 − 𝑡 (1 − 𝛾𝛽))]

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

≤ [1 − 𝜃
𝑡
(𝛾
0
− 𝛽 −

𝛾
0
− 𝛽

2 (1 − 𝛾𝛽)
(1 − 𝛾𝛽))]

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

= (1 −
1

2
𝜃
𝑡
(𝛾
0
− 𝛽))

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

.

(28)

It follows that for each 𝑡 ∈ (0, 𝜖
0
), 𝑆
𝑡
: 𝐶 → 𝐶 is a

continuous and strongly pseudocontractive mapping with
pseudocontractive coefficient 1 − (1/2)𝜃

𝑡
(𝛾
0
− 𝛽). Hence, by

Lemma 7 we know that there exists a unique fixed point in𝐶,
denoted by𝑥

𝑡
, which uniquely solves the fixed point equation:

𝑥
𝑡
= (𝐼 − 𝜃

𝑡
𝐹)𝑇𝑥

𝑡
+ 𝜃
𝑡
[𝑓 (𝑥
𝑡
) − 𝑡 (𝐴𝑓 (𝑥

𝑡
) − 𝑇𝑥

𝑡
)] . (29)

Let us show the uniqueness of the solution of VIP (25).
Suppose both 𝑧

1
∈ Fix(𝑇) and 𝑧

2
∈ Fix(𝑇) are solutions to

VIP (25). Then we have

⟨(𝐹 − 𝑓) 𝑧
1
, 𝐽 (𝑧
1
− 𝑧
2
)⟩ ≤ 0,

⟨(𝐹 − 𝑓) 𝑧
2
, 𝐽 (𝑧
2
− 𝑧
1
)⟩ ≤ 0.

(30)

Adding up the above two inequalities, we obtain

⟨(𝐹 − 𝑓) 𝑧
1
− (𝐹 − 𝑓) 𝑧

2
, 𝐽 (𝑧
1
− 𝑧
2
)⟩ ≤ 0. (31)
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Note that

⟨(𝐹 − 𝑓) 𝑧
1
− (𝐹 − 𝑓) 𝑧

2
, 𝐽 (𝑧
1
− 𝑧
2
)⟩

= ⟨𝐹𝑧
1
− 𝐹𝑧
2
, 𝐽 (𝑧
1
− 𝑧
2
)⟩

− ⟨𝑓 (𝑧
1
) − 𝑓 (𝑧

2
) , 𝐽 (𝑧

1
− 𝑧
2
)⟩

≥ 𝛼
󵄩󵄩󵄩󵄩𝑧1 − 𝑧2

󵄩󵄩󵄩󵄩

2

− 𝛽
󵄩󵄩󵄩󵄩𝑧1 − 𝑧2

󵄩󵄩󵄩󵄩

2

= (𝛼 − 𝛽)
󵄩󵄩󵄩󵄩𝑧1 − 𝑧2

󵄩󵄩󵄩󵄩

2

≥ 0.

(32)

Taking into account 𝛼−𝛽 > 0, we have 𝑧
1
= 𝑧
2
, and hence the

uniqueness is proved.We use 𝑧̃ to denote the unique solution
of VIP (25).

Next, we prove that {𝑥
𝑡
: 𝑡 ∈ (0, 𝜖

0
)} is bounded. Indeed,

we note that 0 < 𝜃
𝑡
< 1, ∀𝑡 ∈ (0, 𝜖

0
). Take a fixed 𝑝 ∈

Fix(𝑇) arbitrarily. Utilizing Lemma 10 we deduce that for all
𝑡 ∈ (0, 𝜖

0
)

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

2

= ⟨(𝐼 − 𝜃
𝑡
𝐹)𝑇𝑥

𝑡
+ 𝜃
𝑡
[𝑓 (𝑥
𝑡
) − 𝑡 (𝐴𝑓 (𝑥

𝑡
) − 𝑇𝑥

𝑡
)]

− 𝑝, 𝐽 (𝑥
𝑡
− 𝑝)⟩

= ⟨(𝐼 − 𝜃
𝑡
𝐹)𝑇𝑥

𝑡
− (𝐼 − 𝜃

𝑡
𝐹)𝑇𝑝, 𝐽 (𝑥

𝑡
− 𝑝)⟩

+ 𝜃
𝑡
⟨(𝐼 − 𝑡𝐴) 𝑓 (𝑥

𝑡
) − (𝐼 − 𝑡𝐴) 𝑓 (𝑝) , 𝐽 (𝑥

𝑡
− 𝑝)⟩

+ 𝜃
𝑡
𝑡 ⟨𝑇𝑥
𝑡
− 𝑝, 𝐽 (𝑥

𝑡
− 𝑝)⟩ − 𝜃

𝑡
⟨(𝐹 − 𝑓) 𝑝, 𝐽 (𝑥

𝑡
− 𝑝)⟩

+ 𝜃
𝑡
𝑡 ⟨(𝐼 − 𝐴𝑓) 𝑝, 𝐽 (𝑥

𝑡
− 𝑝)⟩

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝜃𝑡𝐹)𝑇𝑥𝑡 − (𝐼 − 𝜃𝑡𝐹)𝑇𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡

󵄩󵄩󵄩󵄩(𝐼 − 𝑡𝐴) 𝑓 (𝑥𝑡) − (𝐼 − 𝑡𝐴) 𝑓 (𝑝)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡
𝑡
󵄩󵄩󵄩󵄩𝑇𝑥𝑡 − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜃𝑡

󵄩󵄩󵄩󵄩(𝐹 − 𝑓) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡
𝑡
󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝜃
𝑡
(1 − √

1 − 𝛼

𝜆
))

󵄩󵄩󵄩󵄩𝑇𝑥𝑡 − 𝑇𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡
(1 − 𝑡𝛾)

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑡) − 𝑓 (𝑝)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡
𝑡
󵄩󵄩󵄩󵄩𝑇𝑥𝑡 − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜃𝑡

󵄩󵄩󵄩󵄩(𝐹 − 𝑓) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡
𝑡
󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝜃
𝑡
𝛾
0
)
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑡
(1 − 𝑡𝛾) 𝛽

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑡
𝑡
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑡

󵄩󵄩󵄩󵄩(𝐹 − 𝑓) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡
𝑡
󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

= [1 − 𝜃
𝑡
(𝛾
0
− 𝛽 − 𝑡 (1 − 𝛾𝛽))]

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑡

󵄩󵄩󵄩󵄩(𝐹 − 𝑓) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜃𝑡𝑡

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

≤ [1 − 𝜃
𝑡
(𝛾
0
− 𝛽 −

𝛾
0
− 𝛽

2 (1 − 𝛾𝛽)
(1 − 𝛾𝛽))]

×
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑡

󵄩󵄩󵄩󵄩(𝐹 − 𝑓) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡
𝑡
󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

= (1 −
1

2
𝜃
𝑡
(𝛾
0
− 𝛽))

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑡

󵄩󵄩󵄩󵄩(𝐹 − 𝑓) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜃
𝑡
𝑡
󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩 ,

(33)

which immediately yields

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑝
󵄩󵄩󵄩󵄩 ≤

2

𝛾
0
− 𝛽

(
󵄩󵄩󵄩󵄩(𝐹 − 𝑓) 𝑝

󵄩󵄩󵄩󵄩 + 𝑡
󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩)

≤
2

𝛾
0
− 𝛽

(
󵄩󵄩󵄩󵄩(𝐹 − 𝑓) 𝑝

󵄩󵄩󵄩󵄩 + ‖𝐴‖
−1 󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩) .

(34)

Thus {𝑥
𝑡
: 𝑡 ∈ (0, 𝜖

0
)} is bounded.

Assume that {𝑡
𝑛
} ⊂ (0, 𝜖

0
) and 𝑡

𝑛
→ 0 as 𝑛 → ∞. Set

𝜃
𝑛
= 𝜃
𝑡
𝑛

and 𝑥
𝑛
:= 𝑥
𝑡
𝑛

, and define 𝜇 : 𝐶 → R by 𝜇(𝑥) =
LIM‖𝑥

𝑛
− 𝑥‖
2
, ∀𝑥 ∈ 𝐶, where LIM is a Banach limit on 𝑙∞.

Let

𝐾 = {𝑥 ∈ 𝐶 : 𝜇 (𝑥) = min
𝑦∈𝐶

LIM󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2

} . (35)

We see easily that 𝐾 is a nonempty closed convex subset of
𝑋. Note that ‖𝑥

𝑛
− 𝑇𝑥
𝑛
‖ = 𝜃

𝑛
‖𝑓(𝑥
𝑛
) − 𝑡
𝑛
(𝐴𝑓(𝑥

𝑛
) − 𝑇𝑥

𝑛
) −

𝐹𝑇𝑥
𝑛
‖ → 0 as 𝑛 → ∞. In terms of Lemma 9, we know that

the mapping 𝐵 = (2𝐼 − 𝑇)−1 : 𝐶 → 𝐶 is nonexpansive and
Fix(𝑇) = Fix(𝐵) and lim

𝑛→∞
‖𝑥
𝑛
−𝐵𝑥
𝑛
‖ = 0, where 𝐼 denotes

the identity operator. It follows that

𝜇 (𝐵𝑥) = LIM󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐵𝑥
󵄩󵄩󵄩󵄩

2

= LIM󵄩󵄩󵄩󵄩𝐵𝑥𝑛 − 𝐵𝑥
󵄩󵄩󵄩󵄩

2

≤ LIM󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩

2

= 𝜇 (𝑥) ,

(36)

which implies that 𝐵(𝐾) ⊂ 𝐾; that is, 𝐾 is invariant under 𝐵.
Since a uniformly smooth Banach space has the fixed point
property for nonexpansive mapping, 𝐵 has a fixed point, say
𝑧 ∈ 𝐾. Since 𝑧 is also a minimizer of 𝜇 over 𝐶, we have that,
for 𝑡 ∈ (0, 𝜖

0
) and 𝑥 ∈ 𝐶,

0 ≤
𝜇 (𝑧 + 𝑡 (𝑥 − 𝐹𝑧)) − 𝜇 (𝑧)

𝑡

= LIM
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧 + 𝑡 (𝐹𝑧 − 𝑥)

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

𝑡

= LIM ( ( ⟨𝑥
𝑛
− 𝑧, 𝐽 (𝑥

𝑛
− 𝑧 + 𝑡 (𝐹𝑧 − 𝑥))⟩

+ 𝑡 ⟨𝐹𝑧 − 𝑥, 𝐽 (𝑥
𝑛
− 𝑧 + 𝑡 (𝐹𝑧 − 𝑥))⟩

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

) 𝑡
−1
) .

(37)
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Since 𝑋 is uniformly smooth, we conclude that the duality
mapping 𝐽 is norm-to-norm uniformly continuous on any
bounded subset of 𝑋. Letting 𝑡 → 0, we find that the two
limits above can be interchanged and obtain

LIM ⟨𝑥 − 𝐹𝑧, 𝐽 (𝑥
𝑛
− 𝑧)⟩ ≤ 0, ∀𝑥 ∈ 𝐶. (38)

On the other hand, we have

𝑥
𝑛
− 𝑧

= (𝐼 − 𝜃
𝑛
𝐹)𝑇𝑥

𝑛
− (𝐼 − 𝜃

𝑛
𝐹)𝑇𝑧

+ 𝜃
𝑛
[(𝐼 − 𝑡

𝑛
𝐴)𝑓 (𝑥

𝑛
) − (𝐼 − 𝑡

𝑛
𝐴)𝑓 (𝑧) + 𝑡

𝑛
(𝑇𝑥
𝑛
− 𝑧)]

+ 𝜃
𝑛
(𝑓 − 𝐹) 𝑧 + 𝜃

𝑛
𝑡
𝑛
(𝐼 − 𝐴𝑓) 𝑧.

(39)

It follows that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

= ⟨(𝐼 − 𝜃
𝑛
𝐹)𝑇𝑥

𝑛
− (𝐼 − 𝜃

𝑛
𝐹)𝑇𝑧, 𝐽 (𝑥

𝑛
− 𝑧)⟩

+ 𝜃
𝑛
[⟨(𝐼 − 𝑡

𝑛
𝐴) (𝑓 (𝑥

𝑛
) − 𝑓 (𝑧)) , 𝐽 (𝑥

𝑛
− 𝑧)⟩

+ 𝑡
𝑛
⟨𝑇𝑥
𝑛
− 𝑧, 𝐽 (𝑥

𝑛
− 𝑧)⟩]

+ 𝜃
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛
− 𝑧)⟩

+ 𝜃
𝑛
𝑡
𝑛
⟨(𝐼 − 𝐴𝑓) 𝑧, 𝐽 (𝑥

𝑛
− 𝑧)⟩

≤ (1 − 𝜃
𝑛
𝛾
0
)
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑧

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

+ 𝜃
𝑛
[(1 − 𝑡

𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑧)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

+ 𝑡
𝑛

󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩]

+ 𝜃
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛
− 𝑧)⟩

+ 𝜃
𝑛
𝑡
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

≤ (1 − 𝜃
𝑛
𝛾
0
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
[(1 − 𝑡

𝑛
𝛾) 𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝑡
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

]

+ 𝜃
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛
− 𝑧)⟩

+ 𝜃
𝑛
𝑡
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

= [1 − 𝜃
𝑛
(𝛾
0
− 𝛽 − 𝑡

𝑛
(1 − 𝛾𝛽))]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛
− 𝑧)⟩

+ 𝜃
𝑛
𝑡
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

≤ [1 − 𝜃
𝑛
(𝛾
0
− 𝛽 −

𝛾
0
− 𝛽

2 (1 − 𝛾𝛽)
(1 − 𝛾𝛽))]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛
− 𝑧)⟩

+ 𝜃
𝑛
𝑡
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

= (1 −
1

2
𝜃
𝑛
(𝛾
0
− 𝛽))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝜃
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛
− 𝑧)⟩

+ 𝜃
𝑛
𝑡
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩 .

(40)

Therefore,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

≤
2

𝛾
0
− 𝛽

× (⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥
𝑛
− 𝑧)⟩ + 𝑡

𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩) .

(41)

Combining (38) and (41), we get

LIM󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

≤
2

𝛾
0
− 𝛽

LIM ⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥
𝑛
− 𝑧)⟩ ≤ 0,

(42)

which leads to LIM‖𝑥
𝑛
− 𝑧‖
2
= 0. Hence there exists a

subsequence which is still denoted as {𝑥
𝑛
} such that 𝑥

𝑛
→ 𝑧

as 𝑛 → ∞.
Next, we prove that 𝑧 solves VIP (25). Since

𝑥
𝑡
= (𝐼 − 𝜃

𝑡
𝐹)𝑇𝑥

𝑡
+ 𝜃
𝑡
[𝑓 (𝑥
𝑡
) − 𝑡 (𝐴𝑓 (𝑥

𝑡
) − 𝑇𝑥

𝑡
)] , (43)

we can deduce that

𝑥
𝑡
− 𝑇𝑥
𝑡
= 𝜃
𝑡
(𝑓 (𝑥
𝑡
) − 𝐹𝑇𝑥

𝑡
) + 𝜃
𝑡
𝑡 (𝑇𝑥
𝑡
− 𝐴𝑓 (𝑥

𝑡
)) . (44)

Since 𝑇 is nonexpansive, 𝐼 − 𝑇 is accretive. So, from the
accretivity of 𝐼 − 𝑇, it follows that, for any fixed 𝑝 ∈ Fix(𝑇),

0 ≤ ⟨(𝐼 − 𝑇) 𝑥
𝑡
− (𝐼 − 𝑇) 𝑝, 𝐽 (𝑥

𝑡
− 𝑝)⟩

= ⟨(𝐼 − 𝑇) 𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑝)⟩

= 𝜃
𝑡
⟨𝑓 (𝑥
𝑡
) − 𝐹𝑇𝑥

𝑡
, 𝐽 (𝑥
𝑡
− 𝑝)⟩

+ 𝜃
𝑡
𝑡 ⟨𝑇𝑥
𝑡
− 𝐴𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑝)⟩

= 𝜃
𝑡
⟨(𝑓 − 𝐹) 𝑥

𝑡
, 𝐽 (𝑥
𝑡
− 𝑝)⟩

+ 𝜃
𝑡
⟨𝐹𝑥
𝑡
− 𝐹𝑇𝑥

𝑡
, 𝐽 (𝑥
𝑡
− 𝑝)⟩

+ 𝜃
𝑡
𝑡 ⟨𝑇𝑥
𝑡
− 𝐴𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑝)⟩ .

(45)

This implies that

⟨(𝐹 − 𝑓) 𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑝)⟩

≤⟨𝐹𝑥
𝑡
− 𝐹𝑇𝑥

𝑡
, 𝐽 (𝑥
𝑡
− 𝑝)⟩+ 𝑡 ⟨𝑇𝑥

𝑡
− 𝐴𝑓 (𝑥

𝑡
) ,𝐽 (𝑥

𝑡
− 𝑝)⟩ .

(46)
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Now replacing 𝑡 with 𝑡
𝑛
, letting 𝑛 → ∞, and noticing the

boundedness of {𝑇𝑥
𝑡
𝑛

− 𝐴𝑓(𝑥
𝑡
𝑛

)} and the fact that 𝐹𝑥
𝑡
𝑛

−

𝐹𝑇𝑥
𝑡
𝑛

→ 𝐹𝑧 − 𝐹𝑇𝑧 = 0 for 𝑧 ∈ Fix(𝑇), we have that

⟨(𝐹 − 𝑓) 𝑧, 𝐽 (𝑧 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Fix (𝑇) . (47)

That is, 𝑧 ∈ Fix(𝑇) is a solution of VIP (25). Then 𝑧 = 𝑧̃. In
summary, we infer that each cluster point of {𝑥

𝑛
} is equal to 𝑧

as 𝑡
𝑛
→ 0. This completes the proof.

4. Relaxed Viscosity Algorithms
for Hierarchical Fixed Point
Problems for a Countable Family of
Nonexpansive Mappings

In this section, we propose relaxed implicit and explicit
viscosity algorithms for solving hierarchical fixed point prob-
lems for a countable family of nonexpansive mappings and
show strong convergence theorems. For this purpose, we will
use the following lemmas in the sequel.

Lemma 12 (see [24]). Let 𝐶 be a nonempty closed convex
subset of a Banach space 𝑋. Let 𝑇

1
, 𝑇
2
, . . . be a sequence of

mappings of𝐶 into itself. Suppose that∑∞
𝑛=1

sup{‖𝑇
𝑛+1
𝑥−𝑇
𝑛
𝑥‖ :

𝑥 ∈ 𝐶} < ∞. Then, for each 𝑦 ∈ 𝐶, {𝑇
𝑛
𝑦} converges strongly

to some point of 𝐶. Moreover, let 𝑇 be a mapping of 𝐶 into
itself defined by 𝑇𝑦 = lim

𝑛→∞
𝑇
𝑛
𝑦, for all 𝑦 ∈ 𝐶. Then

lim
𝑛→∞

sup{‖𝑇𝑥 − 𝑇
𝑛
𝑥‖ : 𝑥 ∈ 𝐶} = 0.

Lemma 13 (see [1, Lemma 2.6]). Let 𝐶 be a nonempty closed
convex subset of a real Banach space 𝑋 which has uniformly
Gateaux differentiable norm. Let 𝑇 : 𝐶 → 𝐶 be a continuous
pseudocontractive mapping with Fix(𝑇) ̸= 0 and let 𝑓 : 𝐶 →

𝐶 be a fixed Lipschitzian strongly pseudocontractive mapping
with pseudocontractive coefficient 𝛽 ∈ (0, 1) and Lipschitzian
constant 𝐿 > 0. Let 𝐴 : 𝐶 → 𝐶 be a 𝛾-strongly positive linear
bounded operator with coefficient 𝛾 > 0. Assume that 𝐶 ± 𝐶 ⊂
𝐶 and that {𝑥

𝑡
} converges strongly to 𝑧 ∈ Fix(𝑇) as 𝑡 → 0,

where 𝑥
𝑡
is defined by 𝑥

𝑡
= 𝑡𝑓(𝑥

𝑡
) + (𝐼 − 𝑡𝐴)𝑇𝑥

𝑡
. Suppose that

{𝑥
𝑛
} ⊂ 𝐶 is bounded and that lim

𝑛→∞
‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0. Then

lim sup
𝑛→∞

⟨(𝑓 − 𝐴)𝑧, 𝐽(𝑥
𝑛
− 𝑧)⟩ ≤ 0.

Theorem 14. Let 𝐶 be a nonempty closed convex subset of a
uniformly smooth Banach space 𝑋 such that 𝐶 ± 𝐶 ⊂ 𝐶. Let
{𝑇
𝑖
}
∞

𝑖=0
be a countable family of nonexpansive mappings from𝐶

to itself such that Ω = ⋂∞
𝑖=0

Fix (𝑇
𝑖
) ̸= 0. Let 𝐹 : 𝐶 → 𝐶 be 𝛼-

strongly accretive and 𝜆-strictly pseudocontractive with 𝛼+𝜆 >
1, and let 𝑓 : 𝐶 → 𝐶 be a fixed contractive mapping with
contractive coefficient 𝛽 ∈ (0, 1). Let 𝐴 : 𝐶 → 𝐶 be a 𝛾-
strongly positive linear bounded operator with 𝛾 ∈ (𝛽, 1 + 𝛽).
For arbitrarily given 𝑥

0
∈ 𝐶, let the sequence {𝑥

𝑛
} be generated

iteratively by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑦
𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴) (𝐼 − 𝜖

𝑛
𝐹)𝑇
𝑛
𝑦
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑓 (𝑦
𝑛
) + (𝐼 − 𝜎

𝑛
𝐴)𝑇
𝑛
𝑦
𝑛
, ∀𝑛 ≥ 0,

(48)

where {𝛼
𝑛
}, {𝛽
𝑛
}, {𝜖
𝑛
}, and {𝜎

𝑛
} are four sequences in (0, 1)

satisfying the following conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= lim
𝑛→∞

𝛽
𝑛
= 0;

(ii) lim
𝑛→∞

(𝜖
𝑛
/𝛼
𝑛
) = 0, lim sup

𝑛→∞
(𝜎
𝑛
/𝛼
𝑛
) < ∞, and

∑
∞

𝑛=0
(𝛼
𝑛
/(𝛼
𝑛
+ 𝛽
𝑛
)) = ∞.

Assume that∑∞
𝑛=0

sup
𝑥∈𝐷
‖𝑇
𝑛+1
𝑥−𝑇
𝑛
𝑥‖ < ∞ for any bounded

subset 𝐷 of 𝐶, let 𝑇 be a mapping of 𝐶 into itself defined by
𝑇𝑥 = lim

𝑛→∞
𝑇
𝑛
𝑥 for all 𝑥 ∈ 𝐶, and suppose that Fix(𝑇) =

⋂
∞

𝑖=0
Fix(𝑇
𝑖
). Then, {𝑥

𝑛
} converges strongly to a point 𝑧 of Ω

such that 𝑧 is a unique solution in Ω to the VIP:

⟨(𝑓 − 𝐴) 𝑧, 𝐽 (𝑝 − 𝑧)⟩ ≤ 0, ∀𝑝 ∈ Ω. (49)

Proof. By condition (i), we may assume, without loss of
generality, that 𝛼

𝑛
≤ (1 − 𝛽

𝑛
)‖𝐴‖
−1. Since 𝐴 is a 𝛾-strongly

positive linear bounded operator on 𝐶, from (11) we have

‖𝐴‖ = sup {|⟨𝐴𝑢, 𝐽 (𝑢)⟩| : 𝑢 ∈ 𝐶, ‖𝑢‖ = 1} . (50)

Observe that

⟨((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴) 𝑢, 𝐽 (𝑢)⟩ = 1 − 𝛽

𝑛
− 𝛼
𝑛
⟨𝐴𝑢, 𝐽 (𝑢)⟩

≥ 1 − 𝛽
𝑛
− 𝛼
𝑛
‖𝐴‖

≥ 0.

(51)

It follows that

󵄩󵄩󵄩󵄩(1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐴
󵄩󵄩󵄩󵄩

= sup {⟨((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴) 𝑢, 𝐽 (𝑢)⟩ : 𝑢 ∈ 𝐶, ‖𝑢‖ = 1}

= sup {1 − 𝛽
𝑛
− 𝛼
𝑛
⟨𝐴𝑢, 𝐽 (𝑢)⟩ : 𝑢 ∈ 𝐶, ‖𝑢‖ = 1}

≤ 1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾.

(52)

Next, we show that {𝑦
𝑛
} is well defined. For each 𝑛 ≥ 0,

define a mapping 𝑆
𝑛
: 𝐶 → 𝐶 by

𝑆
𝑛
𝑥 = 𝛼

𝑛
𝑓 (𝑥) + 𝛽

𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴) (𝐼 − 𝜖

𝑛
𝐹)𝑇
𝑛
𝑥,

∀𝑥 ∈ 𝐶.

(53)

For every 𝑥, 𝑦 ∈ 𝐶, we have

⟨𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦, 𝐽 (𝑥 − 𝑦)⟩

= 𝛼
𝑛
⟨𝑓 (𝑥) − 𝑓 (𝑦) , 𝐽 (𝑥 − 𝑦)⟩

+ ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴)

× ((𝐼 − 𝜖
𝑛
𝐹)𝑇
𝑛
𝑥 − (𝐼 − 𝜖

𝑛
𝐹)𝑇
𝑛
𝑦) , 𝐽 (𝑥 − 𝑦)⟩
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≤ 𝛼
𝑛
𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩(𝐼 − 𝜖𝑛𝐹)𝑇𝑛𝑥 − (𝐼 − 𝜖𝑛𝐹)𝑇𝑛𝑦

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾) (1 − 𝜖

𝑛
𝛾
0
)
󵄩󵄩󵄩󵄩𝑇𝑛𝑥 − 𝑇𝑛𝑦

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

= [1 − 𝛽
𝑛
− 𝛼
𝑛
(𝛾 − 𝛽)]

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

,

(54)

where 𝛾
0
= 1 − √(1 − 𝛼)/𝜆. Therefore, 𝑆

𝑛
is a continuous

strong pseudocontraction for each 𝑛 ≥ 0. By Lemma 7, we
see that there exists a unique fixed point 𝑦

𝑛
for each 𝑛 ≥ 0

such that

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑦
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((𝐼 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴) (𝐼 − 𝜖

𝑛
𝐹)𝑇
𝑛
𝑦
𝑛
.

(55)

That is, the sequence {𝑦
𝑛
} is well defined. Next, we prove that

{𝑥
𝑛
} is bounded. Take a fixed 𝑝 ∈ Ω arbitrarily. Taking into

account lim
𝑛→∞

(𝜖
𝑛
/𝛼
𝑛
) = 0, wemay assume that there exists

a constant 𝜏 ∈ (0, 1) such that 𝜖
𝑛
≤ 𝜏𝛼
𝑛
for all 𝑛 ≥ 0. Then we

have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

= 𝛼
𝑛
⟨𝑓 (𝑦
𝑛
) − 𝐴𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

+ 𝛽
𝑛
⟨𝑥
𝑛
− 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

+ ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴) ((𝐼 − 𝜖

𝑛
𝐹)𝑇
𝑛
𝑦
𝑛
− (𝐼 − 𝜖

𝑛
𝐹) 𝑝) ,

𝐽 (𝑦
𝑛
− 𝑝)⟩

− 𝜖
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝐹𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

≤ 𝛼
𝑛
⟨𝑓 (𝑦
𝑛
) − 𝑓 (𝑝) , 𝐽 (𝑦

𝑛
− 𝑝)⟩

+ 𝛼
𝑛
⟨𝑓 (𝑝) − 𝐴𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾)
󵄩󵄩󵄩󵄩(𝐼 − 𝜖𝑛𝐹)𝑇𝑛𝑦𝑛 − (𝐼 − 𝜖𝑛𝐹) 𝑝

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜖𝑛 (1 − 𝛽𝑛 − 𝛼𝑛𝛾)
󵄩󵄩󵄩󵄩𝐹𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛽
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
⟨𝑓 (𝑝) − 𝐴𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾) (1 − 𝜖

𝑛
𝛾
0
)
󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜖
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝐹𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
𝛽
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
⟨𝑓 (𝑝) − 𝐴𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜖𝑛

󵄩󵄩󵄩󵄩𝐹𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

= (1 − 𝛽
𝑛
− 𝛼
𝑛
(𝛾 − 𝛽))

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜖𝑛

󵄩󵄩󵄩󵄩𝐹𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
− 𝛼
𝑛
(𝛾 − 𝛽))

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (𝛼
𝑛
+ 𝜖
𝑛
) (
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐹𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
− 𝛼
𝑛
(𝛾 − 𝛽))

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
(1 + 𝜏) (

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐹𝑝
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

(56)

which implies that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

𝛽
𝑛

𝛽
𝑛
+ 𝛼
𝑛
(𝛾 − 𝛽)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+
𝛼
𝑛
(𝛾 − 𝛽)

𝛽
𝑛
+ 𝛼
𝑛
(𝛾 − 𝛽)

⋅
(1 + 𝜏) (

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐹𝑝
󵄩󵄩󵄩󵄩)

𝛾 − 𝛽
.

(57)

Therefore, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜎𝑛𝑓 (𝑦𝑛) + (𝐼 − 𝜎𝑛𝐴)𝑇𝑛𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜎𝑛 (𝑓 (𝑦𝑛) − 𝑓 (𝑝)) + (𝐼 − 𝜎𝑛𝐴)𝑇𝑛𝑦𝑛

− (𝐼 − 𝜎
𝑛
𝐴)𝑇
𝑛
𝑝 + 𝜎
𝑛
(𝑓 (𝑝) − 𝐴𝑝)

󵄩󵄩󵄩󵄩

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑦𝑛) − 𝑓 (𝑝)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝐼 − 𝜎𝑛𝐴) (𝑇𝑛𝑦𝑛 − 𝑇𝑛𝑝)

󵄩󵄩󵄩󵄩 + 𝜎𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝

󵄩󵄩󵄩󵄩

≤ 𝜎
𝑛
𝛽
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝜎𝑛𝛾)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜎𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝

󵄩󵄩󵄩󵄩

= (1 − 𝜎
𝑛
(𝛾 − 𝛽))

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜎𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝜎
𝑛
(𝛾 − 𝛽))

× [
𝛽
𝑛

𝛽
𝑛
+ 𝛼
𝑛
(𝛾 − 𝛽)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 +

𝛼
𝑛
(𝛾 − 𝛽)

𝛽
𝑛
+ 𝛼
𝑛
(𝛾 − 𝛽)

⋅
(1 + 𝜏) (

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐹𝑝
󵄩󵄩󵄩󵄩)

𝛾 − 𝛽
]
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+ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝜎
𝑛
(𝛾 − 𝛽))

×max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,
(1 + 𝜏) (

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐹𝑝
󵄩󵄩󵄩󵄩)

𝛾 − 𝛽
}

+ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩

= (1 − 𝜎
𝑛
(𝛾 − 𝛽))

×max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,
(1 + 𝜏) (

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐹𝑝
󵄩󵄩󵄩󵄩)

𝛾 − 𝛽
}

+ 𝜎
𝑛
(𝛾 − 𝛽)

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩

𝛾 − 𝛽

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,
(1 + 𝜏) (

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐹𝑝
󵄩󵄩󵄩󵄩)

𝛾 − 𝛽
,

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩

𝛾 − 𝛽
}

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,
(1 + 𝜏) (

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐹𝑝
󵄩󵄩󵄩󵄩)

𝛾 − 𝛽
} .

(58)

By induction, we get

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑝
󵄩󵄩󵄩󵄩 ,
(1 + 𝜏) (

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐹𝑝
󵄩󵄩󵄩󵄩)

𝛾 − 𝛽
} ,

∀𝑛 ≥ 0.

(59)

Therefore, {𝑥
𝑛
} is bounded and so are the sequences

{𝑦
𝑛
}, {𝑇
𝑛
𝑦
𝑛
}. We observe that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑦𝑛) − 𝐴𝑇𝑛𝑦𝑛) + 𝛽𝑛 (𝑥𝑛 − 𝑇𝑛𝑦𝑛)

− 𝜖
𝑛
((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝐹𝑇

𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑦𝑛) − 𝐴𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩 + 𝛽𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

+ 𝜖
𝑛

󵄩󵄩󵄩󵄩((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐴)𝐹𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑦𝑛) − 𝐴𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩 + 𝛽𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

+ 𝜖
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝐹𝑇𝑛𝑦𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑦𝑛) − 𝐴𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩 + 𝛽𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

+ 𝜖
𝑛

󵄩󵄩󵄩󵄩𝐹𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩 ,

(60)

which go together with condition (i) and 𝜖
𝑛
≤ 𝜏𝛼
𝑛
, ∀𝑛 ≥ 0,

implying that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩 = 0. (61)

On the other hand, we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩 . (62)

Utilizing Lemma 12, we immediately derive

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩 = 0. (63)

Let 𝑥
𝑡
= 𝑡𝑓(𝑥

𝑡
) + (𝐼 − 𝑡𝐴)𝑇𝑥

𝑡
. Utilizing [1, Lemma 2.5] and

Lemma 13, we conclude that {𝑥
𝑡
} converges strongly to 𝑧 ∈

Fix(𝑇) = ⋂∞
𝑖=0

Fix(𝑇
𝑖
) = Ω and

lim sup
𝑛→∞

⟨(𝑓 − 𝐴) 𝑧, 𝐽 (𝑦
𝑛
− 𝑧)⟩ ≤ 0. (64)

Finally, we show that 𝑥
𝑛
→ 𝑧 as 𝑛 → ∞. We observe that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

= 𝛼
𝑛
⟨𝑓 (𝑦
𝑛
) − 𝐴𝑧, 𝐽 (𝑦

𝑛
− 𝑧)⟩ + 𝛽

𝑛
⟨𝑥
𝑛
− 𝑧, 𝐽 (𝑦

𝑛
− 𝑧)⟩

+ ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
𝐴) (𝑇
𝑛
𝑦
𝑛
− 𝑧) , 𝐽 (𝑦

𝑛
− 𝑧)⟩

− 𝜖
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝛼

𝑛
𝐴)𝐹𝑇

𝑛
𝑦
𝑛
, 𝐽 (𝑦
𝑛
− 𝑧)⟩

≤ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
⟨𝑓 (𝑦
𝑛
) − 𝑓 (𝑧) , 𝐽 (𝑦

𝑛
− 𝑧)⟩

+ 𝛼
𝑛
⟨𝑓 (𝑧) − 𝐴𝑧, 𝐽 (𝑦

𝑛
− 𝑧)⟩

+ 𝜖
𝑛

󵄩󵄩󵄩󵄩((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛𝐴)𝐹𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩 + 𝛼𝑛𝛽

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
⟨𝑓 (𝑧) − 𝐴𝑧, 𝐽 (𝑦

𝑛
− 𝑧)⟩

+ 𝜖
𝑛
(1 − 𝛽

𝑛
− 𝛼
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝐹𝑇𝑛𝑦𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩
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≤ (1 − 𝛽
𝑛
− 𝛼
𝑛
𝛾)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+
𝛽
𝑛

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+
𝛽
𝑛

2

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝛽
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
⟨𝑓 (𝑧) − 𝐴𝑧, 𝐽 (𝑦

𝑛
− 𝑧)⟩

+ 𝜖
𝑛

󵄩󵄩󵄩󵄩𝐹𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

= (1 −
𝛽
𝑛

2
− 𝛼
𝑛
(𝛾 − 𝛽))

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+
𝛽
𝑛

2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
⟨𝑓 (𝑧) − 𝐴𝑧, 𝐽 (𝑦

𝑛
− 𝑧)⟩ + 𝜖

𝑛

󵄩󵄩󵄩󵄩𝐹𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩 ,

(65)

which implies that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

≤
𝛽
𝑛

𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+
2𝛼
𝑛

𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽)

⟨𝑓 (𝑧) − 𝐴𝑧, 𝐽 (𝑦
𝑛
− 𝑧)⟩

+
2𝜖
𝑛

𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽)

󵄩󵄩󵄩󵄩𝐹𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

= (1 −
2𝛼
𝑛
(𝛾 − 𝛽)

𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽)

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+
2𝛼
𝑛
(𝛾 − 𝛽)

𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽)

× (
⟨𝑓 (𝑧) − 𝐴𝑧, 𝐽 (𝑦

𝑛
− 𝑧)⟩

𝛾 − 𝛽
+
𝜖
𝑛

𝛼
𝑛

⋅

󵄩󵄩󵄩󵄩𝐹𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

𝛾 − 𝛽
) .

(66)

Furthermore, utilizing Lemma 3 from the last relation we
have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜎𝑛 (𝑓 (𝑦𝑛) − 𝑓 (𝑧)) + (𝐼 − 𝜎𝑛𝐴)𝑇𝑛𝑦𝑛

− (𝐼 − 𝜎
𝑛
𝐴)𝑇
𝑛
𝑧 + 𝜎
𝑛
(𝑓 (𝑧) − 𝐹 (𝑧))

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝜎𝑛 (𝑓 (𝑦𝑛) − 𝑓 (𝑧))

+ (𝐼 − 𝜎
𝑛
𝐴)𝑇
𝑛
𝑦
𝑛
− (𝐼 − 𝜎

𝑛
𝐴)𝑇
𝑛
𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
⟨𝑓 (𝑧) − 𝐴𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩

≤ [𝜎
𝑛
𝛽
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩 + (1 − 𝜎𝑛𝛾)
󵄩󵄩󵄩󵄩𝑇𝑛𝑦𝑛 − 𝑇𝑛𝑧

󵄩󵄩󵄩󵄩]
2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝐴𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

≤ [𝜎
𝑛
𝛽
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩 + (1 − 𝜎𝑛𝛾)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩]
2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝐴𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

= (1 − 𝜎
𝑛
(𝛾 − 𝛽))

2󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝐴𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝐴𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

≤ (1 −
2𝛼
𝑛
(𝛾 − 𝛽)

𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽)

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+
2𝛼
𝑛
(𝛾 − 𝛽)

(𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽))

× (
⟨𝑓 (𝑧) − 𝐴𝑧, 𝐽 (𝑦

𝑛
− 𝑧)⟩

𝛾 − 𝛽

+
𝜖
𝑛

𝛼
𝑛

⋅

󵄩󵄩󵄩󵄩𝐹𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

𝛾 − 𝛽
)

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝐴𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

= (1 −
2𝛼
𝑛
(𝛾 − 𝛽)

𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽)

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+
2𝛼
𝑛
(𝛾 − 𝛽)

𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽)

× {
⟨𝑓 (𝑧) − 𝐴𝑧, 𝐽 (𝑦

𝑛
− 𝑧)⟩

𝛾 − 𝛽
+
𝜖
𝑛

𝛼
𝑛

⋅

󵄩󵄩󵄩󵄩𝐹𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

𝛾 − 𝛽

+
𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽)

𝛾 − 𝛽
⋅
𝜎
𝑛

𝛼
𝑛

⋅
󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝐴𝑧

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩 } .

(67)

We note that
2𝛼
𝑛
(𝛾 − 𝛽)

𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽)

>
2𝛼
𝑛
(𝛾 − 𝛽)

2𝛽
𝑛
+ 2𝛼
𝑛

= (𝛾 − 𝛽)
𝛼
𝑛

𝛼
𝑛
+ 𝛽
𝑛

. (68)

Therefore, condition (ii) leads to∑∞
𝑛=0
(2𝛼
𝑛
(𝛾−𝛽)/(𝛽

𝑛
+2𝛼
𝑛
(𝛾−

𝛽))) = ∞. In addition, since 𝛼
𝑛
→ 0, 𝛽

𝑛
→ 0, (𝜖

𝑛
/𝛼
𝑛
) → 0,

and lim sup
𝑛→∞

(𝜎
𝑛
/𝛼
𝑛
) < ∞, we get the following from (64)

lim sup
𝑛→∞

{
⟨𝑓 (𝑧) − 𝐴𝑧, 𝐽 (𝑦

𝑛
− 𝑧)⟩

𝛾 − 𝛽
+
𝜖
𝑛

𝛼
𝑛

⋅

󵄩󵄩󵄩󵄩𝐹𝑇𝑛𝑦𝑛
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

𝛾 − 𝛽

+
𝛽
𝑛
+ 2𝛼
𝑛
(𝛾 − 𝛽)

𝛾 − 𝛽
⋅
𝜎
𝑛

𝛼
𝑛

⋅
󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝐹 (𝑧)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩 } ≤ 0.

(69)

Applying Lemma 2, we have 𝑥
𝑛
→ 𝑧 as 𝑛 → ∞. This

completes the proof.



Abstract and Applied Analysis 11

Remark 15. Put 𝛼
𝑛
= 𝜎
𝑛
= 1/𝑛 and 𝛽

𝑛
= 𝜖
𝑛
= 1/𝑛

2.
Then {𝛼

𝑛
}, {𝛽
𝑛
}, {𝜖
𝑛
}, and {𝜎

𝑛
} satisfy conditions (i) and (ii)

of Theorem 14. But we note that 𝛼
𝑛
/𝛽
𝑛
= 𝑛 → ∞.

Remark 16. In the iterative scheme of Theorem 14, the first
iterative step 𝑦

𝑛
= 𝛼
𝑛
𝑓(𝑦
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
)𝐼 − 𝛼

𝑛
𝐴)(𝐼 −

𝜖
𝑛
𝐹)𝑇
𝑛
𝑦
𝑛
is a predictor step and the second iterative step

𝑥
𝑛+1

= 𝜎
𝑛
𝑓(𝑦
𝑛
) + (𝐼 − 𝜎

𝑛
𝐴)𝑇
𝑛
𝑦
𝑛
is a corrector step. Hence

our iteration process is the predictor-corrector method.

Remark 17. Theorem 14 extends and improvesTheorem 3.1 of
[10] to a great extent in the following aspects:

(i) 𝑢 is replaced by a fixed contractive mapping;
(ii) one continuous pseudocontractive mapping (includ-

ing nonexpansivemapping) is replaced by a countable
family of nonexpansive mappings;

(iii) condition𝛼
𝑛
/𝛽
𝑛
→ 0 is weakened to the one𝛼

𝑛
→ 0

and 𝛽
𝑛
→ 0 as 𝑛 → ∞;

(iv) we add a strongly positive linear bounded operator 𝐴
and a strongly accretive and strictly pseudocontrac-
tive mapping 𝐹 in our iterative algorithm.

Theorem 18. Let 𝐶 be a nonempty closed convex subset of
a uniformly smooth Banach space 𝑋 which has the weakly
sequentially continuous duality mapping 𝐽. Assume that 𝐶 ±
𝐶 ⊂ 𝐶. Let {𝑇

𝑖
}
∞

𝑖=0
be a countable family of nonexpansive

mappings from 𝐶 to itself such that Ω = ⋂
∞

𝑖=0
Fix(𝑇
𝑖
) ̸= 0.

Let 𝐹 : 𝐶 → 𝐶 be 𝛼-strongly accretive and 𝜆-strictly
pseudocontractive with 𝛼 + 𝜆 > 1, and let 𝑓 : 𝐶 → 𝐶 be
a fixed contractive mapping with contractive coefficient 𝛽 ∈

(0, 𝛾
0
), 𝛾
0
= 1 − √(1 − 𝛼)/𝜆. Let 𝐴 : 𝐶 → 𝐶 be a 𝛾-strongly

positive linear bounded operator with 𝛾𝛽 < 1. For arbitrarily
given 𝑥

0
∈ 𝐶, let the sequence {𝑥

𝑛
} be generated iteratively by

𝑥
𝑛+1

= (𝐼 − 𝛽
𝑛
𝐹)𝑇
𝑛
𝑥
𝑛
+ 𝛽
𝑛
[𝑓 (𝑥
𝑛
) − 𝛼
𝑛
(𝐴𝑓 (𝑥

𝑛
) − 𝑇
𝑛
𝑥
𝑛
)] ,

∀𝑛 ≥ 0,

(70)

where {𝛼
𝑛
} and {𝛽

𝑛
} are two sequences in (0, 1) satisfying the

following conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= lim
𝑛→∞

𝛽
𝑛
= 0 and ∑∞

𝑛=0
𝛽
𝑛
= ∞;

(ii) ∑∞
𝑛=1
|𝛽
𝑛
− 𝛽
𝑛−1
| < ∞ or lim

𝑛→∞
𝛽
𝑛−1
/𝛽
𝑛
= 1.

Assume that∑∞
𝑛=0

sup
𝑥∈𝐷
‖𝑇
𝑛+1
𝑥−𝑇
𝑛
𝑥‖ < ∞ for any bounded

subset 𝐷 of 𝐶, let 𝑇 be a mapping of 𝐶 into itself defined by
𝑇𝑥 = lim

𝑛→∞
𝑇
𝑛
𝑥 for all 𝑥 ∈ 𝐶, and suppose that Fix(𝑇) =

⋂
∞

𝑖=0
Fix(𝑇
𝑖
). Then, {𝑥

𝑛
} converges strongly to a point 𝑧 of Ω

such that 𝑧 is a unique solution in Ω to the VIP:

⟨(𝐹 − 𝑓) 𝑧, 𝐽 (𝑧 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Ω. (71)

Proof. First, since 𝐴 is a 𝛾-strongly positive linear bounded
operator on 𝐶, from (11) we have

‖𝐴‖ = sup {|⟨𝐴𝑢, 𝐽 (𝑢)⟩| : 𝑢 ∈ 𝐶, ‖𝑢‖ = 1} . (72)

Let us show that {𝑥
𝑛
} is bounded. Indeed, since

lim
𝑛→∞

𝛼
𝑛
= 0, without loss of generality, we may assume

that 0 < 𝛼
𝑛
≤ min{(𝛾

0
− 𝛽)/2(1 − 𝛾𝛽), ‖𝐴‖

−1
}, ∀𝑛 ≥ 0. Take

𝑝 ∈ Ω. Then it follows that 𝑝 = 𝑇
𝑛
𝑝, ∀𝑛 ≥ 0, and

𝑥
𝑛+1
− 𝑝 = (𝐼 − 𝛽

𝑛
𝐹)𝑇
𝑛
𝑥
𝑛
− (𝐼 − 𝛽

𝑛
𝐹)𝑇
𝑛
𝑝

+ 𝛽
𝑛
[(𝐼 − 𝛼

𝑛
𝐴)𝑓 (𝑥

𝑛
) − (𝐼 − 𝛼

𝑛
𝐴)𝑓 (𝑝)

+𝛼
𝑛
(𝑇
𝑛
𝑥
𝑛
− 𝑝)]

+ 𝛽
𝑛
(𝑓 − 𝐹) 𝑝 + 𝛽

𝑛
𝛼
𝑛
(𝐼 − 𝐴𝑓) 𝑝.

(73)

Hence we deduce the following 0 < 𝛼
𝑛
≤ min{(𝛾

0
− 𝛽)/2(1 −

𝛾𝛽), ‖𝐴‖
−1
} that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(𝐼 − 𝛽𝑛𝐹)𝑇𝑛𝑥𝑛 − (𝐼 − 𝛽𝑛𝐹)𝑇𝑛𝑝

+ 𝛽
𝑛
[(𝐼 − 𝛼

𝑛
𝐴)𝑓 (𝑥

𝑛
) − (𝐼 − 𝛼

𝑛
𝐴)𝑓 (𝑝)

+ 𝛼
𝑛
(𝑇
𝑛
𝑥
𝑛
− 𝑝)]

+ 𝛽
𝑛
(𝑓 − 𝐹) 𝑝 + 𝛽

𝑛
𝛼
𝑛
(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝛽𝑛𝐹)𝑇𝑛𝑥𝑛 − (𝐼 − 𝛽𝑛𝐹)𝑇𝑛𝑝

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛
[
󵄩󵄩󵄩󵄩𝐼 − 𝛼𝑛𝐴

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑝)
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩]

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩(𝑓 − 𝐹) 𝑝
󵄩󵄩󵄩󵄩 + 𝛽𝑛𝛼𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
𝛾
0
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛
[(1 − 𝛼

𝑛
𝛾) 𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩]

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩(𝑓 − 𝐹) 𝑝
󵄩󵄩󵄩󵄩 + 𝛽𝑛𝛼𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝
󵄩󵄩󵄩󵄩

= [1 − 𝛽
𝑛
(𝛾
0
− 𝛽 − 𝛼

𝑛
(1 − 𝛾𝛽))]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩(𝑓 − 𝐹) 𝑝
󵄩󵄩󵄩󵄩 + 𝛽𝑛𝛼𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝
󵄩󵄩󵄩󵄩

≤ [1 − 𝛽
𝑛
(𝛾
0
− 𝛽 −

𝛾
0
− 𝛽

2 (1 − 𝛾𝛽)
(1 − 𝛾𝛽))]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩(𝑓 − 𝐹) 𝑝
󵄩󵄩󵄩󵄩 + 𝛽𝑛𝛼𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝
󵄩󵄩󵄩󵄩

≤ (1 −
1

2
𝛽
𝑛
(𝛾
0
− 𝛽))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛽
𝑛
(
󵄩󵄩󵄩󵄩(𝑓 − 𝐹) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩)

= (1 −
1

2
𝛽
𝑛
(𝛾
0
− 𝛽))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+
1

2
𝛽
𝑛
(𝛾
0
− 𝛽)

2 (
󵄩󵄩󵄩󵄩(𝑓 − 𝐹) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩)

𝛾
0
− 𝛽

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,
2 (
󵄩󵄩󵄩󵄩(𝑓 − 𝐹) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩)

𝛾
0
− 𝛽

} .

(74)
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By induction

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑝
󵄩󵄩󵄩󵄩 ,
2 (
󵄩󵄩󵄩󵄩(𝑓 − 𝐹) 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑝

󵄩󵄩󵄩󵄩)

𝛾
0
− 𝛽

} ,

∀𝑛 ≥ 0.

(75)

This implies that {𝑥
𝑛
} is bounded and so are {𝑇

𝑛
𝑥
𝑛
}, {𝑓(𝑥

𝑛
)}

and {𝐹𝑇
𝑛
𝑥
𝑛
}.

Now we claim that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (76)

Indeed, first of all, (70) can be rewritten as follows:

𝑦
𝑛
= (𝐼 − 𝛼

𝑛
𝐴)𝑓 (𝑥

𝑛
) + 𝛼
𝑛
𝑇
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= (𝐼 − 𝛽
𝑛
𝐹)𝑇
𝑛
𝑥
𝑛
+ 𝛽
𝑛
𝑦
𝑛
, ∀𝑛 ≥ 0.

(77)

Observe that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(𝐼 − 𝛼𝑛𝐴)𝑓 (𝑥𝑛) + 𝛼𝑛𝑇𝑛𝑥𝑛

− (𝐼 − 𝛼
𝑛−1
𝐴)𝑓 (𝑥

𝑛−1
) − 𝛼
𝑛−1
𝑇
𝑛−1
𝑥
𝑛−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑇𝑛𝑥𝑛 − 𝑇𝑛−1𝑥𝑛−1)

+ (𝛼
𝑛
− 𝛼
𝑛−1
) (𝑇
𝑛−1
𝑥
𝑛−1
− 𝐴𝑓 (𝑥

𝑛−1
))

+ (𝐼 − 𝛼
𝑛
𝐴)𝑓 (𝑥

𝑛
) − (𝐼 − 𝛼

𝑛
𝐴)𝑓 (𝑥

𝑛−1
)
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑇𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑇𝑛−1𝑥𝑛−1 − 𝐴𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐼 − 𝛼𝑛𝐴

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑇𝑛𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩)

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑇𝑛−1𝑥𝑛−1 − 𝐴𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
𝛾) 𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩)

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑇𝑛−1𝑥𝑛−1 − 𝐴𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
𝛾) 𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

= (𝛽 − 𝛼
𝑛
(𝛾𝛽 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑇𝑛−1𝑥𝑛−1 − 𝐴𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩 ,

(78)

and hence
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(𝐼 − 𝛽𝑛𝐹)𝑇𝑛𝑥𝑛 + 𝛽𝑛𝑦𝑛

− (𝐼 − 𝛽
𝑛−1
𝐹)𝑇
𝑛−1
𝑥
𝑛−1
− 𝛽
𝑛−1
𝑦
𝑛−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑦𝑛 − 𝑦𝑛−1) + (𝛽𝑛 − 𝛽𝑛−1) (𝑦𝑛−1 − 𝐹𝑇𝑛−1𝑥𝑛−1)

+ (𝐼 − 𝛽
𝑛
𝐹)𝑇
𝑛
𝑥
𝑛
− (𝐼 − 𝛽

𝑛
𝐹)𝑇
𝑛−1
𝑥
𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐹𝑇𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
𝛾
0
)
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑇𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐹𝑇𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
𝛾
0
) (
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑇𝑛𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩)

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐹𝑇𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
𝛾
0
) (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩)

≤ 𝛽
𝑛
[(𝛽 − 𝛼

𝑛
(𝛾𝛽 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1
󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩𝑇𝑛−1𝑥𝑛−1 − 𝐴𝑓 (𝑥𝑛−1)

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩 ]

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐹𝑇𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
𝛾
0
) (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩)

≤ 𝛽
𝑛
[(𝛽 − 𝛼

𝑛
(𝛾𝛽 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1
󵄨󵄨󵄨󵄨𝑀

+𝛼
𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩] +

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨𝑀

+ (1 − 𝛽
𝑛
𝛾
0
) (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩)

= [1 − 𝛽
𝑛
(𝛾
0
− 𝛽 − 𝛼

𝑛
(1 − 𝛾𝛽))]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ 𝑀(𝛽
𝑛

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨)

+ (𝛽
𝑛
𝛼
𝑛
+ (1 − 𝛽

𝑛
𝛾
0
))
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩

≤ [1 − 𝛽
𝑛
(𝛾
0
− 𝛽 −

𝛾
0
− 𝛽

2 (1 − 𝛾𝛽)
(1 − 𝛾𝛽))]

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 + 𝑀(𝛽
𝑛

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨)

+ 2
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩

= [1 −
1

2
𝛽
𝑛
(𝛾
0
− 𝛽)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ 𝑀(𝛽
𝑛

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨)

+ 2
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛−1 − 𝑇𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩 ,

(79)
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where sup
𝑛≥0
{‖𝑇
𝑛
𝑥
𝑛
− 𝐴𝑓(𝑥

𝑛
)‖ + ‖𝑦

𝑛
− 𝐹𝑇
𝑛
𝑥
𝑛
‖} ≤ 𝑀 for

some𝑀 > 0 (it is easy to see that {𝑦
𝑛
} is bounded due to the

boundedness of {𝑥
𝑛
}). Utilizing Lemma 2, we conclude that

‖𝑥
𝑛+1
− 𝑥
𝑛
‖ → 0 as 𝑛 → ∞ from conditions (i)-(ii) and the

property imposed on {𝑇
𝑛
}.

Next let us show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (80)

Indeed, from (76), (77), and 𝛽
𝑛
→ 0, it follows that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇𝑛𝑥𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 + 𝛽𝑛
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐹𝑇𝑛𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞.

(81)

That is,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (82)

Also, it is clear that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩 . (83)

By Lemma 12, we conclude from (82) and (83) that (80) holds.
Let 𝑥
𝑡
= (𝐼−𝜃

𝑡
𝐹)𝑇𝑥
𝑡
+𝜃
𝑡
[𝑓(𝑥
𝑡
) − 𝑡(𝐴𝑓(𝑥

𝑡
) −𝑇𝑥

𝑡
)]. According

to Theorem 11, we know that {𝑥
𝑡
} converges strongly to 𝑧 ∈

Fix(𝑇) = ⋂∞
𝑖=0

Fix(𝑇
𝑖
) = Ω, which is the unique solution inΩ

to the VIP:

⟨(𝐹 − 𝑓) 𝑧, 𝐽 (𝑧 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Ω. (84)

Further, let us show that

lim sup
𝑛→∞

⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥
𝑛
− 𝑧)⟩ ≤ 0. (85)

Indeed, take a subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
} such that

lim sup
𝑛→∞

⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥
𝑛
− 𝑧)⟩

= lim
𝑖→∞

⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥
𝑛
𝑖

− 𝑧)⟩ .

(86)

Without loss of generality, we may assume that 𝑥
𝑛
𝑖

⇀ 𝑥.
Utilizing Lemma 5 we obtain from (80) that 𝑥 ∈ Fix(𝑇).
Hence from (84) and (86) we get

lim sup
𝑛→∞

⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥
𝑛
− 𝑧)⟩ = ⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥 − 𝑧)⟩ ≤ 0.

(87)

As required, let us show that 𝑥
𝑛
→ 𝑧 as 𝑛 → ∞.

As a matter of fact, we observe that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝐼 − 𝛽𝑛𝐹)𝑇𝑛𝑥𝑛 − (𝐼 − 𝛽𝑛𝐹)𝑇𝑛𝑧

+ 𝛽
𝑛
[(𝐼 − 𝛼

𝑛
𝐴)𝑓 (𝑥

𝑛
) − (𝐼 − 𝛼

𝑛
𝐴)𝑓 (𝑧)

+𝛼
𝑛
(𝑇
𝑛
𝑥
𝑛
− 𝑧)]+ 𝛽

𝑛
(𝑓 − 𝐹) 𝑧+𝛽

𝑛
𝛼
𝑛
(𝐼 − 𝐴𝑓) 𝑧

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝛽𝑛𝐹)𝑇𝑛𝑥𝑛 − (𝐼 − 𝛽𝑛𝐹)𝑇𝑛𝑧

+𝛽
𝑛
[(𝐼 − 𝛼

𝑛
𝐴) (𝑓 (𝑥

𝑛
) − 𝑓 (𝑧)) + 𝛼

𝑛
(𝑇
𝑛
𝑥
𝑛
− 𝑧)]

󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩

+ 2𝛽
𝑛
𝛼
𝑛
⟨(𝐼 − 𝐴𝑓) 𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩

≤ [
󵄩󵄩󵄩󵄩(𝐼 − 𝛽𝑛𝐹)𝑇𝑛𝑥𝑛 − (𝐼 − 𝛽𝑛𝐹)𝑇𝑛𝑧

󵄩󵄩󵄩󵄩

+𝛽
𝑛
(
󵄩󵄩󵄩󵄩𝐼 − 𝛼𝑛𝐴

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑧)
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩)]
2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩

+ 2𝛽
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

≤ {(1 − 𝛽
𝑛
𝛾
0
)
󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑇𝑛𝑧

󵄩󵄩󵄩󵄩

+𝛽
𝑛
[(1 − 𝛼

𝑛
𝛾) 𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩𝑇𝑛𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩]}
2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩

+ 2𝛽
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

≤ {(1 − 𝛽
𝑛
𝛾
0
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

+𝛽
𝑛
[(1 − 𝛼

𝑛
𝛾) 𝛽

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩 + 𝛼𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩]}
2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩

+ 2𝛽
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

= [1 − 𝛽
𝑛
(𝛾
0
− 𝛽 − 𝛼

𝑛
(1 − 𝛾𝛽))]

2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩

+ 2𝛽
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

≤ [1 − 𝛽
𝑛
(𝛾
0
− 𝛽 − 𝛼

𝑛
(1 − 𝛾𝛽))]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩

+ 2𝛽
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

≤ [1 − 𝛽
𝑛
(𝛾
0
− 𝛽 −

𝛾
0
− 𝛽

2 (1 − 𝛾𝛽)
(1 − 𝛾𝛽))]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩

+ 2𝛽
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩
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= [1 −
1

2
𝛽
𝑛
(𝛾
0
− 𝛽)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛
⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩

+ 2𝛽
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

= (1 − 𝜇
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝜇
𝑛
]
𝑛
,

(88)

where 𝜇
𝑛
= (1/2)𝛽

𝑛
(𝛾
0
− 𝛽) and

]
𝑛

=
4 (⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑥

𝑛+1
− 𝑧)⟩ + 𝛼

𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝐴𝑓) 𝑧
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩)

𝛾
0
− 𝛽

.

(89)

It can be easily seen from (85) and conditions (i) and (ii) that

∞

∑

𝑛=0

𝜇
𝑛
= ∞, lim sup

𝑛→∞

]
𝑛
≤ 0. (90)

In terms of Lemma 8, we infer that 𝑥
𝑛
→ 𝑧 as 𝑛 → ∞.

Finally, we provide an example to illustrate Theorem 18.

Example 19. Let 𝑋 = R2 with inner product ⟨⋅, ⋅⟩ and norm
‖ ⋅ ‖ which are defined by

⟨𝑥, 𝑦⟩ = 𝑎𝑐 + 𝑏𝑑, ‖𝑥‖ = √𝑎
2 + 𝑏2, (91)

for all 𝑥, 𝑦 ∈ R2 with 𝑥 = (𝑎, 𝑏) and 𝑦 = (𝑐, 𝑑). Let
𝐶 = {(𝑎, 𝑎) : 𝑎 ∈ R}. Clearly, 𝐶 is a nonempty closed
convex subset of a uniformly smooth Banach space 𝑋 = R2
such that 𝐶 ± 𝐶 ⊂ 𝐶. Let {𝑇

𝑛
}
∞

𝑛=0
be a countable family

of nonexpansive mappings from 𝐶 to itself such that Ω =

⋂
∞

𝑛=0
Fix(𝑇
𝑛
) ̸= 0, for instance, putting𝑇

𝑛
= (1−1/2

𝑛+1
)𝑇with

𝑇 = {
3/5 2/5

2/5 3/5
}. Then ‖𝑇‖ = 1 and ‖𝑇

𝑛
‖ = 1 − 1/2

𝑛+1
, ∀𝑛 ≥ 0.

It is clear that 𝑇
𝑛
and 𝑇 are nonexpansive mappings with

Ω = ⋂
∞

𝑛=0
Fix(𝑇
𝑛
) = {0} ̸= 0, and {𝑇

𝑛
} satisfies the assumption

in Theorem 18. Let 𝐹 : 𝐶 → 𝐶 be 𝛼-strongly accretive
and 𝜆-strictly pseudocontractive with 𝛼 + 𝜆 > 1, and 𝑓 :

𝐶 → 𝐶 be a fixed contractive mapping with contractive
coefficient 𝛽 ∈ (0, 𝛾

0
), 𝛾
0
= 1 − √(1 − 𝛼)/𝜆, for instance,

putting 𝑆 = { 2/3 1/3
1/3 2/3

}, 𝐹 = (1/2)𝑆, and 𝑓 = {
3/25 2/25

2/25 3/25
}, we

know that ‖𝐹‖ = (1/2)‖𝑆‖ = 1/2, ‖𝑓‖ = 1/5 and that 𝐹 is a
(1/2)-strongly accretive and (8/9)-strictly pseudocontractive
mapping and 𝑓 is a (1/5)-contraction with (1/5) ∈ (0, 𝛾

0
)

and 𝛾
0
= 1/4. Let 𝐴 : 𝐶 → 𝐶 be a 𝛾-strongly positive

linear bounded operator with 𝛾𝛽 < 1; for instance, putting
𝐴 = (7/6)𝑆, we know that𝐴 is a (7/6)-strongly positive linear
bounded operator with 𝛾𝛽 = (7/6) × (1/5) < 1. In this case,

from iterative scheme (70) in Theorem 18, we obtain that for
any given 𝑥

0
∈ 𝐶,

𝑥
1
= (𝐼 − 𝛽

0
𝐹)𝑇
0
𝑥
0
+ 𝛽
0
[𝑓 (𝑥
0
) − 𝛼
0
(𝐴𝑓 (𝑥

0
) − 𝑇
0
𝑥
0
)]

= (1 −
1

2
𝛽
0
)(1 −

1

20+1
)𝑥
0

+𝛽
0
[
1

5
𝑥
0
− 𝛼
0
(
7

6
⋅
1

5
𝑥
0
− (1 −

1

20+1
)𝑥
0
)]

= [(1 −
1

2
𝛽
0
)(1 −

1

20+1
) +

1

5
𝛽
0

−𝛼
0
𝛽
0
(
7

30
− (1 −

1

20+1
))] 𝑥

0
∈ 𝐶.

(92)

It can be readily seen that

𝑥
𝑛+1

= [(1 −
1

2
𝛽
𝑛
)(1 −

1

2𝑛+1
) +

1

5
𝛽
𝑛

−𝛼
𝑛
𝛽
𝑛
(
7

30
− (1 −

1

2𝑛+1
))] 𝑥

𝑛
, ∀𝑛 ≥ 0.

(93)

We claim that 𝑥
𝑛
converges to the unique point 0 inΩ if 𝛼

𝑛
=

(6/23)𝛽
𝑛
and ∑∞

𝑛=0
𝛽
𝑛
= ∞. Indeed, observe that

󵄩󵄩󵄩󵄩𝑥𝑛+1
󵄩󵄩󵄩󵄩 = [(1 −

1

2
𝛽
𝑛
)(1 −

1

2𝑛+1
)

+
1

5
𝛽
𝑛
− 𝛼
𝑛
𝛽
𝑛
(
7

30
− (1 −

1

2𝑛+1
))]

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

≤ [(1 −
1

2
𝛽
𝑛
) +

1

5
𝛽
𝑛
− 𝛼
𝑛
𝛽
𝑛
(
7

30
− 1)]

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

= (1 −
3

10
𝛽
𝑛
+
23

30
𝛼
𝑛
𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

= (1 −
3

10
𝛽
𝑛
+
23

30
⋅
6

23
𝛽
𝑛
𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

≤ (1 −
3

10
𝛽
𝑛
+
1

5
𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

= (1 −
1

10
𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 ≤

𝑛

∏

𝑖=0

(1 −
1

10
𝛽
𝑖
)
󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 .

(94)

Thus, we conclude from∑∞
𝑛=0
𝛽
𝑛
= ∞ that𝑥

𝑛
converges to the

unique point 0 inΩ. It is clear that 𝑧 = 0 is a unique solution
in Ω for the following variational inequality problem (VIP):

⟨(𝑓 − 𝐹) 𝑧, 𝐽 (𝑝 − 𝑧)⟩ ≤ 0, ∀𝑝 ∈ Ω. (95)
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