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Conformal Refinement and
Coarsening of Unstructured
Hexahedral Meshes
This paper describes recently developed procedures for local conformal refinement and
coarsening of all-hexahedral unstructured meshes. Both refinement and coarsening pro-
cedures take advantage of properties found in the dual or “twist planes” of the mesh. A
twist plane manifests itself as a conformal layer or sheet of hex elements within the
global mesh. We suggest coarsening techniques that will identify and remove sheets to
satisfy local mesh density criteria while not seriously degrading element quality after
deletion. A two-dimensional local coarsening algorithm is introduced. We also explain
local hexahedral refinement procedures that involve both the placement of new sheets,
either between existing hex layers or within an individual layer. Hex elements earmarked
for refinement may be defined to be as small as a single node or as large as a major
group of existing elements. Combining both refinement and coarsening techniques allows
for significant control over the density and quality of the resulting modified
mesh. �DOI: 10.1115/1.2052848�
1 Introduction
Both tetrahedral �Tets� and hexahedral �Hexes� elements are

effectively used to model three-dimensional objects for finite ele-
ment analysis. Tets can be the element of choice because of the
robustness of their modeling capabilities for any general shape.
Hexes can be the element of choice for their abilities to provide
more efficiency and accuracy in the computational process. Tech-
niques for mesh refinement and coarsening are generally more
robust for Tets as opposed to Hexes. Straightforward Tet refine-
ment schemes, based on longest-edge division, as well as the ex-
tension to include adaptive derefinement to coarsen a refined
mesh, are described by Carey and Plaza �1,2�. In addition, Plaza
and Rivara have recently presented an iterative longest-edge re-
finement scheme that reduces the average propagation path of a
refinement �3�. De Cougny and Shephard provide a detailed de-
scription of both refinement and coarsening of Tets as applied to
parallel computations �4�. Further, several authors have found suc-
cess with an efficient “red green” mesh subdivision algorithm for
tetrahedra �5–7�.

Less attention has been given to the modification of all-hex
meshes. Methods using iterative octrees �8� have been proposed,
but these methods result in nonconformal elements that cannot be
accommodated by some solvers. Other techniques insert non-hex
elements that result in hybrid meshes or require uniform dicing to
maintain a consistent element type �9�. Schneiders’ directional re-
finement method �10� produces a conformal mesh by pillowing
layers in alternating i, j, and k directions but relies upon a Carte-
sian initial octree hex mesh. A slight modification to Schneiders’
approach was given by Kwak and Im �11�. Yet another method, as
proposed by Li and Cheng �12�, begins with a mapped definition
of a six-sided cube and selectively inserts 3D transition templates
at the corners or along the edges. This method is restricted to
solids that initially conform to traditional mapping schemes. The
3D anisotropic refinement scheme presented by Tchon et al. �13�
expands Schneiders’ multi-directional refinement to initially un-
structured meshes by pillowing layers of elements without the use
of octrees. This method is quite robust but does not offer the
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capability to refine mesh regions around individual nodes, element
edges or element faces. The refinement process developed in this
work is not dependent upon initial mapped or octree-based grids
and also allows more flexibility in regions of the mesh that are
smaller than entire hex elements or are more easily described
specifically around individual nodes, element edges and element
faces �14�.

This paper describes general methods for local conformal re-
finement and coarsening all-hexahedral unstructured meshes. Both
refinement and coarsening procedures presented take advantage of
properties found in the dual of an all-hexagonal mesh. The prop-
erties of the dual are explained in the next section.

2 Background
A hexahedral element can be viewed as a volume with three

sets of opposing faces. In valid conformal meshes, two neighbor-
ing hexahedrons share exactly one face. Lining hexahedral ele-
ments up so that each element has two neighboring elements that
are attached to opposing faces will create a stack of hexahedral
elements. A cord in the dual of the mesh is used to represent these
stacks �see Fig. 1� �15�.

Multiple stacks can then be grouped together to create a layer
of elements. Each element in a layer has four neighboring ele-
ments that are attached to two orthogonal pairs of opposing faces.
The shaded area of Fig. 2 shows how a sheet in the dual of the
mesh can represent these layers. The two-dimensional sheet in the
dual is called a twist plane �16�, and the elements that define this
twist plane are called a hex sheet.

Conformal all-hex meshes are assemblages of multiple hex
sheets. Figure 3 shows a hex meshed cylinder on the left and its
corresponding dual on the right. The complete dual is referred to
as the spatial twist continuum. The figure clearly shows how hex
sheets interact together to define the completed mesh. These hex
sheets provide a basis for both conformal refining and coarsening
of all-hexahedral meshes.

3 Coarsening

3.1 Global 3D Coarsening. Figure 4 shows a meshed object
with a specific hex sheet highlighted in �a� and shown as a com-
plete sheet in �b�. To coarsen a mesh, a hex sheet can be removed
and the gap remaining is then closed conformally by collapsing

the opposing hex faces across the gap. Note that upon collapsing
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the elements through the void created by removing the hex sheet,
the mesh has been coarsened. The original mesh had 32 incre-
ments around the top outer surface, the coarsened mesh has 30
increments.

Uniform removal of several hex sheets is demonstrated in Fig.
5. Here the upper edge has been specified for the coarsening pro-
cedure. Figure 5�a� has 26 increments along the upper edge, and
Fig. 5�b� has been coarsened to 8 increments along this upper
edge. Note however that removing sheets in this manner can affect
regions remote from the area defined for coarsening �17�.

Fig. 1 A stack of hexahedrons represented by a dual chord
„black line…

Fig. 2 A sheet of hexahedrons represented by a dual “twist
plane”

Fig. 3 A meshed cylinder and the corresponding dual
Fig. 4 An all-hex mesh „a… and single sheet „b…
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3.2 Local Coarsening. The coarsening techniques described
earlier coarsen a mesh through the removal of complete sheets.
Removing entire sheets may introduce undesired characteristics in
remote locations of the mesh and change mesh boundary condi-
tions. For these reasons it is often desirable to locally coarsen the
mesh. Local coarsening is achieved through the application of
what we define as an initial grid structure followed by the inser-
tion of transition templates to preserve the conformal characteris-
tics of the mesh. Smoothing routines may then be applied as
needed to optimize the quality of the mesh.

3.2.1 Application of the Grid Structure. The basic steps for the
coarsening algorithm presented here is to first identify and then to
modify hex triad configurations. A hex triad and its resulting
coarsened state are shown in Fig. 6. Multiple hex triads are
grouped into an appropriate local grid structure to effectively
coarsen a specific region of the mesh. These grid structures rep-
resent the successful combination of three neighboring elements
that all lie on the same chord into a coarsened element.

Using hex triads reduces the computational complexity of grid
placement and also respects the rules of the dual. By grouping hex
triads into groups of three, a triple triad can be created. The man-
ner and order of placement of these triads to create a temporary
grid structure is determined automatically by evaluation of the
defined coarsening region. Algorithmically, this is accomplished
through a number of weighting techniques that respect the density
and geometric boundary conditions of the uncoarsened mesh.
Also, only those configurations of grids that maintain the connec-
tivity of the dual can be used. Section 3.2.3 explains how this grid
structure has been placed to avoid the creation of any nonconfor-
mal areas in the mesh when transition templates are inserted.

3.2.2 Creation of Valid Coarsened Elements. The placement
of the initial grid structure does not delete or create new mesh
elements. A number of things must occur before the grid structure
can be transformed into elements. The first step is to create two
continuous edges �2D� out of the six edges that currently exist or
four continuous edges �3D� out of the twelve existing edges on the
underlying uncoarsened elements. The edges being discussed
never encompass the edges that constitute the caps or ends of an
element. Figure 6�b� shows a coarsened hexahedral �3D� element

Fig. 5 Uniform removal of numerous sheets along a specified
curve
Fig. 6 A hex triad „a…, coarsened element „b…
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with the twelve original edges merged into four edges on the
coarsened element. It is important to note that these edges in an
unstructured mesh will often not create a straight line �see Fig.
6�a��. Optimization techniques are applied to select the best place-
ment of this new merged edge while preserving the quality of the
mesh in that region. Next, a single new element must be created
from the three current mesh elements. The last step is to delete the
three former elements leaving just the new coarsened element.

3.2.3 Insertion of Transition Elements to Preserve Mesh
Conformity. Figures 7�a� and 7�b� show how a two-dimensional
grid structure is developed from a defined region to be coarsened.
As is shown in Fig. 7�b�, once new coarsened elements are placed
according to the requirements of the grid structure, there will be
nonconformities in the mesh. These nonconformities are resolved
through the use of transition templates. Transition templates redi-
rect a dual’s chord direction in a mesh, thus preserving confor-
mity. Figure 7�c� shows the mesh from Figs. 7�a� and 7�b� after
transition elements have been inserted. Comparing Figs. 7�a�–7�c�
show the progression from a defined coarsened region to a newly
configured and conformal locally coarsened mesh.

3.2.4 Execution of Postprocessing, Mesh Clean-Up and
Smoothing Routines. Because the mesh has been modified, it is
important to verify that the final mesh quality is adequate for
analysis. If the mesh quality is poor, it may be desirable to apply
a smoothing algorithm to improve areas in the mesh that have low
quality elements.

Fig. 7 User selected elements „a…, applied grid structure „b…,
transition element insertion „c…

Fig. 8 Using a surface to define the shrink region
Fig. 9 Mesh of airfoil befo
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4 Refinement
In this section we explain how hex meshes are refined by either

adding sheets in gaps that are created in the original mesh, or by
adding additional sheets in existing sheets �18,19�.

4.1 Refinement by Placing New Sheets in Created Gaps.

4.1.1 Defining the Shrink Region With a Surface. Surfaces can
be used as a reference for defining a shrink region. When using
surfaces to define the shrink region the layer of new elements will
be inserted into the mesh so that it runs parallel to the reference
surfaces. This is illustrated for a single reference surface in Fig. 8.
The original mesh is shown in Fig. 8�a� and the concave surface is
used as the reference surface. In Fig. 8�b� the hexahedral elements
that are adjacent to the concave surface have been shrunk away
from the original mesh. After shrinking, a void is created that is
ready to be filled with a layer of new elements. The highlighted
elements in Fig. 8�c� show the final mesh after the new elements
have been inserted.

Once a good boundary layer has been created, dicing �20� can
then be used to create biased elements. For problems with bound-
ary sensitive analyses, this could provide improved accuracy.

Figure 9 shows an example of inserting a sheet adjacent to a
surface and then dicing the new elements to create boundary layer
elements. An original mesh of an airfoil is shown in Fig. 9�a�.
Figure 9�b� shows the mesh after inserting a layer of elements
around the airfoil and dicing the layer with a biased scheme and
six intervals. A close-up of the leading edge of the airfoil is shown
in Fig. 9�c�.

4.1.2 Defining the Shrink Region With a Line. Another useful
method for specifying the elements in the shrink region is to use a
characteristic line of the model �21�. Here, with this line as the
axis and an associated distance as the radius, a topological cylin-
der �or torus� defines the boundary of the shrink region. A conve-
nient way to specify the line and radius is to use a geometric curve
as the line and mesh element intervals as the radius.

Figure 10 illustrates the process of defining a shrink region with
a line. Figure 10�a� shows a sketch of an unrefined mesh. The
geometric curve that defines the axis and the mesh elements that
define the shrink region boundary are highlighted. In this ex-
ample, the number of hexahedral elements from the curve defines
the radius to the boundary of the shrink region. Here, a distance of

Fig. 10 Using a line to define a shrink region
re and after refinement
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two elements is used. Figure 10�b� shows the shrink region after it
has been separated from the original mesh and Fig. 10�c� shows
the new layer of elements inserted into the void.

An example of a mesh that has been refined using a line to
define the shrink region is shown in Fig. 11. Figure 11�a� shows
the original mesh of a shaft and the line that is used to define the
shrink region. In this example, four layers of hexahedral elements
are inserted into the void created by shrinking the elements in the
original mesh. The final mesh is shown in Fig. 11�b�. Figure 12
shows a cross section from before and after the refinement
operation.

Table 1 gives a comparison of the quality of the meshes in Fig.
11. The metric used here is the “shape” quality, fshape, as proposed
by Knupp �22�. This metric has a value of 1.0 if the element is a
perfect cube and has a value of 0.0 if the element is degenerate.
The metric is mathematically defined as

fshape =
24

�
k=0

7

��11
k + �22

k + �33
k �/��k

2/3�

where �ij
k =the ijth component of the kth metric tensor; �k=the

determinant of the kth Jacobian matrix.
The refinement process has increased the number of elements

from 8925 to 9883 without causing a drastic change in the overall
quality of the mesh. Although the quality of this example did not
decrease much, it is important to note that in some cases adding
elements to a mesh can cause a significant decrease in the mesh
quality.

4.1.3 Defining the Shrink Region With a Point. A final method
that will be discussed in this paper for specifying the elements in
a shrink region when doing feature refinement is to use a point. In
this case, the point and an associated radius are used to create a
topological sphere. A point can be conveniently defined using a

Table 1 Shape metric quality of shaft mesh before and after
refinement

Shape
metric, fshape

No.
hexes Avg.

Std.
Dev. Min. Max.

Before 8925 0.7943 0.1059 0.4178 0.9675
After 9883 0.7611 0.1274 0.4266 0.9675

Fig. 11 Meshed shaft before and after refinement, the line
shown defines the shrink region

Fig. 12 Cross-section views of refinement to shaft mesh
Journal of Computing and Information Science in Enginee
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vertex or a node.
Figure 13 illustrates the process of defining a shrink region with

a point. Figure 13�a� shows a sketch of an unrefined mesh. The
vertex that will be used to define the shrink region is highlighted.
In this example, the number of hexahedral elements from the
point defines the radius to the boundary of the shrink region. Here,
a distance of two elements is used. Figure 13�b� shows the shrink
region separated from the original mesh and Fig. 13�c� shows the
new layer of elements inserted into the void.

4.2 Refinement by Placing Multiple New Sheets Within
Existing Sheets. The following scheme was originally presented
by Harris et al. �19� and improved here by providing an accom-
modation for concave corners �Sec. 4.2.2� and controlling the den-
sity of the refinement area �Sec. 4.5�. The theory supporting single
sheet operation refinement is based on modification of the spatial
twist continuum. Each hex element is defined by the intersection
of three twist planes. In two dimensions, these planes are reduced
to chords shown by the dashed lines in Fig. 14�b�.

To increase local mesh density, additional chords are inserted
that intersect the original chords and either exit the mesh at a
boundary or close back to create loops as shown by the dark
dashed lines in Figs. 15�a� and 15�c�. Each new intersection be-
tween the inserted chord and an original chord defines a new
element, Figs. 15�b� and 15�d�.

In two dimensions, two directions of refinement divide each
target quadrilateral, shown in gray in Fig. 14�a�, into nine new
quadrilaterals. Each inserted chord loop represents a single direc-
tion of refinement. Note that each direction of refinement takes
place within a single column or row of elements. Each column or
row is defined by the chord that runs through the centers of all its
elements.

The above refinement concept is directly expanded to three di-
mensions. Instead of intersecting chords, the elements within an
all-hexahedral mesh are defined by the intersections of three twist
planes. All elements intersected by a single twist plane compose a
hex sheet. Each direction of refinement occurs within a single hex
sheet where a completely enclosing twist plane spheroid, the 3D
equivalent of a chord loop, is inserted. Figure 16�a� shows a
single sheet wherein one direction of refinement has occurred.

Three directions of refinement divide the central target hex of
Fig. 16�b� into 27 new elements. As also seen above, transition
elements are created in the region where the twist plane is turned

Fig. 13 Using a point to define the shrink region

Fig. 14 2D mesh with target element selected „a… and the

chords that define the mesh „b…
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back 180 deg. The transition elements surround the target areas,
transitioning between coarse and fine mesh regions. Crossing mul-
tiple twist planes extends the refinement region.

Complete hex sheets are guaranteed features of conforming all-
hexahedral meshes. Because each direction of refinement occurs
completely within a single hex sheet, a conforming mesh after
refinement is also guaranteed.

4.2.1 Templates. Only three templates are needed to perform
each direction of refinement, a main template shown in Fig. 17�a�
and two transition templates �b and c�. Template �a� is used to
divide the target hex first into three hexes in one direction, then
the three into nine in the second direction and finally the nine into
27 in the third direction. Template �b� borders a face of the target
element and serves to reverse the path of the inserted twist plane
back through the target hex. Template �c� reverses the twist plane
through an edge of the target hex.

The templates are chosen based on the number of selected
nodes on an element in a sheet that is to be refined. These selected
nodes are, for each template, marked with black dots in Fig. 17.
All nodes of a target element are always selected, thus template
�a� requires eight marked nodes. Four selected nodes on a single
element face define template �b�. The orientation of templates �a�
and �b� will be correct if the divided edges between the selected
nodes lie entirely within the hex sheet. Two selected nodes define
the corner template �c�.

4.2.2 Concave Corner Accommodation. When concave cor-
ners arise, another template is needed. An example of this situa-
tion is shown in Fig. 18. Figure 18�a� shows hexes selected for

Fig. 15 A single chord-loop insertio
chord-loop insertion „c… and resulting

Fig. 16 An extracted sheet showing a single direction of re-
finement on the target center hex „a… and the mesh after three
directions of refinement „b…
Fig. 17 Single hex sheet refinement templates

334 / Vol. 5, DECEMBER 2005

: https://computingengineering.asmedigitalcollection.asme.org on 06/29/2019 Ter
refinement. In Fig. 18�b�, one twist plane has been inserted in the
extracted sheet. A template that could fill the concave region re-
quires the surface characteristics of the mock template in Fig.
18�c�. However, such a configuration forces the inserted twist
plane to self-intersect within the template. Such a template cannot
be constructed with reasonable quality. However, to accommodate
this situation, an adjustment to the mock template can be made.
This adjustment is shown in Fig. 19. Figure 19�a� shows two
shaded surfaces on the mock template and two surfaces on adjoin-
ing elements that will be merged to form a common surface. Fig-
ure 19�b� shows the element configuration after the shaded sur-
faces have been merged. This element configuration in the corner
of the concavity now accommodates the refinement of the region.

4.2.3 Algorithm Description and Examples. Due to the above
restrictions, refinement using single sheet operations is most
suited for target regions requiring the division of single elements
and groups of elements. The actual algorithm marks the nodes of
all target hexes then loops through the hex sheets, accommodating
concavities and inserting the templates. With the concavities ac-
commodated, each hex in the sheet will only have eight, four, two
or zero marked nodes.

The mesh in Fig. 20�a� is composed of all-hex elements and is
conforming. Figure 20�b� shows the refinement of a group of se-
lected hexes. Figure 20�c� illustrates refinement of a selected
curve �lower left�. Refinement of a node, element edge or element

„a… and resulting mesh „b…; multiple
sh „d…

Fig. 18 Concavity issues
n

Fig. 19 Concavity adjustment
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face using this method would all appear as shown in the upper left
refinement of Fig. 20�c�. Figure 20�d� shows the refinement of a
single surface.

4.3 Near Node and Edge Refinement. A modification of the
above procedure to allow refinement directly around element
nodes, edges, and faces, is to introduce the templates shown in
Fig. 21.

This technique is applied by refining the selected nodes, ele-
ment edges, and element faces with the templates of Fig. 21. For
individual nodes, only this first step is needed. Figure 22�a� shows
the additional sheet refinement of two edges and the selected
nodes �in black� that defined the refinement region. Only addi-
tional templates �b� and �c� were used to perform the refinement.
Figure 22�c� shows additional sheet refinement of a single se-
lected face with corresponding selected nodes. All three additional
sheet templates were used in this step.

Following a single direction of additional sheet refinement, all
eight nodes on the elements adjacent to the target edges or faces
are flagged as depicted by the black nodes in Figs. 22�b� and
22�d�. Single sheet refinement then follows as described previ-
ously with hex sheets defined by the target edges, shown with the
heavy black line in Fig. 22�b�, or two adjacent edges of a target
face, shown in Fig. 22�d�. Only one direction of single sheet re-
finement is necessary for every target edge while two directions
are necessary for each target face. After refinement is completed,
a single layer of quality elements exists between the selected en-
tity and the transition elements.

4.3.1 Examples. Figure 23�a� shows the refinement of a single
selected node. Each element surrounding the target node �marked
with black� is replaced with template �c� from Fig. 21. Figure
23�b� shows the mesh after applying a “mean ratio” smoothing

Fig. 20 Single sheet operations: Orig
lected curve and vertex „c…, selected s

Fig. 21 Additional hex sheet templates

Fig. 22 Combination refinement: para

by multiple directions of single sheet refi
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operator �23�. Care should always be given before smoothing after
any refinement in that the quality of some elements may decrease
as the quality of others increase. In addition, smoothing may ex-
pand the size of some elements in a region where the size should
remain small. However, smoothing can be used to minimize the
size transition between elements as shown in Fig. 23.

Figure 24�a� is an all-hex conforming mesh. Figure 24�b�
shows combination refinement of several edges after smoothing.
Figure 24�c� shows combination refinement of a group of faces
after smoothing.

4.4 Quality Issues. The quality of a hexagonal mesh is usu-
ally degraded subsequent to refinement. Again, Knupp’s shape
metric, fshape, can be used to evaluate quality of hexahedral
meshes prior to and after refinement. Recall that this metric has a
value of 1.0 if the element is a cube and has a value of 0.0 if the
element is degenerate. The meshes of Fig. 25, which are summa-
rized in Table 2, show the typical quality degradation associated
with refinement. This example demonstrates that the new combi-
nation technique, as presented above, restricts the refinement to a
smaller region and causes less degradation in both overall and
minimum quality. These features of the proposed combination
technique thus provide some advantages over previous methods.

4.5 Refinement by Placing New Sheets Selectively Within
Existing Sheets. Some of the significant limitations of the
schemes explained in Secs. 4.2 and 4.3 are that they often over-
refine a target area or do not allow a smooth transition from the
refined to the unrefined area. A method to accommodate such
needs can be accomplished by slight modification of the method
presented in Sec. 4.2. The modification we suggest uses only a
one directional refinement we call a “stint” as shown in Fig. 26.
Note that a stint could be considered a planar template defined to
reside in an existing sheet. The stint is completely defined by
giving the number of elements it encompasses in the two planar
directions of the sheet in which it resides. The stint in Fig. 26 is of
dimension 3�3.

Figure 27 shows an example of controlled stint placement. Fig-
ure 27�a� shows the original unrefined mesh. We desire to refine
the front face of the object by increasing from a 10�10 increment
to a 22�22 increment. To accomplish this, we place stints in the
object that penetrate 3, 4, and 7 elements deep. The locations of

l mesh „a…, selected elements „b…, se-
ace „d…

l sheet refinement „a and c… followed
ina
urf
lle

nement „b and d…
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Fig. 26 A single direction of refinement, i.e., a “stint”
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some of these stints are shown in the figure. Note that the
achieved refinement is neither too fine and that it staggered as the
refinement goes from the fine to coarser regions.

5 Conclusions
In this paper we have presented both refinement and coarsening

schemes for conformal all-hexahedral meshes. All the schemes
rely upon the dual of the mesh for directing the final mesh modi-
fication. Coarsening algorithms are currently in their infancy and
much work is still needed to develop robust schemes. Current
conformal refinement schemes provide many options for adding
elements to a specified region, but often these schemes lead to
over-refinement in a particular region. The variable single sheet
refinement presented here shows promise for allowing both
smoother and coarser refinement of conformal unstructured all-
hexagonal meshes. Sophisticated all-hexahedral meshing schemes
should combine the best features of both coarsening and refining
to create quality adapted conformal hexahedral meshes.
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