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Discrete-Time Inverse Dynamics 
Control of Flexible Joint Robots 
This paper focuses on the problem of the application of inverse dynamics control 
methods to robots with flexible joints and electromechanical actuators. Due to 
drawbacks of the continuous-time inverse dynamics, discussed in the paper, a new 
control strategy in discrete-time is presented. The proposed control algorithm is 
based on numerical methods conceived for the solution of index-three systems of 
differential-algebraic equations. The method is computationally efficient and admits 
low sampling frequencies. The results of numerical experiments confirm the ad­
vantages of the designed control algorithm. 

1 Introduction 
In many cases the elasticity of a robot structure considerably 

influences the precision of operational task execution and needs 
to be taken into account in the robot dynamic analysis, and 
to be included in the control system design. For the broad class 
of industrial robots the elastic compliance is mainly concen­
trated in joints and harmonic drives (Good et al., 1985). For 
this reason, there is a growing interest in the area of modeling 
and control of flexible joint robots. 

From among nonadaptive control methods developed for 
the rigid robot case, but those whose range of application 
reaches also flexible joint robots, the following methods are 
cited: computed torque technique (Markiewicz, 1973; Bejczy, 
1974), feedback linearization (Tarn et al., 1984; Bortoff and 
Spong, 1987), and invariant manifold approach (Khorosani 
and Spong, 1985). Applying the computed torque technique 
or feedback linearization, the robot dynamic model nonlin-
earities are compensated by nonlinear feedback. In this way a 
number of decoupled linear subsystems corresponding to each 
degree of freedom in the joint space or in the task space can 
be obtained. 

The problem to be considered in this paper is motivated by 
difficulties in the practical application of the classical contin­
uous-time inverse dynamics. The principal difficulties are: 

• the complexity of the control laws; 
• the necessity of feedback of measured (or evaluated) val­

ues of higher order time derivatives of system coordinates; 
• the need for very high sampling frequencies. 
By virtue of the deficiences of the continuous-time approach, 

there is a need for simplified discrete-time implementations of 
nonlinear system controllers. In this paper a new control method 
based on inverse dynamics in discrete-time is presented. The 
control algorithms are developed using the methods conceived 
for the solution of systems of differential-algebraic equations 
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(DAE). The DAE methods are considered to be adequate for 
this purpose since the inverse dynamics problem can be de­
scribed by a set of differential equations governing the robot 
motion and by a set of algebraic equations representing the 
specified motion of the robot end effector in the task space. 
It is shown in the paper that using the solution of the developed 
index three DAE system in the control problem naturally leads 
to the predictive control scheme. In the formulation of control 
laws multiple differentiation of system equations is avoided. 
Therefore, the control laws are less complex than in the full 
analytical inverse dynamics control, and the application of the 
method does not necessitate direct feedback of higher order 
time derivatives of system variables. Moreover, using low sam­
pling frequencies is possible. 

2 Robot Dynamic Model 
Physical model of a robot with flexible joints is usually 

represented as a system of 2n interconnected rigid bodies: n 
links and n actuators (Spong, 1987). It is assumed that the 
elasticity of the rth joint is mainly concentrated in a harmonic 
drive reducer and in an intermediate shaft connecting the har­
monic drive and a pair of gears (Potkonjak, 1988). To describe 
the configuration of the considered mechanical system two sets 
of coordinates are introduced: <pt—the angle of rotation of z'th 
actuator rotor with respect to (/ - l)th link, and q,—the joint 
variable defining the position of z'th link with respect to (/ -
l)th one. 

The dynamic model of a flexible joint robot can be for­
mulated using Lagrange's or other approaches. Using usually 
adopted simplifications concerning omission of the cross-cou­
pling terms due to motor mass rotation (Spong, 1987) one 
obtains: 

A(q)q + B(q,q) + nK(nq-N-V) = 0 
U + B>-N- 'K(nq-N-V) = T. 

(1) 

(2) 

While the first equation in the above presented set describes 
the motion of the robot links, the second governs the motion 
of the actuator rotors. In Eq. (1), A(q) is the symmetric positive 
definite inertia matrix corresponding to rigid degrees of free-
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dom; Ir = diag [/„•]—where Iri is the moment of inertia of rth 
rotor; B(q,q) contains centrifugal, Coriolis, and gravitational 
forces; B ,̂ = diag[B^]—where J?,,, is the viscous friction coef­
ficient of rth rotor; n = diag[«,•]— where n, is the gear ratio; 
N = b!iag[TV,]—where TV; is the ratio of the harmonic drive; K 
= diag[T/ ,̂'j—where Kj is the elastic constant; T—the vector of 
torques applied to the actuator rotors. 

The dynamic equations of the electric circuits of the armature 
controlled d-c motors can be presented in the following matrix 
form (Tarn et al., 1988): 

Lf + RT + C,C„*> = C,u. (3) 

In Eq. (3), L and R are diagonal matrices with elements Lt 

and R, being the inductance and the resistance of armature 
circuit, respectively; C, and C„ are diagonal matrices with Cti 

and C„i denoting the torque and voltage constants of the motor, 
respectively; and u is the vector of the armature voltages treated 
as the control inputs. 

Equations (l)-(3) constitute the complete dynamic model of 
the flexible joint robot with electromechanical actuators. 

3 Inverse Dynamics Task Control 
In many robotic applications, the manipulator end effector 

is required to follow a preplanned path specified in the robot 
task space. The relation between the vector x representing the 
position and orientation of the end effector, and the joint 
variables q can be written as: x = f(q), where it is assumed 
that x has dimension equal to n. The motion of the robot will 
be programmed by specifying the desired values of the end 
effector configuration parameters: x = xd(t), which corre­
sponds to imposing the so-called "program" constraints (Jan-
kowski, 1989) on the system: 

F(q,0 = f (q ) -x r f ( / )=0 (4) 

The analytical approach to solve the set of differential al­
gebraic Eqs. (l)-(4) consists in differentiation with respect to 
time of those equations which do not depend on the controls 
u and subsequent elimination of the time derivatives of angles 
<p and torques T(Jankowski and Van Brussel, 1991). Therefore, 
Eq. (1) is solved for u> and the result is differentiated three 

(3) 

times with respect to time to obtain <p, <p, and <p. Next, Eq. 
(2) is differentiated once with respect to time to get T. Now, 
using the obtained expressions and combining the Eqs. (1)-
(3), the controls u can be obtained in function of the time 
derivatives of the generalized coordinates q up to the fifth 
order inclusive. 

Moreover, in order to obtain the control laws realizing the 
prescribed motion of the end effector, the constraints (4) have 
to be differentiated successively with respect to time up to the 
appearance of q . It follows that in the resulting equation higher 
order time derivatives of the manipulator Jacobian J = df/dq 
appear. Following the extended computed torque approach, 
the vector q is calculated from the obtained equation modified 
to form the desired error equation in the robot task space: 

(5) (4) (3) 

F + k 4 F + k3 F + k 2 F + k1F + k0F = 0, (5) 

where k,(/ = 0,...,4) are constant feedback gain matrices. In 
this way, the control law which ensures the nonlinear decou­
pling and feedback linearization can be obtained. 

The above presented analytical approach can theoretically 
be implemented to the inverse dynamics control of flexible 
joint manipulators. However, it was observed that for the 
number of links greater than three difficulties with analytical 
derivation of the control laws can appear, even if a computer 
package for symbolic calculation, such as MACSYMA, is used. 
The complicated form of these equations is caused by the 
necessity of multiple differentiation with respect to time of the 
inertia A(q) and Jacobian J(q) matrices as well as the vector 

of nonlinear terms B(q,q). For the numbers of degrees of 
freedom « > 3 , it is only for special structure robots, for ex­
ample a SCAR A type, that the control laws with a relatively 
reasonable size and complexity can be obtained. 

The complicated form of the control law creates difficulties 
in practical on-line implementation of the continuous-time 
control scheme. For a high-performance robot arm under dig­
ital computer control, the sampling rate is critical for robot 
dynamic control. The complexity of the robot control system 
results in increasing the time delay of the reconstructed error 
signal, so it places a maximum on the sampling rate. In the 
same time, it was observed that to achieve satisfactory per­
formance, very high sampling frequencies are required for 
continuous-time computed torque (Uhlik, 1990). 

Therefore, there is a need to develop another approach which 
would permit the application, at lower costs, of the method­
ology of inverse dynamics outlined in this section. It seems to 
be possible to design a nonlinear discrete-time controller with 
the use of numerical methods which have been developed for 
solving systems of differential-algebraic equations (DAE). A 
technique which is based on this idea is described in the fol­
lowing sections. 

4 Discrete-Time Solution 

The numerical solution of higher index DAE systems is not 
a straightforward task. In particular, forward differentiation 
formulae fail when applied to such systems. As it was proven 
by Gear et al. (1985), variable-step, variable-order backward 
differentiation formula (BDF) methods applied to solve a DAE 
system converge if the index of the system does not exceed 
two and the methods are convergent for an ordinary differ­
ential equation. Moreover, Gear and Petzold (1984) and Lot-
stedt and Petzold (1986) showed that index three systems arising 
in the dynamics of constrained mechanical systems can be 
solved with constant stepsize BDF methods. 

The index of the DAE system described in Section 3, which 
is used to solve the control problem if the full analytical ap­
proach is adopted, equals one. The index three DAE system 
is obtained if two differentiations of Eqs. (1) and (4), and one 
differentiation of Eq. (2), are not performed. 

For the numerical solution purposes, we can write the above 
defined index three system as a set of first order differential 
equations: 

q = v, (6) 

v = a, (7) 

A a + A a + B + nK(nv-N _ 1 «) = 0, (8) 

I ^ + B ^ + N"'n"1(Aa + B) = T, (9) 

LT + RT + C,C> = C,u, (10) 

J a + 2 J a + J v - xrf + k 2 ( Ja+ jv -x r f ) 

+ k1(Jv-x r f) + k0[f(q)-x r f]=0, (11) 

where w = ip, v = q, a = v, k2, ki, k0 are constant feedback 
gain matrices, and the other symbols have already been de­
scribed. Eq. (11) represents the stabilized version of the equa­
tion obtained by taking the third order time derivative of the 
constraint Eq. (4). 

Thus, after replacing a in Eq. (11) by the expression obtained 
from Eq. (8), the system (6)—(11) can be represented in the 
standard index three DAE form: 

x = gi(x,y), 
y = g2(x,y,u), (12) 

g3(x,t) = 0, 
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with 

x = [qV,a r,«Tf, 
y = T . (13) 

The basic idea of using a numerical ordinary differential 
equation method for solving the system (6)-(ll) consists of 
replacing the time derivatives q, v, a, <i>, and T by difference 
approximations, and then solving the resulting system of al­
gebraic nonlinear equations for approximation to q, v, a, to, 
T, and u. This will be illustrated here by using the backward 
Euler method which presents the simplest possible algorithm. 
Applying higher order techniques as backward differentiation 
formulae, implicit Runge-Kutta methods, or extrapolation 
methods is the generalization of this idea (Gear and Petzold, 
1984). However, the use of A>step, constant stepsize BDF 
method is restricted to the following values of k: 1 < k < 6 
(Gear and Petzold, 1984; Lotstedt and Petzold, 1986). Further 
restrictions on applying the higher order BDF techniques to 
the nonlinear index three problems are discussed by Brenan 
(1983). She showed that the two-step BDF method is extremely 
sensitive to errors in the initial and starting values (the starting 
values are necessary for methods with k > 2). As it will be 
described later, in control applications there will always be 
errors in the initial and starting values for each sampling pe­
riod, thus in such cases one cannot recommend the use of 
higher order BDF methods. As an alternate way of solving 
index three systems the use of two singly-implicit Runge-Kutta 
methods was examined. The analysis revealed that these meth­
ods are good tools for the DAE system solution, but their use 
is associated with much more computational effort as com­
pared to BDF methods .From these remarks and considerations 
presented in the next sections, it follows that using the back­
ward Euler method in the proposed control scheme seems to 
be an optimal solution. 

Discretizing the set (6)-(l 1) by the use of the backward Euler 
method gives: 

A(q„+i) ~~~£ + A(q„ + 1,v„ + 1)a„+1 + B(q„+1,v„+,,a„+1) 
'« + 1 'n 

+ nK(nv„ + 1 - N - ' w „ + 1 ) = 0, (16) 

I r " " + 1 ~ " " + BywB+i + N-'n-1[A(qB+1)a l ,+ 1 

*n + 1 *n 

+ B(q„+i,v„+1)] = T„+1, (17) 

L T ; + ' ~ J " + RT„ + 1 + QCva)„+1 = Qu„+ l , (18) 

J(q n+i) ,"+ ' ," + g(qn+i,v„+i,a„+1,f„+i) = 0. (19) 
'n + 1 * n 

Given the values of q„, v„, a„, a>„, and T„ at time tn, the 
unknown values of q„+i, v„+i, a„+i, w„+1, T„+ 1 , and u„+i at 
time^,+ i can be obtained from Eqs. (14)-(19).The steps leading 
to this goal are: 

8 q,1+i and v„+ i are eliminated from Eqs. (16), (17), and 
(19) using the formulas (14) and (15); 

« the set of algebraic equations (16) and (19) is solved for 
a„ + i and OJ„+1; 

9 T„+i is calculated from Eq. (17); 
• u„+i is calculated from Eq. (18). 

In this way, given the system configuration at time t„, the 
controls necessary for the next instant of time ?„+1 can be 
found. 

In the above described simplified inverse dynamics ap­
proach, the controls u are determined as the solution of the 
set of nonlinear algebraic equations which is much simpler 
than in the full analytical inverse dynamics formulation. The 
solution of this set should not cause difficulties since at each 
step of calculation one disposes of proper initial approxima­
tions to the unknown algebraic variables, which are simply 
their values from the previous step. The organization of the 
control algorithm will be described in the following section. 

The implementation of the procedure described by Eqs. (14)-
(19) in the control process requires the measurement of the 
following quantities: q, v, a, w, and T. This can be alternatively 
replaced by the measurement of: q, v, <p, w, and T. 

5 Control Process Organization 
Suppose the state of the robot is given at a fixed time t„ as 

a result of real-time measurement or simulation. During the 
time step from /„ to t„ + i, the controls necessary to approxi­
mately follow a prescribed trajectory are calculated as the 
solutions of the inverse dynamics problem described by the 
DAE set. The controls are then held constant over the next 
time step (from tn+i to tn+2). It means that the discontinuous 
control history is considered. 

Several implementation difficulties have been overcome when 
developing the algorithms suitable for control purposes. They 
are outlined below. 

At time t„+i, the state variables obtained from the simulation 
process or real-time measurement are not consistent with the 
DAE set solutions. However, they should be used as the initial 
values for the DAE set, in order to produce the controls nec­
essary to drive the current robot motion parameters to their 
desired values. The problem of using incorrect initial values 
for DAE systems was considered by Sincovec et al. (1981) for 
the case of linear systems, and the conclusions were expanded 
by Brenan (1983) for some class of nonlinear systems. It was 
shown that, in spite of incorrect initial conditions, after (m 
- \)k + 1 steps (where m is the index of the DAE system), 
the A:-step backward differentiation method yields a numerical 
solution consistent with some admissible initial conditions. In 
the case considered in this paper the backward Euler method 
(k = 1) is used to the index three problem (m = 3), so after 
three steps the numerical method will produce values accurate 
to 0(h) for all variables (where h is the stepsize). Thus, in 
order to calculate the proper controls, it becomes necessary to 
divide the time step H = f„+1 - t„ into at least three smaller 
time steps h. 

Here, it becomes clear why using the Euler method in the 
control process seems to be the best option. First, the starting 
values which should be determined specially for each time step 
H for methods with k > 2, are not needed in this case. Second, 
the number of steps required to get correct solutions of the 
DAE set increases linearly with k. 

During the numerical experiments it has been noticed that 
the prediction of state variables by the DAE set solving from 
t„ to t„+i, and subsequent determination of the control vari­
ables, do not ensure small tracking errors. Taking more than 
three time steps does not improve this situation. It appears to 
be necessary to solve the DAE set for time from t„ to t„+i + 
H/2, i.e. to predict the controls in the middle of the next time 
step. Analytically it means that in the considered case one 
should use instead of the truncated control variables, the 
rounded ones. Since the solution runs for a time period equal 

3 
to -H, the minimum size of the time step for DAE set solving 

is h = H/2. The organization of this control process is pre­
sented in Fig. 1. As it is seen, solving an index three DAE 
system in a control problem naturally leads to a one-and-a-
half-step-ahead predictive control scheme. 
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PIECEWISE CONTROL 

Fig. 1 Organization of the discrete-time control process 

conceived to imitate faithfully a real process of digital robot 
control. Therefore, the piecewise-constant nature of the con­
trol inputs is considered and the sampling delays are taken into 
account. 

Some results of the numerical simulation of the robot motion 
with piecewise control are presented below. The sampling fre­
quency is chosen equal to 100 Hz (H = 0.01 s), when the 
natural frequencies of the robotic system calculated along the 
desired trajectory are approximately equal to 11.1 Hz and 22.5 
Hz. However, it should be noted that the satisfactory per­
formance has also been reached for systems with other fre­
quency characteristics and using different sampling frequencies, 
as reported by Jankowski and Van Brussel (1990, 1991). The 
coefficient a in the feedback gain matrices equals 15.0. The 
maximum end effector position error which occurs during tra­
jectory following equals 0.093 mm. This error can be decreased 
not only by the use of a higher sampling frequency, but also 
by using smaller time steps h when solving the DAE set. For 
example, if h = H/A this error equals 0.043 mm; and for h 

= H/6, ep 0.028 mm. However, decreasing the time step 
h means increasing the number of steps required for the pre­
diction of control variables: for h = H/A six steps are used, 
and for h = H/6: nine. It causes an augmentation of the 
amount of computer time needed to determine the controls. 
Please note that, in each step, a set of nonlinear algebraic 
equations is solved by means of the Newton-Raphson iteration 
process. Fortunately, as the proper initial approximations are 
provided, the number of iterations necessary to get the satis­
factory solutions does not exceed 3. In this context it seems 
that the reasonable partition of the sampling time is with h = 
H/A. 

Interestingly, the feedback of measured values of torques 
T„ is not necessary in the control process. As it follows from 
the analysis of the control algorithm (14)-(19), T„ is needed 
only in the last step, when calculating the controls u„ + i. As 
the minimum number of steps equals three, the value of T„ 
results from the previous step calculation. Therefore, in the 
presented approach partial state feedback also works well. 

6 Numerical Experiments 
6.1 Case Study. Numerical methods for the solution of 

the control problem are tested on a particular example. The 
controlled motion of two-link planar robot is considered. How­
ever, the presented algorithms are quite easily applied to robots 
with more links. 

For testing purposes, the robot is commanded to start from 
rest, and during the subsequent motion the end effector must 
move along a straight line trajectory to a new rest position. 
At the beginning (r = 0) the end effector position is described 
by: XM = lu Yd0 = -l2 (i.e., 
the final time (t = if): Xdf = lu 

Q\ = 0» <72 = -ff/2), and at 
Ydf = 0. Thus, the end effector 

trajectory is parallel to the 0\ Yaxis. The analytical expression 
for OxX end effector position is: 

xd(t)=h (20) 

and for O, ^position, a Hermite polynomial of the ninth degree 
in t is used: 

70, r Yd(t) = Yd0+(Yd/- Yd0) [ ~t"-Ij-t* 

540 , 
+T'-

420 c 126 
•? + • (21) 

to avoid unnecessary jumps in the control variables. 

6.2 Simulation Results. Numerical experiments per­
formed to examine the discrete-time control scheme have been 

7 Conclusions 
Due to problems with the continuous-time approach, the 

use of a discrete-time controller has been proposed to solve 
the inverse dynamics problem for flexible joint robots. To 
design the control algorithm, a numerical approach has been 
suggested, based on numerical methods conceived for solution 
of index three DAE systems. Among these methods, the back­
ward Euler method has been chosen as its use gives several 
advantages, as discussed in the paper. Taking a model of a 
planar two-link robot as an example, extensive computer sim­
ulations have been carried out on the designed controller in 
order to find the best control algorithm. As yet, no corre­
sponding theoretical analysis has been performed on such a 
nonlinear discrete-time control method, although the results 
of numerical experiments do indicate such work might be ben­
eficial. Following these results, the proposed control scheme 
has been judged as assuring good tracking and stability prop­
erties. Among the advantages of the proposed discrete-time 
control method are: 

• multiple analytical differentiation of system dynamic 
model is avoided, which results in the simplification of 
necessary on-line calculations and makes the method com­
putationally efficient; 

8 it is not necessary to feedback higher order time derivatives 
of system variables, and it is possible to use a partial state 
feedback; 

0 using lower sampling frequencies than in the classical in­
verse dynamics approach is allowed. 

The results of recently performed experiments on computer 
control of a two-link manipulator with one flexible joint (Jan­
kowski and Van Brussel, 1990) confirm the effectiveness of 
the discrete-time inverse dynamics approach presented in this 
paper. 
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• Flexible Manufacturing Systems 

Important Deadlines 
Submission of Extended Abstracts 
Notification of Acceptance 
Finished Papers due 
Dates of the Conference 

For further details contact: 

Dr. M. Vidyasagar, Director 
Centre for Artificial Intelligence and Robotics 
Raj Bhavan Circle—High Grounds 
Bangalore 560 001, India 
Phone: +91 (812) 266 803 (0) +91 (812) 580 175 (R) 
Fax: +91 (812)265 615 
E-Mail: sagar@yantra.ernet.in 

Path Planning 
Neural Networks 
Walking Robots 
AGV's 
Computational Algebra and Geometry 
Factories of the Future 

July 31, 1992 
August 31, 1992 
October 31, 1992 
January 7-9, 1993 
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