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Abstract

Transport constraints limit competition and arbitrageurs’ possibilities
of exploiting price differences between commodities in neighbouring mar-
kets.We analyze a transportation network where oligopoly producers com-
pete with supply functions under uncertain demand, as in wholesale elec-
tricity markets. For networks with a radial structure, we show that symmet-
ric supply function equilibria (SFE) can be determined from an exogenous
market integration function. Existence of such equilibria (SFE) is ensured
if demand shocks are suffi ciently evenly distributed. The market integra-
tion function simplifies to a constant for uniform multi-dimensional nodal
demand shocks, and then we can explicitly solve for SFE.
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1 Introduction

The transport of commodities can be conducted via air, road or rail routes (in
case of freight) or through pipelines (in case of gas or oil), or transmission lines
(in case of electricity). The passage of the commodity through these conduits is
typically represented in economic models using a flow network [36]. These have
nodes representing junctions and arcs representing transport routes. The flow
through each arc is limited by its capacity.
Transport constraints limit trade, which makes production and consumption

less effi cient. Moreover, transport constraints reduce competition between agents
situated in separated markets, which worsens market effi ciency even further. Con-
gestion is of particular importance for markets with negligible storage possibilities,
such as wholesale electricity markets. Then demand and supply must be instantly
balanced and temporary congestion in the network can result in large local price
spikes. The same market can at times exhibit very little market power and, at
other times, suffer from the exercise of a great deal of market power. Borenstein
et al. [13] show that standard concentration measures such as the Herfindahl-
Hirschman index (HHI) work poorly to assess the degree of competition in such
markets. Thus competition authorities who need to predict the use of market
power under various counterfactuals —what might happen if a merger or acquisi-
tion is accepted or transport capacity is expanded, need more detailed analytical
tools.
We analyze the influence a network’s topology and transport constraints have

on competition in an oligopoly market with a homogeneous commodity. Producers
and consumers are located in nodes of the network, which are connected by arcs
(lines). Transports in an arc are costless up to its transport capacity. We focus on
connected radial networks, where there is a unique path (chain of arcs) between
every two nodes in the network. We say that two nodes are completely integrated
when they are connected via uncongested arcs. A node is always completely
integrated with itself.
We assume that the commodity is traded in a multi-unit auction with locational

marginal prices in the nodes. Production costs are common knowledge, while con-
sumers’demand is uncertain. We consider a simultaneous-move game, where each
producer first commits to a supply function and then a local exogenous demand
shock is realized in each node of the network. The slope of the residual demand
curve1 is important in the calculation of a firm’s optimal offer. Even if competi-
tors play pure-strategies, the slope of the residual demand curve is uncertain in
equilibrium due to the local demand shocks. We characterize this uncertainty us-
ing Anderson and Philpott’s [4] market distribution function approach, which is
analogous to Wilson’s probability distribution of the market price [45]. For radial
networks, we show that the optimal output of a producer is proportional to its
mark-up and the expected slope of the residual demand curve that it is facing.2

1The residual demand at a specific price is given by demand at that price less competitors’
sales as that price.

2Note that the output of the firm influences congestion in the network, which in its turn
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In the paper we use graph theory to show how the expected slope of the residual
demand curve relates to the characteristics of the network and competitors’offers.
For a given vector of demand shocks, the flow through arcs with a strictly binding
transport capacity is fixed on the margin. Thus on the margin, a firm’s realized
residual demand is only influenced by production and consumption in nodes that
are completely integrated with the firm’s node. We define a market integration
function for each node, which equals the expected number of nodes that it is
completely integrated with, including the node itself.
In principle, a system of our optimality conditions can be used to numerically

solve for Supply Function Equilibria (SFE) in general networks. In our paper we
use them to solve for symmetric equilibria in two-node and star networks.3 Firms’
supply functions depend on the number of firms in the market. Still it can be
shown that in a symmetric equilibrium with inelastic demand, market integration
is a function of the total nodal production in a node. This function is exogenous
in the sense that it can be determined from exogenous parameters: the network
topology, the demand shock distribution and production and transport capacities.
The implication is that oligopoly producers will have high mark-ups at output lev-
els for which the exogenous market integration function returns small values, and
lower mark-ups at output levels where market integration is expected to be high.
The market integration function simplifies to a constant for multi-dimensional uni-
formly distributed demand shocks in symmetric radial networks, also for elastic
demand. We show that an equilibrium offer in a node of such a network is iden-
tical to the equilibrium offer in an isolated node where the number of symmetric
firms and the demand slope have been scaled by the market integration function.
Thus previous analytical results for symmetric SFE in single node networks and
properties of such SFE [5][21][25][30][37] can be generalized to symmetric SFE
in symmetric radial networks with transport constraints and multi-dimensional
uniformly distributed demand shocks.
We focus on characterising supply function equilibrium (SFE) in radial net-

works. However, we also show how our optimality conditions can be generalized to
consider meshed networks, which have multiple paths (loop flows) between some
nodes in the network. Although the meshed model does not simplify as in the ra-
dial case. Moreover, we describe how our conditions can be modified to calculate
SFE in networks with a discriminatory multi-unit auction (pay-as-bid pricing)
and Cournot Nash equilibrium in networks with uncertain demand. Normally
nodes represent the geographical location of a market place, and with transport
we normally mean that the commodity is moved from one geographical location to
another location. But nodes and transports could be interpreted in a more general
sense. For example, a node could represent a point in time or a geographical lo-
cation at a particular point in time. Moreover, storage at a geographical location
can be represented by arcs that allow for transports of the commodity to the same
location, but at a later point in time. The transport capacity of such arcs would

influences its residual demand curve. Thus with the slope of a firm’s residual demand we here
mean the slope of its residual demand conditional on that it has a fixed output.

3There are no strategic producers in the center node of the star network. Thus the network
is symmetric from the producers’perspective.

3



then correspond to the local storage capacity.
The supply function equilibrium for a single node with marginal (uniform)

pricing was originally developed by Klemperer and Meyer [30]. This multi-unit
auction model represents a generalized form of competition in oligopoly markets,
in-between the extremes of the Bertrand and Cournot equilibrium. The setting
of the SFE is particularly well-suited for markets where producers submit offer
curves to a uniform-price auction before demand has been realized, as in wholesale
electricity markets [12][21][25]. This has also been confirmed qualitatively and
quantitatively in several empirical studies of bidding in electricity markets.4 But
the SFE model is of more general interest. Klemperer and Meyer [30] argue that
although most markets are not explicitly cleared by uniform-price auctions, firms
typically face a uniform market price and they need predetermined decision rules
for lower-level managers to deal with changing market conditions. Thus, in general,
firms implicitly commit to supply functions.
Klemperer and Meyer’s model has only one uncertain parameter, a demand

shock. In equilibrium there is a one to one mapping between the price and shock.
Thus each firm can choose its supply function such that its output is optimal for
every realized shock. Klemperer and Meyer’s equilibrium is therefore said to be
ex-post optimal. As noted by Anderson et al [6], this feature is diffi cult to translate
into a network with multi-dimensional demand shocks.5

By requiring that each firm’s offer is optimal only in expectation, the recent
paper by Wilson [44] takes a different approach, which enables him to extend
Klemperer and Meyer’s [30] model to consider the network’s influence on bidding
strategies.6 This ex-ante optimality condition is adopted in our paper as well.
Wilson, however, does not provide any second-order conditions in his paper nor
does he solve for SFE, so his analysis is missing some fundamental components.
Previous research has shown that second-order conditions are often violated

in a network with strategic producers. The reason is that transport constraints
can introduce kinks (nonsmoothness) in a producer’s residual demand curve which
becomes discontinuously less price sensitive when net imports to its node are con-
gested. Thus, in a node where imports are nearly congested it will be profitable
for a producer to withhold production in order to push the price above the next
breakpoint in its residual demand curve. This type of deviation will often rule

4Empirical studies of the electricity market in Texas (ERCOT) show that offers of the two
to three largest firms in this market roughly match Klemperer and Meyer’s first-order condition
[28][39]. The fit is worse for small producers. According to Wolak [46] the reason is that these
studies did not consider that offers are stepped. He shows that both large and small electricity
producers in Australia choose stepped offers in order to maximize profits; at least observed data
does not reject this hypothesis.

5Anderson et al [6] investigate a two-node transmission network with both independent and
correlated demand at the nodes. They derive formulae to represent the market distribution
function for a producer when its network becomes interconnected to a previously separate grid
under the assumption that the interconnection does not change competitors’offers.

6Lin and Baldick [31] and Lin et al [32] also calculate first-order conditions for transmission
networks with supply function offers, but their model is limited to cases with certain demand.
Vives [41] also calculates SFE for cases with multi-dimensional shocks, but he considers markets
where producers have private cost shocks in single node networks.
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out pure-strategy Nash equilibria.7 Borenstein et al. [14] for example rule out
Cournot NE when the transport capacity between two symmetric markets is suf-
ficiently small and demand is certain. Downward et al. [17] analyse existence of
Cournot equilibria in general networks with transport constraints.8 We verify that
monotonic solutions to our first-order conditions are Supply Function Equilibria
(SFE) when the shock density is suffi ciently evenly distributed, i.e. close to a uni-
form multi-dimensional distribution. In this case the demand shocks will smooth
the residual demand curve, so that its breakpoints disappear in expectation. But
existence of SFE cannot be taken for granted. Perfectly correlated shocks or steep
slopes and discontinuities in the shock density will not smooth the residual de-
mand curve suffi ciently well, and then profitable deviations from the first-order
solution will exist.9

2 The model

We shall consider markets for a single commodity that is traded over a network
consisting of M nodes (markets) that are connected by N directed transport arcs
(lines). We assume that each pair of nodes are connected by at most one arc. The
network is connected, so that there is at least one path (chain of arcs) between
every two nodes in the network. Thus we have that N ≥M −1. As is standard in
graph theory, the topology of the network can be described by a node-arc incidence
matrix A [11].10 This matrix A has a row for every node and a column for every
arc, and ik−th element aik defined as follows11:

aik =


−1, if arc k is oriented away from node i,

1, if arc k is oriented towards node i,
0, otherwise.

Every arc starts in one node and ends in another node, so by definition we have
that the rows of A add up to a row vector with zeros. Thus the rows are linearly
dependent. It can be shown that the incidence matrix A of a connected network
has rank M − 1 [11].

7But Escobar and Jofre [18] show that there is normally a mixed-strategy NE in those cases.
Adler et al. [1] and Hu and Ralph [29] show that existence of pure-strategy Cournot NE de-
pends on the assumptions made about the rationality of the players. Hobbs et al [22] bypasses
the existence issue by using conjectural variations instead of a Nash equilibrium. Existence of
equilibria is more straightforward in networks with infinitesimally small producers [16][18][26].

8Willems [43] analyse how a network operator’s rule to allocate transmission capacity influ-
ences the Cournot NE. Wei and Smeers [42] calculate Cournot NE in transmission networks with
regulated transmission prices. Oren [35] calculates Cournot NE in a network with transmission
rights. Neuhoff et al’s [33] use Cournot NE to analyse competition in the northwestern European
wholesale electricity market.

9Note that a discontinuity in a node’s shock density is acceptable as long as it occurs when
transport capacities in all arcs to the node are binding.
10This is different to Wilson [44] who describes the network with power transfer distribution

factors (PTDFs).
11Many authors adopt a different convention in which aik = 1 if arc k is oriented away from

node i.
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The transported quantity in arc k is represented by the variable tk which can
be positive or negative, the latter indicating a flow in the opposite direction from
the orientation of the arc. Thus the ith row of At represents the flow of the
commodity into node i from the rest of the network. Transportation is assumed
to be lossless and costless, but each arc k has a capacity Kk, so the vector t of arc
flows satisfies

−K ≤ t ≤ K. (1)

At each node i there are ni suppliers who play a simultaneous move, one shot
game. Each supplier offers a nondecreasing differentiable supply function

Qig (p) , g = 1, 2, . . . , ni,

that defines how much each firm is prepared to supply at price p. For simplicity
we assume that each firm is only active in one node. Non-strategic net-demand at
each node i is Di(p) + εi,12 where Di(p) is a nonincreasing function of p and εi is
a random local shock having a known probability distribution with joint density
f(ε1, ε2, . . . , εM). The demand shocks are realized after firms have committed
to their offers. We denote the total deterministic net-supply in each node by
Si (pi) =

∑ni
g=1Qig (pi)−Di(pi) and the vector with such components by s(p). We

also introduce Si,−g (pi) =
∑ni

h=1,h6=gQih (pi) − Di(pi), which excludes the supply
of firm g from the deterministic net-supply in node i.
We assume that there are many small price-taking traders active in the net-

work. After the demand shocks have been realized, they buy in some nodes,
transport the commodity through the network without violating its physical con-
straints, and then sell it in other nodes. The market is cleared when all profitable
feasible trades have been exhausted. Equivalently, as in wholesale electricity mar-
kets, it can be assumed that the network is cleared by a price-taking operator,
i.e. it chooses demand and output in each node in order to maximize the stated13

social welfare of market participants without violating the network’s technical con-
straints. We assume that accepted offers are paid the local clearing price at their
node. In electric power networks this is called nodal pricing [15][23][38]. Hence,
for each realization ε the market will be cleared by a set of prices that defines how
much each supplier produces and what is transported through the network. The
clearing prices ensure that net-demand equals net-imports in every node, i.e.

At+ s(p) = ε. (2)

We assume that each producer is risk-neutral and chooses its supply curve in
order to maximize its expected profit. Ex-post, after demand shocks have been
realized and prices and firms’outputs have been determined, the profit of firm g
in node i is given by:

Πig(p, q) = pq − Cig (q) , (3)

12Note that this is net-demand, so it is not necessarily non-negative. For example, fluctuating
wind-power from small non-strategic firms can result in negative net-demand shocks.
13The operator acts as if submitted offers reflect true marginal costs.
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where p is the local price in node i, q is the output of the firm and Cig (q) is
the firm’s production cost, which is differentiable, convex and increasing up to
its capacity constraint qig.We let p be the highest realized price in the market.
For networks with inelastic demand (and an unbounded monopoly price) we let
p > C ′ig

(
qig
)
be a reservation price.

The residual demand curve of a firm is the market demand that is not met by
other firms in the industry at a given price. The slope of this curve is important
in the calculation of a firm’s optimal offer. The demand shocks are additive, so
they will not change the slope of a firm’s residual demand, as long as the same set
of arcs are congested in the cleared market. Thus similar to Wilson [44] we find
it useful to group shock outcomes for which the same set of arcs are congested
in the cleared market. If two market outcomes for different ε realizations have
exactly the same arcs with tk = −Kk and the same arcs with tk = Kk then we
say that they are in the same congestion state ω. For each congestion state, we
denote by L(ω), B(ω), and U(ω) the sets of arcs where flows are at their lower
bound (i.e. congested in the negative direction), between their bounds or at their
upper bound, respectively.

2.1 Optimality conditions

In monopoly and Cournot markets without transport constraints the first-order
condition of a firm’s optimal output is:

C ′ (q) = p− q

−D′ (p) ,

i.e. the output is chosen such that the marginal cost equals the marginal revenue.
Alternatively, the same condition can be written as:

q = (p− C ′ (q)) (−D′ (p)) ,
i.e. the optimal output is proportional to the firm’s mark-up and (the absolute
value of) the slope of the demand. The condition is similar in a market with
supply function competition and no transport constraints. But in this case the
slope of firm i’s residual demand is also influenced by the slope of its competitors’
supply, Q′−i (p), i.e. [30]

qi = (p− C ′i (qi))
(
Q′−i (p)−D′ (p)

)
. (4)

Another difference between supply functions and Cournot offers is that firm i can
choose a supply function so that the output becomes optimal for every realized
price. Thus even if there is an additive shock in the demand, firm i can still
choose its supply function such that the resulting output is optimal for every
shock realization. This property of the supply function equilibrium is referred to
as ex-post optimality.
Solving for the equilibrium in our model with multiple nodes is more compli-

cated than for the standard SFE model, because there are many different vectors
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of shock realizations that can result in the same local price in a firm’s node. More-
over, different arcs may be congested for the same price in a firm’s node. Thus
the slope of a firm’s residual demand is typically not pinned down by its nodal
price, so supply function equilibria in our setting are normally not ex-post opti-
mal. Instead we will in the next section show that (4) generalizes such that firm
i’s ex-ante optimal output is equal to its mark-up times the expected slope of its
residual demand conditional on the firm’s output. We need to condition the slope
of the residual demand on firm i’s output as congestion in the network depends
on this output.
As in Anderson and Philpott [4], we use the market distribution function

ψig(p, q) to characterize the uncertainty in the residual demand curve of firm g in
node i. For given offers of the competitors this function returns the probability
that an offer (p, q) from the firm is rejected.14 The expected pay-off is given by
the line-integral [4]: ∫

Qig(p)

Πig(p, q)dψig(p, q). (5)

Thus, for any offer curve Qig (p), the market distribution function contains all
information of the residual demand that a firm needs to calculate its expected
profit. It does not matter whether the rejection probability is driven by properties
of the demand, competitors’offers or properties of the network. As long as the
firm’s accepted offers are paid a (local) marginal price, we can still apply Anderson
and Philpott’s optimality condition. We define

Z (p, q) =
∂Πig

∂q

∂ψig
∂p
−
∂ψig
∂q

∂Πig

∂p
=
(
p− C ′ig(q)

) ∂ψig
∂p
− q

∂ψig
∂q

. (6)

It can be shown that an offer curve Qig(p) is globally optimal if it satisfies [4]:
Z (p, q) ≥ 0 if q < Qig(p)
Z (p, q) = 0 if q = Qig(p)
Z (p, q) ≤ 0 if q > Qig(p).

(7)

In addition it is necessary for a local optimum that these conditions are locally sat-
isfied at q = Qig(p). Intuitively we can explain the first-order condition Z (p, q) = 0
as follows. The same market distribution function (rejection probability) can be
generated by different randomizations of the residual demand curve. In particu-
lar the same market distribution function can be generated by randomizing over
crossing or non-crossing residual demand curves. Still, it follows from (5) that as
long as the market distribution function is the same, expected profits and the op-
timal offer for firm g do not change. Thus, even if our randomization is different,
we can simplify the derivation of first- and second-order conditions by considering
a simpler equivalent case, where ψig (p, q) has been generated by a randomization

14Note that the market distribution function is analogous to Wilson’s [45] probability distribu-
tion of the market price, which returns acceptance probabilities for offers. The main contribution
of Anderson and Philpott’s analysis is that it provides a global second-order condition for opti-
mality.
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q

p

Figure 1: Example where contours of ψig(q, p) (thin) are linear. Isoprofit lines
for πig(q, p) are dashed. The optimal curve q = Qig(p) (solid) passes through the
points where these curves have the same slope.

over non-crossing residual demand curves forming the contours of ψig (p, q). In
this case, it is obvious that the expected profit of firm g in node i is globally
maximized if the payoff is globally optimized for each outcome of its residual de-
mand curve. Thus for this particular randomization of the residual demand, the
optimal offer is ex-post optimal as in Klemperer and Meyer’s single node model
[30]. It follows from the equivalence argument that the expected profit of firm g
in node i is globally maximized if the payoff is globally optimized for each contour
of ψig (p, q) irrespective of how the market distribution function was generated. A
necessary condition for this is that the supply curve Qig (p) crosses each contour
of ψig (p, q) at a point where the latter is tangent to the firm’s isoprofit line. This
is illustrated in Figure 1.
Hence, the following conditions must be satisfied at every point along the

optimal supply curve.

dq

dp

∣∣∣∣
ψig(p,q)=const

=
dq

dp

∣∣∣∣
Πig(p,q)=const

. (8)

From (3) we have

dq

dp

∣∣∣∣
Πig(p,q)=const

= −
∂Πig
∂p

∂Πig
∂q

∣∣∣∣∣
Πig(p,q)=const

= − q
p−C′ig(q)

. (9)

Similarly,

dq

dp

∣∣∣∣
ψig(p,q)=const

= −
∂ψig
∂p

∂ψig
∂q

∣∣∣∣∣
ψig(p,q)=const

. (10)

Now (8), (9) and (10) together imply that
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∂ψig
∂p

∂ψig
∂q

=

∂Πig
∂p

∂Πig
∂q

= q
p−C′ig(q)

, (11)

which is identical to the first-order condition given by (6) and Z (p, q) = 0. The
global second-order condition in (7) ensures that profits increase to the right of
each contour of ψig (p, q).
In order to apply the first- and global second-order conditions implied by (6)

and (7) we need to calculate the derivatives
∂ψig
∂p

and
∂ψig
∂q
, which depend on com-

petitors’offers, the joint density f(ε1, ε2, . . . , εM) and the properties of the net-
work. In the next section we calculate these derivatives for radial networks.

3 Radial networks

We begin our analysis by focusing on radial networks (i.e. trees with M nodes
and N = M − 1 arcs forming an acyclic connected graph). The generalization to
meshed networks with N > M − 1 is presented in Section 4. In radial networks
there is a unique path (chain of arcs) between any two nodes in the network. Thus
network flows are straightforwardly determined by net-supply in the nodes, which
simplifies the clearing process of the market. We define ρ to be the vector of
non-negative shadow prices (one for each arc) for flows in the positive direction.
Similarly, we define σ to be the vector of non-negative shadow prices (one for each
arc) for flows in the negative direction. Hence, the market clearing conditions for
a radial network are15

A>p = ρ− σ
0 ≤ ρ ⊥ K− t ≥ 0
0 ≤ σ ⊥ K+ t ≥ 0
At+ s(p) = ε.

(12)

The first condition states that the shadow price for the arc gives the difference
in nodal prices between its endpoints. The second and third set of conditions are
called complementary slackness. They ensure that there are no feasible profitable
arbitrage trades in the radial network. If two nodes are connected by a congested
arc then the price at the importing end will be at least as large as the price in the
exporting end. Another implication of the complementary slackness conditions is
that nodes connected by uncongested arcs will form a zone with the same market
price. We say that such nodes are completely integrated. The fourth condition
ensures that net-demand equals net-imports in every node.
Recall that for a given congestion state ω, L(ω), B(ω), and U(ω) are the

sets of arcs where flows are at their lower bound (i.e. congested in the negative
direction), between their bounds or at their upper bound, respectively. Thus the

15Section 4 provides a generalized and more formal derivation of these Karush-Kuhn-Tucker
conditions.
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complementary slackness conditions can be equivalently written as follows:

tk = Kk, σk = 0, ρk ≥ 0, k ∈ U(ω),
tk ∈ (−Kk, Kk) σk = 0, ρk = 0, k ∈ B(ω),
tk = −Kk, σk ≥ 0, ρk = 0, k ∈ L(ω).

Observe that given a congestion state ω and arc k, there is at most one variable
tk, ρk or σk that is not at a bound.
Recall that A has rank M − 1 for radial networks, so the vector of prices p

cannot be uniquely determined from the first market clearing condition in (12) by
the choice of ρ and σ. As in Wilson [44], we choose an arbitrary node i to be a
trading hub with nodal price p. In the following we will express the other nodal
prices p−i in terms of p and the shadow prices. Let 1M−1 be a column vector of
M − 1 ones and 0M−1 be a column vector of M − 1 zeros. Let Ai be row i of
matrix A, and let A−i be matrix A with row i eliminated. For connected radial
networks, it can be shown that A−i is non-singular with determinant +1 or -1
[10]. We know that the columns of AT sum to a column vector of zeros. Hence,(

A−i
)T
1M−1 +AT

i = 0M−1((
A−i

)T)−1

AT
i = −1M−1.

Using this result, we can write the market clearing condition A>p = ρ− σ as
follows: (

A−i
)T
p−i+pA

T
i = ρ− σ

p−i =
((
A−i

)T)−1 (
ρ− σ−pAT

i

)
p−i = p1M−1 +

((
A−i

)T)−1

(ρ− σ) .

(13)

To simplify this further we introduce

E =
((
A−i

)T)−1

We partition t, A, E and the shadow prices σ and ρ into (tL, tB, tU), (AL, AB,
AU), (EL, EB, EU), (σL, 0B, 0U) and (0L, 0B, ρU) corresponding to flows at their
lower bounds, strictly between their bounds, and at their upper bounds. Now (13)
can be written as follows:

p−i = p1M−1 + EU(ω)ρU(ω) − EL(ω)σL(ω). (14)

For any index set Υ of columns of A (or equivalently any set Υ of arcs) we will
find it useful to define the volume that feasible flows and shadow prices associated
with arcs in Υ can span. Thus we define the sets

T (Υ1) = {tΥ1 | −KΥ1 ≤ tΥ1 ≤ KΥ1},
U(Υ2) = {ρΥ2

| 0 ≤ ρΥ2
},

L(Υ3) = {σΥ3 | 0 ≤ σΥ3}.
(15)
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T (Υ1) is the volume in t space that the flows in a set of uncongested arcs Υ1 can
span. U(Υ2) and L(Υ3) are the volumes in σ and ρ space spanned by the shadow
prices of congested arcs in the sets Υ2 and Υ3, respectively. In particular we are
interested in S(ω) ⊆ RM−1, which we define by

S(ω) = L(L(ω))× U(U(ω))× T (B(ω)). (16)

Hence, S(ω) is the total volume in t, σ and ρ space that is spanned for a congestion
state ω.

3.1 Optimality conditions for radial networks

In order to apply the optimality conditions in (6) and (7), we need to derive the
market distribution function ψig (p, q). It is the probability that an offer q at price
p from firm g in node i is rejected. Thus the calculation of this function involves
determining a market outcome for every realization of the vector ε, and then
integrating the density function f over the volume in ε-space that corresponds
to firm g’s offer not being fully accepted. In the general case this volume is
complicated and it is even more complicated to differentiate ψig (p, q) (we need
such derivatives in our optimality conditions) if one follows this direct approach.
Like Wilson [44], we avoid this by transforming the problem into one where we
instead integrate over the flows and shadow prices that arise in each congestion
state. In the following we take supply functions Qjh (p) of the competitors as given
and we want to calculate the best response of firm i in node g. For notational
convenience we let node i, the node under study, be the trading hub with price
p.16

We denote by p(p,ρ,σ) the vector of nodal prices defined by (14), where we
choose to suppress the dependence on ω for notational convenience. We define
s (p,q) to be the (vector) net-supply function with jth component{

q +
∑ni

h=1,h6=g Sih (p)−Di(p), j = i,∑nj
h=1 Sjh (pj)−Dj(pj). j 6= i.

(17)

When calculating
∂ψi,g(p,q)

∂p
we keep the output of firm g fixed while the price p at

node i is free to change. Thus we calculate ψig (p, q) from the probability that the
price in node i, π, is below p when firm g’s offer is fixed to q, i.e. firm g makes a
Cournot offer. We want to transform the volume in ε−space into a corresponding
volume in t, σ, ρ and π space for variables that are not at a bound. To make this
substitution of variables when computing the multi-dimensional integral, we need
the following factor to represent the change in measure [8, p. 368].

Jp(ω) =

∣∣∣∣∣ ∂ε

∂
(
tB(ω),ρU(ω),σL(ω),π

)∣∣∣∣∣ , (18)

16The trading hub is moved and a new price relation as in (14) is calculated when optimality
conditions are derived for a firm in another node.
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the absolute value of the determinant of the Jacobian matrix representing the
change of variables. Thus the rejection probability, i.e. the probability that the
market clearing price π at node i is less than p can be calculated from

ψi,g (p, q) =
∑
ω

∫ p

π=−∞

∫
S(ω)

f (At+ s(p(π,ρ,σ), q)) Jp(ω)dtB(ω)dρU(ω)dσL(ω)dπ,

(19)
where S(ω) is defined in (16). It is now straightforward to show that:

∂ψi,g (p, q)

∂p
=
∑
ω

∫
S(ω)

f (At+ s (p(p,ρ,σ), q)) Jp(ω)dtB(ω)dρU(ω)dσL(ω). (20)

When calculating
∂ψi,g(p,q)

∂q
we keep p fixed in node i, while q, the output of

firm g, is free to change. Thus we calculate ψig (p, q) from the probability that the
firm’s realized output, r, is q or lower when the price in node i is fixed to p, i.e.
firm g makes a Bertrand offer. In this case, the substitution factor is given by:

Jq(ω) =

∣∣∣∣∣ ∂ε

∂
(
tB(ω),ρU(ω),σL(ω),r

)∣∣∣∣∣ . (21)

The rejection probability, i.e. the probability that the market clearing quantity r
for generator g at node i is less than q can now be calculated from

ψi,g (p, q) =
∑
ω

∫ q

r=−∞

∫
S(ω)

f (At+ s (p(p,ρ,σ), r)) Jq(ω)dtB(ω)dρU(ω)dσL(ω)dr

(22)
so

∂ψi,g (p, q)

∂q
=
∑
ω

∫
S(ω)

f (At+ s (p(p,ρU ,σL), q)) Jq(ω)dtB(ω)dρU(ω)dσL(ω).

(23)
The next step is to calculate the Z function of firm g in node i, so that we can

make use the the optimality condition in (7). We start by introducing some new
notation. For each state ω we partition the nodes into the sets Ξ (ω) and z (ω).
Ξ (ω) includes all nodes that are completely integrated with node i (the trading
hub), where firm g is located, through some uncongested chain of arcs. The set
z (ω) contains all other nodes in the network. Similarly we partition the shock
vector into εΞ(ω) and εz(ω). The arcs are partitioned as follows. We let tΞ(ω) be
the flows in the uncongested arcs between nodes in the set Ξ (ω) and we let tz(ω)

be the vector of flows in the other arcs. In particular, the vector tzB(ω) denotes
uncongested flows in the other arcs. MΞ(ω) is the number of nodes in Ξ (ω) and
we note that they must be connected by MΞ(ω) − 1 uncongested arcs. We use the
node-arc incidence matrix AΞ(ω) to describe the connected radial network with
nodes in Ξ (ω) and arcs with uncongested flows tΞ(ω) connecting nodes in this set.

13



We let Az(ω) be a node-arc incidence matrix with M − MΞ(ω) rows/nodes and
M −MΞ(ω) columns/arcs, describing the rest of the network. 17

Proposition 1 In a radial network, the optimal output q of firm g at price p in
node i can be determined from the following Z function:

Z =
(
p− C ′ig(q)

)∑
ω

S ′i,−g (p) +
∑

k∈Ξ(ω)\i

S ′k (p)

P (p, q, ω)− q
∑
ω

P (p, q, ω)

(24)
where

P (p, q, ω) =
∫
S(ω)

f (At+ s (p(p,ρ,σ), q)) Jz(ω)dtB(ω)dρU(ω)dσL(ω) (25)

Jz(ω) =

∣∣∣∣∣ ∂εz(ω)

∂(tzB(ω),ρU(ω),σL(ω))

∣∣∣∣∣ . (26)

Row k of the Jacobian matrix
∂εz(ω)

∂
(
tz
B(ω)

,ρU(ω),σL(ω)

) can be constructed as follows for
the state ω: ∂εz(ω)

∂
(
tzB(ω),ρU(ω),σL(ω)

)

k

=
[ (
Az
B(ω)

)
k
S ′k (pk)

(
EU(ω)

)
k
−S ′k (pk)

(
EL(ω)

)
k

]
(27)

for k ∈ z (ω).

Proof. First we substitute results in Lemma 13 and Lemma 14 (see Appendix)
into (20) and (23). Next, we get (24) and (25) by substituting (20) and (23) into
(6). Jz(ω) can be determined from Lemma 15 in the Appendix.
Observe that P (p, q, ω) is a probability density in the sense that P (p, q, ω) dq

is the probability that firm g is dispatched in the interval (q, q + dq) and the
congestion state is ω given that the clearing price is p. The term

∑
ω P (p, q, ω) is

then the probability that g is dispatched in the interval (q, q + dq) given that the
clearing price is p. The first-order optimality condition is given by Z (p, q) = 0, so
it immediately follows from (24) that:

Corollary 2 The optimal output q of firm g in node i at price p satisfies the
first-order condition:

q =
(
p− C ′ig(q)

)∑
ω

S ′i,−g (p) +
∑

k∈Ξ(ω)\i

S ′k (p)

P (ω|p, q) ,

where

P ($|p, q) :=
P (p, q,$)∑
ω P (p, q, ω)

17Note that the remainder of the network has at least one arc that is lacking its start or end
node. Also the remainder of the network is not necessarily connected.

14



is the conditional probability that the network is in state $ given that the price in
node i is p and firm g has output q.

Recall that in a single-node network, the optimal output of a producer is
proportional to its mark-up and the slope of the residual demand that it is facing
[30]. In a network with multiple connected nodes, producer g in node i only faces
the slope of the net-supply in nodes that are completely integrated with its own
node. Thus according to Corollary 2, the slope of net-supply in each other node is
scaled by the conditional probability that this node is completely integrated with
node i. Hence, for multi-dimensional shocks, Klemperer and Meyer’s condition
generalizes to saying that the optimal output of a producer is proportional to its
mark-up and the expected slope of the residual demand that it is facing. This
first-order condition is consistent with Wilson’s results [44]. We notice that in
case all arcs have unlimited capacities, we get the Klemperer and Meyer condition
for a completely integrated network. The other extreme when all arcs have zero
capacity, yields the Klemperer-Meyer equation for the isolated node i.

Definition 3 For firm g in node i we define the market integration function by

µig (p, q) =
∑
ω

MΞ(ω)P (ω|p, q) .

Thus, the market integration function is equal to the expected number of nodes
(including node i itself) that are completely integrated with node i given that firm
g has output q and node i has the market price p. As we will see in the next section,
this function is useful when characterizing SFE in symmetric radial networks.

3.2 Examples

By means of Corollary 2 we are able to construct a first-order condition for each
firm in a radial network. The supply function equilibrium (SFE) can be solved
from a system of such first-order conditions for general radial networks. The global
second-order condition of an available first-order solution can be verified by (7).
In this section we use these optimality conditions to derive SFE for two-node and
star networks with symmetric firms.

3.2.1 Two node network

Consider a simple network with two nodes connected by one arc from node 1 to
node 2 with flow t1 ∈ [−K1, K1]. We derive the optimality condition for a firm in
node 1, and thus we pick node 1 as being the trading hub with price p. Below we
list the congestion states of the network and how we partition the nodes for each
state:

State t1 ρ1 σ1 Ξ z
ω1 ∈ (−K1, K1) 0 0 {1, 2} ∅
ω2 K1 ∈ [0,∞) 0 {1} {2}
ω3 −K1 0 ∈ [0,∞) {1} {2}
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We have from (2) that [
ε1

ε2

]
=

[
S1 (p1)
S2 (p2)

]
︸ ︷︷ ︸

s(p)

+

[
−1

1

]
︸ ︷︷ ︸

A

t1. (28)

It can be shown that:

Lemma 4 In a two-node network, firm g’s optimality condition in node 1 is given
by:

Z (p, q) = (p− C ′1g(q))(S ′2(p) + S ′1,−g (p))P (p, q, ω1)
+(p− C ′1g(q))S ′1,−g (p) (P (p, q, ω2) + P (p, q, ω3))
−q(P (p, q, ω1) + P (p, q, ω2) + P (p, q, ω3)) = 0,

(29)

where
P (p, q, ω1) =

∫ K1

−K1
f (q + S1,−g (p)− t1, S2 (p) + t1) dt1

P (p, q, ω2) =
∫∞
S2(p)+K1

f (q + S1,−g (p)−K1, ε2) dε2

P (p, q, ω3) =
∫ S2(p)−K1

−∞ f (q + S1,−g (p) +K1, ε2) dε2.

(30)

Proof. We have from (28) that

A−1 = 1 = (A−1)T =
(

(A−1)T
)−1

= E.

We set p1 = π, so it follows from (13) that

p2 = π + ρ1 − σ1. (31)

We also have:
State Az

B EzU EzL
ω1 ∅ ∅ ∅
ω2 ∅ 1 ∅
ω3 ∅ ∅ 1

The network is completely integrated in state ω1, so εz(ω1) is empty. We only need
the substitution factor Jz(ω) for states ω2 and ω3. It follows from (27), (28) and
(31) that

Jz(ω2) =

∣∣∣∣ ∂εz(ω2)

∂(ρU(ω2))

∣∣∣∣ = S ′2 (p2) = S ′2 (π + ρ1)

Jz(ω3) =

∣∣∣∣ ∂εz(ω3)

∂(σL(ω3))

∣∣∣∣ = |−S ′2 (p2)| = S ′2 (π − σ1) .

(25) now yields:

P (p, q, ω1) =

∫ K1

−K1

f (At1+s (p, q)) dt1 =

∫ K1

−K1

f (q + S1,−g (p)− t1, S2 (p) + t1) dt1,

P (p, q, ω2) =
∫∞

0
f (At1+s (p, q)) Jz(ω2)dρ1

=
∫∞

0
f (q + S1,−g (p)−K1, S2 (p+ ρ1) +K1)S ′2 (p+ ρ1) dρ1

16



and
P (p, q, ω3) =

∫∞
0
f (At1+s (p, q)) Jz(ω3)dσ1

=
∫∞

0
f (q + S1,−g (p) +K1, S2 (p− σ1)−K1)S ′2 (p− σ1) dσ1.

This gives us (30) after the substitutions ε2 = S2 (p+ ρ1)+K1 and ε2 = S2 (p− σ1)−
K1, respectively, have been applied to the integrals of the states ω2 and ω3. The
equation (29) follows from (24) and that the two nodes are only completely inte-
grated in state ω1. Figure 2 gives a geometric view of the probabilities in (30) for
the special case when S1,−g(p) = 0.

Figure 2: Computation of P (p, q, ω) when S1,−g(p) = 0. The probability mass
in the shaded area is equal to the rejection probability ψ1,g(q, p). The values of
P (p, q, ω) are integrals along the right-hand boundary of this region as shown.

∑
ω P (ω|p, q) = 1 and node 2 only belongs to the set Ξ in the state ω1. Thus

it follows from Corollary 2 that

Q1g = (p− C ′(Q1g))
(
S ′1,−g (p) + P (ω1|p,Q1g)S

′
2(p)

)
, (32)

where the conditional probability that the arc is uncongested is given by

P (ω1|p,Q1g) =
P (p,Q1g, ω1)∑
ω P (p,Q1g, ω)

.

Recall that S ′1,−g (p) is the slope of the net-supply from competitors and demand
in node 1, and S ′2(p) is the slope of net-supply in node 2.
Below we consider symmetric NE for symmetric firms and symmetric shock

densities. The existence of an equilibrium depends on the partial derivatives
fi (ε1, ε2), i = 1, 2, of the shock density which must be suffi ciently small. It
can be shown that symmetric solutions to (32) are equilibria under the following
circumstances.

Proposition 5 Consider a two-node network with n symmetric firms in each
node, each firm having identical production capacities q̄ and identical marginal
costs that are either constant or strictly increasing. If demand is inelastic up
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to a reservation price p > C ′(q), and has a bounded shock density that satis-
fies f (ε1, ε2) = f (ε2, ε1) and 2nq |fi (ε1, ε2)| ≤ (3n− 2) f (ε1, ε2) when (ε1, ε2) ∈
[−K1, q +K1] × [−K1, q +K1] : {ε1 + ε2 ≤ 2q}, then there exists a unique sym-
metric supply function equilibrium in the network, where each firm’s monotonic
offer, Q (p), can be calculated from:

Q′(p) =
Q

(p− C ′(Q)) (nµ (nQ)− 1)
(33)

µ (nQ) = 1 +
P (nQ, ω1)∑
ω P (nQ, ω)

(34)

for p ∈ (C ′ (0) , p] with the initial condition Q (p) = q. The probabilities P (nQ, ω)
are given by

P (nQ, ω1) =
∫ K1

−K1
f (nQ− t1, nQ+ t1) dt1

P (nQ, ω2) =
∫∞
nQ+K1

f (nQ−K1, ε2) dε2

P (nQ, ω3) =
∫ nQ−K1

−∞ f (nQ+K1, ε2) dε2.

(35)

Proof. Symmetry of the network, costs and shock densities ensure that the
optimal supply functions of all producers are given by identical optimality condi-
tions. The differential equation in the statement follows from (32) and inelastic
demand. We have S2 (p) = q + S1,−g (p) = nQ (p) in a symmetric equilibrium
with inelastic demand, so (35) follows from (30). In case that production capacity
would bind at some price pb < p then Q(p) is inelastic in the range (pb, p), and
it follows from (29) that Z (p, q) < 0 when q < q and p ∈ (pb, p). This would
violate the second-order condition in (7), and it is necessary that this condition
is locally satisfied [4]. Thus the production capacity must bind at the reservation
price, which gives our initial condition.
Next we show that the solution is unique. It follows from the assumptions for

f (ε1, ε2), our definition of P (nQ, ω) and from Definition 3 that

1

(nµ (nQ)− 1)
> 0,

and that 1
(nµ(nQ)−1)

is Lipschitz continuous in Q. Consider a price p̃ ∈ (C ′ (0) , p).
We now want to show that p− C ′(Q (p)) is bounded away from zero in the range
[p̃, p]. This is obvious for constant marginal costs, as we then have that p̃ −
C ′ (Q (p̃)) = p̃− C ′ (0) > 0. For strictly increasing marginal costs we can use the
following argument. It follows from Picard-Lindelöf’s theorem and p > C ′(q) that
a unique solution to (33) must exist for some range [p0, p]. In this price range the
mark-up, p− C ′(Q (p)), is smallest at some price p∗ where the supply function is
at least as steep as the marginal cost curve, i.e. Q′(p∗) ≤ 1

C′′(Q(p∗)) . Thus it follows
from (33) that

p∗ − C ′(Q(p∗)) ≥ Q(p∗)C′′(Q(p∗))
(nµ(nQ(p∗))−1)

,

which is bounded away from zero whenever Q(p∗) and C ′′ (Q(p∗)) are bounded
away from zero. In case Q(p∗) = 0 for some price p∗ > C ′ (0), it follows from (33)
that Q′(p) = 0 for p ∈ (p̃, p∗). Thus it follows from Picard-Lindelöf’s theorem and
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the properties of (33) that a unique monotonic symmetric solution will exist for
the price interval [p̃, p].
We now verify the global second order conditions. We know from (7) that the

solution is an equilibrium if Z (p, q) ≥ 0 when q ≤ Q (p) and Z (p, q) ≤ 0 when
q ≥ Q (p). To simplify notation let

α(p, q) = P (p, q, ω1) + P (p, q, ω2) + P (p, q, ω3) , (36)

β(p, q) = (2n− 1)P (p, q, ω1) + (n− 1)P (p, q, ω2) + (n− 1)P (p, q, ω3) .(37)

We have from (29) that

Z (p, q) = (p− C ′(q))β(p, q)Q′ (p)− qα(p, q).

As β(p,Q(p)) ≥ 0 we can equivalently verify that

W (p, q) ≡ Z (p, q)

β(p, q)
≡ (p− C ′(q))Q′ (p)− α(p, q)

β(p, q)
q

is non-increasing with respect to q. This follows since Wq (p, q) ≤ 0 implies that
Zq (p, q) ≤ 0 whenever Z (p, q) = 0. Since Z(p,Q (p)) = 0, we must have Z (p, q) ≥
0 when q ≤ Q (p) and Z (p, q) ≤ 0 when q ≥ Q (p).
As C ′′ ≥ 0, demand is inelastic, and Q′(p) ≥ 0, the contribution from the first

term ofWq (when we differentiate C ′(q)) is non-positive and we can conclude that

Wq ≤ −
d

dq

(
α(p, q)

β(p, q)
q

)
= −

β(p, q)(α(p, q) + qαq(p, q))− qα(p, q)βq(p, q)

β2(p, q)

To show that Wq ≤ 0, it suffi ces to show that

β(p, q)α(p, q) + qβ(p, q)αq(p, q)− qα(p, q)βq(p, q) ≥ 0. (38)

To show this observe that the assumption

2nq |fi (ε1, ε2)| ≤ (3n− 2) f (ε1, ε2)

implies from (30) that

2nq |Pq (p, q, ω1)| = 2nq

∣∣∣∣∫ K1

−K1

∂

∂q
f (q + S1,−g (p)− t1, S2 (p) + t1) dt1

∣∣∣∣
≤ 2nq

∣∣∣∣∫ K1

−K1

∂

∂q
f (q + S1,−g (p)− t1, S2 (p) + t1) dt1

∣∣∣∣
≤

∫ K1

−K1

2nq |f1 (q + S1,−g (p)− t1, S2 (p) + t1)| dt1

≤ (3n− 2)

∫ K1

−K1

f (q + S1,−g (p)− t1, S2 (p) + t1) dt1

= (3n− 2)P (p, q, ω1) .
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Similarly 2nq |Pq (p, q, ω3)| ≤ (3n− 2)P (p, q, ω3) and 2nq |Pq (p, q, ω2)| ≤ (3n− 2)P (p, q, ω2).
It follows that

qβ(p, q)αq(p, q)− qα(p, q)βq(p, q)

= qn (P (p, q, ω1) (Pq(p, q, ω2) + Pq (p, q, ω3))− qnPq (p, q, ω1) (P (p, q, ω2) + P (p, q, ω3)))

≥ (2− 3n)P (p, q, ω1) (P (p, q, ω2) + P (p, q, ω3))

It can be deduced from (36) and (37) that

β(p, q)α(p, q) ≥ (3n− 2)P (p, q, ω1) (P (p, q, ω2) + P (p, q, ω3)).

Thus (38) is satisfied and thus Wq ≤ 0, which is suffi cient for an equilibrium.
Symmetric offers Q (p) depend on the number of firms per node and their

production costs. Still, for inelastic demand and symmetric equilibria, it can be
noted from (34) that the market integration function µ (nQ) only depends on
the total nodal output and exogenous parameters: the demand shock distribution
and production and transport capacities. The market integration function does
not depend on market competitiveness or firms’production costs. It follows from
(33) that oligopoly producers will increase their mark-ups at output levels where
the exogenous market integration function µ (nQ) is small, i.e. when the arc is
congested with a high conditional probability. Similarly, oligopoly producers will
decrease their mark-ups at output levels, where the market integration function is
large.
In the next step we will explicitly solve for symmetric SFE in the two-node

network. To simplify the optimality conditions we consider the case where demand
shocks follow a uniform multi-dimensional distribution.
Assumption 1: Consider a network with two nodes connected by an arc with

capacity K1 and with n symmetric firms in each node. Demand in each node is
given by εi +D (p). Without loss of generality we let D (C ′(0)) = 0.18 We assume
that shocks are uniformly distributed with a constant density, 1

V1
, on the surface

(ε1, ε2) ∈ [−K1, nq −D (p) +K1]×[−K1, nq −D (p) +K1] : {0 ≤ ε1 + ε2 ≤ 2nq − 2D (p)}
and zero elsewhere.

Proposition 6 Make Assumption 1, then the symmetric first-order condition for
firm i in node g is given by:

Q = (p− C ′(Q)) ((µn− 1)Q′ − µD′) , (39)

where the market integration function is a constant given by

µ = 1 + P (ω1|p, q) =
4K1 + nq −D (p)

2K1 + nq −D (p)
. (40)

When demand is inelastic up to a reservation price p, solutions to (39) are SFE,
and the inverse symmetric supply functions can be calculated from:

p (Q) = Q−1 (Q) =
pQµn−1

qµn−1 + (µn− 1)Qµn−1

∫ q

Q

C ′ (u) du

uµn
, (41)

18Note that this is just a normalization of the demand shock.
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where µ = 4K1+nq
2K1+nq

. For linear demand εi +a− bpi, a, b > 0, in each node, constant
marginal costs c and µn 6= 2, solutions to (39) are SFE and given by:

Q (p) =
µb (p− c)
(µn−2)

(
(µn−1)

(
p− c
p− c

)(µn−2)/(µn−1)

− 1

)
, (42)

where p = q
µb

+ c.

Proof. It follows from the definitions of P (p, q, ω1), P (p, q, ω2) and P (p, q, ω3)
in (30) that under Assumption 1 we get:

P (p, q, ω1) =
K1∫
−K1

f (q + S1,−g (p)− t1, S2 (p) + t1) dt1 =
K1∫
−K1

dt1
V1

= 2K1

V1

P (p, q, ω2) =
∞∫

S2(p)+K1

f (q + S1,−g (p)−K1, ε2) dε2 =
nq−D(p)+K1∫
S2(p)+K1

dε2
V1

= nq−D(p)−S2(p)
V1

P (p, q, ω3) =
S2(p)−K1∫
−∞

f (q + S1,−g (p) +K1, ε2) dε2 =
S2(p)−K1∫
−K1

dε2
V1

= S2(p)
V1

.

(43)
Thus

P (ω1|p, q) =
P (p, q, ω1)∑
ω P (p, q, ω)

=
2K1

nq −D (p) + 2K1

, (44)

which gives (40). Now, by substituting S2 (p) = nQ (p) − D (p) and S1,−g (p) =
(n− 1)Q (p)−D (p) into (32) we get

Q = (p− C ′(Q)) ((n− 1)Q′ (p)−D′(p) + P (ω1|p, q) (nQ′(p)−D′(p))) , (45)

which together with (44) gives (39). Next, we note the similarities with the first-
order condition for single-node networks with m symmetric firms [30].

Q = (p− C ′(Q)) (Q′ (m− 1)−D′0) . (46)

By comparing (39) and (46) we can conclude that the first-order solution of a firm
in a symmetric two-node network with n firms per node is the same as for a firm
in an isolated node with µn symmetric firms and demand µD+ε. Thus analytical
solutions to (46) are also solutions to (39) when m = µn and D0 = µD. For exam-
ple, for single node networks, we know that explicit solutions can be derived for
symmetric firms facing an inelastic demand and that these solutions are monotonic
[5][24][37], which gives us (41). Moreover, we know that monotonic closed-form
solutions exist for symmetric firms with identical constant marginal costs that face
a linear demand [25], which gives us (42). It follows from Proposition 5 that both
of these monotonic solutions constitute SFE.
It follows from Proposition 6 that the market integration function µ simplifies

to a constant for uniformly distributed demand shocks, also for elastic demand. In
this case, the equilibrium offer of a firm in the two-node network with n symmetric
firms per node is identical to the equilibrium offer of a firm in an isolated node
with µn symmetric firms and the demand slope µD′. The differential equations
are identical to the single node case, so the symmetric equilibrium in a network
inherits their well-behaved properties [24][25].
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Figure 3: Total supply curve in one node with inelastic demand up to a reserva-
tion price and constant marginal costs up to a fixed nodal production capacity.
The network is symmetric with n firms per node. Demand shocks are uniformly
distributed so that the market integration function µ is constant.

Corollary 7 Solutions to (41) and (42) have the following properties

1. Mark-ups are positive for a positive output.

2. For a given total nodal output and nodal production cost function, mark-ups
decrease with more firms in the market.

Fig. 3 illustrates how the total supply function in a node depends on µn if the
total production capacity in each node is kept fixed.
Proposition 5 ensures existence of equilibria when slopes in the shock density

are suffi ciently small. However, existence is problematic for steep slopes in the
shock density and especially so when it has discontinuities. This is illustrated by
the non-existence example below.

Example 8 Shock densities with discontinuities: Assume that the support
of the shock εi, i ∈ {1, 2} is given by [0, ε]. The density is differentiable inside
the support set, but decreases discontinuously when ε1 = ε and ε2 ∈ [0, ε]. Con-
sider a potential symmetric NE of a duopoly market with one firm in each node
with identical costs C (q). Assume that the symmetric supply functions Q (p) are
monotonic, that demand is inelastic, so that Si (p) = Q (p). Moreover,

q +K1 > ε > 2K1. (47)

In the following we will show that firm 1 will have a profitable deviation from
the potential symmetric pure-strategy NE. In particular we will consider the point
(q0, p0) where

q0 = Q (p0) = ε−K1. (48)
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It follows from (47) that q0 ∈ (0, q). Thus, unlike the distribution in Assumption
1, the shock density can reach its discontinuity even if the transport capacity is
non-binding. From (30) we have:

P (p, q, ω3) =

∫ Q(p)−K1

−∞
f(q +K1, ε)dε

and accordingly

lim
q↑ε−K1

P (p, q, ω3) = P (p, ε−K1, ω3) > lim
q↓ε−K1

∫ Q(p)−K1

−∞
f(q +K1, ε)dε = 0. (49)

However, P (p, q, ω1) and P (p, q, ω2) are still continuous at the point (q0, p0). From
(30) we have:

P (p0, q0, ω1) =

∫ K1

−K1

f(q0 − t, q0 + t)dt =

∫ K1

−K1

f(ε−K1 − t, ε−K1 + t)dt > 0

P (p0, q0, ω2) =

∫ ∞
K1+q0

f(q0 −K1, ε)dε =

∫ ∞
ε

f(ε− 2K1, ε)dε = 0

so (49) implies that

lim
q↓ε−K1

∑
ω

P (p0, q, ω) < lim
q↑ε−K1

∑
ω

P (p0, q, ω) . (50)

A necessary condition for the solution being an equilibrium is that the optimality
condition in (7) is locally satisfied at the point (p0, ε−K1). Thus we must have

lim
q↑ε−K1

Z (p0, q) ≥ 0, but together with (29) and (50) this would imply that

lim
q↓ε−K1

Z(p0, q) = (p− C ′(q0))Q′(p0)P (p0, q0, ω1)− q0( lim
q↓ε−K1

∑
ω

P (p0, q, ω))

> (p− C ′(q0))Q′(p0)P (p0, q0, ω1)− q0( lim
q↑ε−K1

∑
ω

P (p0, q, ω))

= 0,

which would violate the local second-order condition in (7), and accordingly there
is a profitable deviation from the symmetric solution Q (p).

The next example illustrates that existence of SFE is problematic if shocks are
perfectly correlated.

Example 9 Perfectly correlated shocks: Consider two nodes connected by one
arc. Demand shocks in the two nodes are perfectly correlated. This means that
market prices are driven by a one-dimensional uncertainty. We assume that the
demand shocks in both nodes are strictly increasing with respect to this underlying
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one-dimensional shock.19 We also assume that D′i < 0, i ∈ {1, 2}, so that S ′1(p)
and S ′2 (p) are always strictly positive. Thus both nodal prices are strictly increasing
in the underlying shock, and there is a one-to-one mapping between the underlying
shock and each nodal price. In equilibrium, firms maximize their profits by choosing
a supply function that optimizes the output for each price and shock, so that the
equilibrium becomes ex-post optimal as in Klemperer and Meyer’s [30] model of
single markets. Without loss of generality, assume that the arc from node 1 to 2
is congested at the price p∗ and uncongested in some range (p̂, p∗). Assume that
the first-order condition results in a well-behaved monotonic solution for each firm
where mark-ups are strictly positive in the range (p̂, p∗]. Consider a firm g in
node 2 (the importing node), with the first-order solution Q2g (p). We choose p̂
suffi ciently close to p∗ and assume that the shock density is well-behaved so that
P (p, q, ω1) + P (p, q, ω2) + P (p, q, ω3) is well-defined and bounded away from zero
for (p, q) ∈ (p̂, p∗) × (Q2g (p̂) , Q2g (p∗)). To simplify the analysis we consider the
case when firms have constant marginal costs. We use (29) and consider the ratio

Ẑ2g (p, q) := Z2g(p,q)∑
ω

P (p,q,ω)

= (p− C ′2g)(S ′1(p) + S ′2,−g (p))P (ω1|p, q)

+(p− C ′2g)S ′2,−g (p)P (ω2 ∪ ω3|p, q)− q,

where P (ω1|p, q) = P (p,q,ω1)
P (p,q,ω1)+P (p,q,ω2)+P (p,q,ω3)

is the conditional probability that the

arc is uncongested and P (ω2 ∪ ω3|p, q) = P (p,q,ω3)+P (p,q,ω2)
P (p,q,ω1)+P (p,q,ω2)+P (p,q,ω3)

is the condi-
tional probability that the arc is congested. It follows from our assumptions that
the first-order solution satisfies:

P (ω1|p,Q2g (p)) =

{
1 if p < p∗

0 if p ≥ p∗

P (ω2 ∪ ω3|p,Q2g (p)) =

{
0 if p < p∗

1 if p ≥ p∗

(51)

and that
Z2g(p,Q2g (p)) = Ẑ2g(p,Q2g (p)) = 0. (52)

Consider a price p0 ∈ (p̂, p∗). Since S ′1(p) > 0 and mark-ups are strictly positive
for p ∈ (p̂, p∗),

p0 − C ′2gS ′1(p0) ≥ inf
p∈(p̂,p∗)

{(p− C ′2g)S ′1(p)} = ∆ > 0.

19In his analysis of perfectly correlated shocks, Wilson [44] focuses on the special case when
the shock at node 1 is fixed to zero. This means that regardless of deviations in node 2, exports
from node 1 can never congest the arc below the price p∗. Thus the profitable deviation that is
outlined in our example does not exist in this special case. We have found that ex-post optimal
SFE can be constructed for such special cases. For similar reasons we have found that SFE can
be constructed when demand shocks in the two nodes are negatively correlated. However, these
equilibria are more complicated as one of the nodal shocks will decrease with respect to the
underlying shock. The price in this node will first increase with respect to the one-dimensional
underlying shock until the arc is congested and then decrease with respect to the underlying
shock. Thus such SFE are not ex-post optimal.
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We proceed to construct a deviation for the function Q2g(p)that improves the payoff
of firm g. The shock at node 1 is increasing in the underlying one-dimensional
shock, so for prices p0 suffi ciently close to p∗ it is possible for firm g to withhold
an amount of production δ0 ∈ (0,∆) so that P (ω1|p0, Q2g (p0)− δ0) = 0 and
P (ω2 ∪ ω3|p0, Q2g (p0)− δ0) = 1. Let δ1 be the infimum of such δ0. This implies
that for every δ ∈

(
δ1,

∆+δ1

2

)
Ẑ2g(p0, Q2g (p0))− Ẑ2g(p0, Q2g (p0)− δ) = (p0 − C ′2g)(S ′1(p0) + S ′2,−g (p0))−Q2g (p0)

−((p0 − C ′2g)S ′2,−g (p0)− (Q2g (p0)− δ))
= (p0 − C ′2g)S ′1(p0)− δ

>
∆− δ1

2
.

It follows from (52) that for every δ ∈
(
δ1,

∆+δ1

2

)
, Ẑ2g(p0, Q2g (p0)−δ) < −(∆−δ1

2
) <

0, and so

Z2g(p0, Q2g (p0)− δ) < −h(
∆− δ1

2
) (53)

for some constant h > 0, where h is less than or equal to the infimum of P (p0, Q2g (p0)− δ, ω1)+
P (p0, Q2g (p0)− δ, ω2) + P (p0, Q2g (p0)− δ, ω3) over δ ∈

(
δ1,

∆+δ1

2

)
. Withholding

less than δ1 units at p0 only has a second-order effect on Ẑ2g and Z2g. The devia-
tion in Q2g (p0) starts at pδ < p0, which we define by

Q2g(pδ) = Q2g (p0)− δ.

We assume that p0 is suffi ciently close to p∗, so that we can find a suffi ciently small
δ ∈

(
δ1,

∆+δ1

2

)
to ensure that pδ > p̂. For some η1 > 0, when p ∈ (pδ + η1, p0),

the line is congested when the offer is Q2g(pδ) at price p. It follows from (52) and
(51) that

Ẑ2g(p,Q2g(pδ)) = Ẑ2g(p,Q2g(pδ))− Ẑ2g(p,Q2g(p))

= (p− C ′2g)S ′2,−g (p)−Q2g(pδ)

−((p− C ′2g)(S ′1(p) + S ′2,−g (p))−Q2g(p))

= Q2g(p)−Q2g (p0) + δ − (p− C ′2g)S ′1(p)

< − (∆− δ) < −(
∆− δ1

2
)

for p ∈ (pδ + η1, p0). Thus

Z2g(p,Q2g(pδ)) < −k(
∆− δ1

2
)

for p ∈ (pδ + η1, p0) and some positive

k ≤ inf
p∈(pδ+η1,p0)

{P (p,Q2g(pδ), ω1) + P (p,Q2g(pδ), ω2) + P (p,Q2g(pδ), ω3)}.

Together with (53) this implies that if we integrate Z along the deviation defined
by δ, then ∫ p0

pδ

Z2g(p,Q2g (pδ))dp+

∫ Q2g(p0)

Q2g(pδ)

Z2g(p0, q)dq < 0, (54)
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if we choose p0 suffi ciently close to p∗ and δ ∈
(
δ1,

∆+δ1

2

)
suffi ciently small, so

that first-order effects dominate second-order effects. (54) violates a necessary
local optimality condition [4]. The intuition is that a producer in an importing
node always has an incentive to unilaterally deviate from the first-order solution
by withholding power in order to congest the arc at lower prices than p∗, which
increases the price of the importing node.

3.2.2 Star network

In our second case we will consider a star network with four nodes and three
radial lines with capacity K, as shown in Figure 4. We define all arcs to be
directed towards the center node 4. Each arc has the same number as the starting
node, i.e. 1, 2 or 3.

Figure 4: Star network example.

Local net-imports must equal net-demand in every node, so
ε1

ε2

ε3

ε4

 =


S1 (p1)
S2 (p2)
S3 (p3)
S4 (p4)


︸ ︷︷ ︸

s(p)

+


−1 0 0

0 −1 0
0 0 −1
1 1 1


︸ ︷︷ ︸

A

 t1
t2
t3


︸ ︷︷ ︸

t

. (55)

Thus

A−1 =

 0 −1 0
0 0 −1
1 1 1


and

E =
(

(A−1)T
)−1

=

 1 −1 0
1 0 −1
1 0 0

 . (56)

Each arc i has three congestion states. In the uncongested state we have σi = 0,
ρi = 0 and ti ∈ (−K1, K1). When the arc is congested towards node 4 we have
ti = K, σi = 0, and ρi ≥ 0 and when the arc is congested away from node 4 we
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Table 1: The 27 congestion states of the star network.

State t1(ω) t2(ω) t3(ω) P (p, q, ω)
ω1 K K K 0
ω2 K K −K 0

ω3 K K ∈ (−K,K)
K(S2(p)−S2(p))

V

ω4 K −K −K 0

ω5 K −K ∈ (−K,K) K(S(p)−S(p))2

V

ω6 K ∈ (−K,K) ∈ (−K,K) 8K2(S(p)−S(p))
V

ω7 −K K K 0
ω8 −K K −K 0

ω9 −K K ∈ (−K,K) KS2(p)
V

ω10 −K −K −K 0

ω11 −K −K ∈ (−K,K) KS(p)(2S(p)−S(p))
V

ω12 −K ∈ (−K,K) ∈ (−K,K) 8K2S(p)
V

ω13 ∈ (−K,K) K K 2KS2(p)
V

ω14 ∈ (−K,K) K −K 2KS(p)(S(p)−S(p))
V

ω15 ∈ (−K,K) K ∈ (−K,K) 4K2S(p)
V

ω16 ∈ (−K,K) −K −K 2K(S(p)−S(p))2

V

ω17 ∈ (−K,K) −K ∈ (−K,K) 4K2(S(p)−S(p))
V

ω18 ∈ (−K,K) ∈ (−K,K) ∈ (−K,K) 8K3

V

ω19 K −K K 0

ω20 K ∈ (−K,K) K
K(S2(p)−S2(p))

V

ω21 K ∈ (−K,K) −K K(S(p)−S(p))2

V

ω22 −K −K K 0

ω23 −K ∈ (−K,K) K KS2(p)
V

ω24 −K ∈ (−K,K) −K KS(p)(2S(p)−S(p))
V

ω25 ∈ (−K,K) −K K 2KS(p)(S(p)−S(p))
V

ω26 ∈ (−K,K) ∈ (−K,K) K 4K2S(p)
V

ω27 ∈ (−K,K) ∈ (−K,K) −K 4K2(S(p)−S(p))
V

27



have ti = −K, σi ≥ 0, and ρi = 0. Altogether there are 3× 3× 3 = 27 congestion
states as shown in Table 1.
Demand shocks are defined on the following region Θ:

Θ =

{
(ε1, ε2, ε3, ε4) ∈ R4| −K ≤ εi ≤ nq −D (p) +K,−3K ≤ ε4 ≤ 3K,

0 ≤ ε1 + ε2 + ε3 + ε4 ≤ 3nq − 3D (p) ∀i ∈ {1, 2, 3} .

}
and we let V2 be the volume of this region.
Assumption 2. Consider a star network with four nodes and three radial lines

with capacity K directed towards the center node 4. There are n firms with identical
costs C (q) in each node 1−3. There are no producers in node 4 (the center node)
and demand is inelastic here, i.e. S4 (p4) ≡ 0. Demand in nodes i ∈ {1, 2, 3} is
given by εi + D (p). Without loss of generality we let D (C ′(0)) = 0.20 Demand
shocks are uniformly distributed such that:

f (ε) =

{
1
V2

if ε ∈Θ

0 otherwise.

Thus the shock density and network are symmetric with respect to nodes 1, 2, 3.
We can show the following under these circumstances:

Proposition 10 Make Assumption 2, then the symmetric first-order condition
for a firm in nodes i ∈ {1, 2, 3} is given by:

Q = (p− C ′(Q)) ((µn− 1)Q′ − µD′) , (57)

with the market integration function

µ =
3 (nq −D (p))2 + 12K (nq −D (p)) + 12K2

3 (nq −D (p))2 + 8K (nq −D (p)) + 4K2
. (58)

For inelastic demand, solutions to (57) are SFE, and the unique inverse supply
function of each firm in nodes i ∈ {1, 2, 3} is given by (41). For linear demand
εi +a− bpi, a, b > 0, in each node and constant marginal costs c, solutions to (57)
are SFE and given by (42).

Proof. As before we will use node 1 as a trading hub. The price in node 4
can be calculated from (13) and (56)

p4 = p1 + ρ1 − σ1 = π + ρ1 − σ1.

Similarly prices in the nodes k ∈ {2, 3} are given by:

pk = p1 + ρ1 − σ1 − ρk + σk = π + ρ1 − σ1 − ρk + σk.

In the working paper version of this paper [27], we use (25) to calculate P (p, q, ω)
for one state ω at a time. The results are summarized in Table 1. Each competitor

20Note that this is just a normalization of the demand shock.
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is assumed to submit a symmetric offer Q (p), so S2 (p) ≡ S3 (p) ≡ S (p) :=
nQ (p)−D (p). Adding the results in Table 1 yields:∑

ω

P (p, q, ω) =
6KS2 (p)

V2

+
16K2S (p)

V2

+
8K3

V2

. (59)

Node 1 is completely integrated with either node 2 or 3 in states ω15, ω17, ω26,
ω27 and completely integrated with both nodes in state ω18. In the other states
node 1 is either isolated or only completely integrated with node 4, which does
not have any producers and where demand is inelastic. We have

P (p, q, ω15) + P (p, q, ω17) + P (p, q, ω26) + P (p, q, ω27) + 2P (p, q, ω18)

= 4K2S(p)
V2

+ 4K2(S(p)−S(p))
V2

+ 4K2S(p)
V2

+ 4K2(S(p)−S(p))
V2

+ 16K3

V2
= 8K2S(p)+16K3

V2
,

(60)
and

P (ω15|p, q) + P (ω17|p, q) + P (ω26|p, q) + P (ω27|p, q) + 2P (ω18|p, q)
= P (p,q,ω15)+P (p,q,ω17)+P (p,q,ω26)+P (p,q,ω27)+2P (p,q,ω18)∑

ω P (p,q,ω)
= 4KS(p)+8K2

3S2(p)+8KS(p)+4K2 .
(61)

We can now use S (p) := nq −D (p) to calculate (58) from

µ = 1 + P (ω15|p, q) + P (ω17|p, q) + P (ω26|p, q) + P (ω27|p, q) + 2P (ω18|p, q) .

It follows from (24), (59) and (60) that

Z (p, q) = (p− C ′(q))
(
S ′1,−g (p)

(
6KS2(p)

V2
+ 16K2S(p)

V2

)
+ 8K2S(p)+16K3

V2
S ′ (p)

)
−q 2K

V2
[3S2 (p) + 8KS (p) + 4K2] ,

which gives (57) for Z (p, q) = 0, as S2 (p) ≡ S3 (p) ≡ S (p) := nQ (p)−D (p). We
note that ∂Z(p,q)

∂q
≤ 0, so if we find a monotonic stationary solution, then it is an

equilibrium. The two explicit equilibrium expressions and monotonicity of these
solutions can be established as in the proof of Proposition 6.
Figure 3 and Corollary 7 apply to the star network as well. It is only the

market integration function that depends on whether the network has two nodes
or is star shaped.

4 Meshed network with potential flows

So far we have studied radial networks, where there is a unique path between
every pair of nodes. Now we consider more complicated networks consisting of
M nodes and N arcs, where N ≥ M . This means that there will be at least one
cycle in the network and there will be at least two paths between any two nodes
in the cycle [11]. Thus we need to make assumptions of how the transport route
is chosen for cases when there are multiple possible paths. Similar to Wilson [44]
we assume that flows are determined by physical laws that are valid for electricity
and incompressible mediums with laminar (non-turbulent) flows. Such flows are
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sometimes called potential flows, because one can model them as being driven by
the potentials φ in the nodes. In case the commodity is a gas or liquid (e.g. oil),
the potential is the pressure at the node. In a DC network it is the voltage that
is the potential.21 For DC networks and laminar flows it can be shown that the
electricity and flow choose paths that minimizes total losses.
In a potential flow model, the flow in the arc k is the result of the potential

difference between its endpoints. Given a vector of potentials φ, we have

tk =
−
(
A>φ

)
k

Xk

(62)

where −
(
A>φ

)
k
is the potential difference and Xk is the impedance resisting the

the flow through the arc. The impedance is determined by the geometrical and
material properties of the line/pipe that transports the commodity. Thus it is an
exogenous parameter and independent of the flow in the arc. In a DC network,
the impedance is given by the resistance of the line.22

The matrix A has rank M − 1, so the potentials φ are not uniquely defined
by (62). Thus we can arbitrarily choose one node (say i) and set its potential
φi arbitrarily. Normally, the potential of this swing node is set to zero. This
corresponds to deleting row i from A to form the matrix A−i with rank M − 1
[40]. To simplify the analysis we rule out some unrealistic or unlikely cases: we
assume that the impedance is positive and that the capacities of the arcs and
impedance factors are such that for any feasible flow, the set of arcs with flows at
a lower or upper bound contains no cycles. 23

The market clearing conditions are less obvious in a meshed network. As
shown by [15], they can be constructed as the optimality conditions of an economic
dispatch problem (EDP) formulated as follows:

EDP: minimize
∑M

i=1

∑ni
g=1

∫ qig
0

Q−1
ig (x)dx−

∑M
i=1

∫ yi
0
D−1
i (y)dy

subject to At+ q− y = ε, [p]

−K ≤ t ≤ K, [σ,ρ]

Xt = −A>φ. [λ],

21For AC networks it is standard to calculate electric power flows by means of a DC-load flow
approximation, where φ is the vector of voltage phase angles at the nodes [15].
22In a DC-load flow approximation of an AC network, Xk represents the reactance of the

transmission line.
23This precludes certain degenerate solutions which can only arise if the values of the bounds

and impedances for arcs forming a loop L, satisfy equations of the form∑
k∈L

δkXkKk = 0

where δk = 1 if arc k is oriented in the direction that L is traversed and δk = −1 otherwise. We
can preclude instances having such solutions by perturbing the line capacities if necessary.
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The shadow prices for the constraints are shown on the right-hand side in brackets.
EDP seeks supply quantities q, demand y, and transported quantities t to max-
imize total producer and consumer welfare. The Karush-Kuhn-Tucker conditions
of EDP are

KKT: A>p+X>λ = ρ− σ
0 ≤ ρ ⊥ K− t ≥ 0
0 ≤ σ ⊥ K+ t ≥ 0
Aλ = 0
At+ s(p) = ε
Xt = −A>φ

In radial networks the columns of the matrixA correspond to network arcs defining
a tree, and so they are linearly independent (see [40]). This means that Aλ = 0
has a unique solution λ = 0, which allows λ to be removed from the market
clearing conditions. In this case the conditions become the same as those for
radial networks in (12).
We now return to discuss the general case. The prices p that satisfy the KKT

conditions in any congestion state ω must meet certain conditions. First observe
that since X is diagonal and nonsingular, the following can be obtained from the
first KKT condition:

X−1A>p+ λ = X−1(ρ− σ) (63)

Multiplying by A and using the KKT condition that Aλ = 0 yields

AX−1A>p = AX−1(ρ− σ) (64)

In the context of power systems networks the matrix AX−1A> is called a network
admittance matrix, and whenX is the identity it is a Laplacian matrix. The matrix
AX−1A> has rank M − 1, so the vector of prices p is not uniquely determined
by the choice of ρ and σ. Recall that Ai is row i of matrix A, and A−i is matrix
A with row i eliminated. As in section 3 we choose a node i, say, as trading hub
and assign its price to be p. The prices in the other nodes for congestion state ω
are then uniquely determined by

AX−1
(

(A−i)
T p−i + p (Ai)

T
)

= AX−1(ρ− σ).

We can remove row i from this equation and multiply by (A−iX
−1A

>
−i)
−1, so that

p−i = −(A−iX
−1 (A−i)

T )−1A−iX
−1 (Ai)

T p (65)

+(A−iX
−1 (A−i)

T )−1A−iX
−1(ρ− σ) (66)

= p1M−1 + (A−iX
−1 (A−i)

T )−1A−iX
−1(ρ− σ), (67)

because
(A−i)

T 1M−1 + (Ai)
T = 0M−1

A−iX
−1 (A−i)

T 1M−1 +A−iX
−1 (Ai)

T = 0M−1

1M−1 = −(A−iX
−1 (A−i)

T )−1A−iX
−1 (Ai)

T .

(68)

Similar to the radial case, we introduce

E (ω) = (A−iX
−1 (A−i)

T )−1A−iX
−1,
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so that
p−i = p1M−1 + E (ω) (ρ− σ). (69)

Observe that when A−i is nonsingular then E (ω) = ((A−i)
T )−1 which gives the

expression we have in the radial case. More generally, A−i will have M − 1 rows
and N > M − 1 columns, and so it will not have an inverse. As in the radial
case, we denote by p(p,ρ,σ) the vector of nodal prices defined by (69), where we
choose to suppress the dependence on ω for notational convenience. Again we also
let s (p,q) be the (vector) net-supply function with jth component{

q +
∑ni

h=1,h 6=g Sih (p)−Di(p), j = i,∑nj
h=1 Sjh (pj)−Dj(pj). j 6= i.

(70)

Define a matrix H with N − (M − 1) rows forming a basis for the null space
of A. For example, the rows of H can be the orientation vectors of a set of
N − (M − 1) cycles in the network (see [40]). Since AH> = 0, it follows for any
φ that

HA>φ = 0.

Now the KKT conditions amount to:

ε = At+ s(p1M−1+E(ω)(ρ− σ))

t ∈ [−K,K]

HXt = −HA>φ = 0

We seekM degrees of freedom in these equations that will specify a range over
which to integrate ε. One free variable is given by either the price in node i, p, or
the supply of firm g, q. The remaining M − 1 degrees of freedom are integrated
in the t, ρ and σ space. If every t ∈ (−K,K) then ρ = σ = 0, and we have N
variables and N − (M − 1) constraints from HXt = 0, so we are left with M − 1
variables to integrate with. For every component of t that is at a bound, we get a
non-negative component of ρ or a component of σ that is free to leave its bound.
Let Y = HX. We partition this matrix into YL, YB and YU corresponding

to flows at the lower bound, between bounds and at the upper bound. We have
Yt = 0, so to integrate over a congestion state ω we fix constrained components
(tL = −K and tU = K) of t to get

YBtB = −YLtL −YUtU

and free unconstrained components of ρ and σ to get σL and ρU . We integrate
over

B (ω) = {tB : YBtB = −YLtL −YUtU , −KB ≤ tB ≤ KB}
and σL ≥ 0 and ρU ≥ 0, which is an M − 1 dimensional region.
By first keeping q fixed and then p we get two different formulae for ψi,g (p, q):

ψi,g (p, q) =
∑
ω

∫ p

π=−∞

∫
S(ω)

f (At+ s (p(π,ρ,σ),q)) Jp(ω)dtB(ω)dρU(ω)dσL(ω)dπ,

(71)
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ψi,g (p, q) =
∑
ω

∫ q

r=−∞

∫
S(ω)

f (At+ s (p(p,ρ,σ),r) )) Jq(ω)dtB(ω)dρU(ω)dσL(ω)dr,

(72)
where S(ω) = L(ω) × U(ω) × B (ω). As for the radial case, Jp(ω) and Jq(ω)

are defined by (18) and (21), respectively. The expressions (71) and (72) can
be differentiated and substituted into (6) and (7) to give optimality conditions
in a meshed network. Unfortunately, the determinants Jp(ω) and Jq(ω) do not
simplify as in the radial case. In the radial case, each agent effectively faces a
probability-weighted residual demand curve defined by Corollary 2. In the meshed
case the residual demand curve in a congestion state ω involves combinations of
the slopes of competitors’supply functions measured at different prices. In other
words, nodes in a meshed market may be integrated in a congestion state in the
sense that transport between their nodes is uncongested (with some adjustment
in dispatch) but still experience different prices. This makes the computation of
equilibrium a lot more challenging.

5 Alternative market designs and strategies

Finally, we want to briefly note that our expressions in Section 3.1 for how market
distribution functions can be calculated in radial networks are not restricted to
SFE in networks with nodal pricing. They can also be used to calculate Cournot
NE in networks with additive demand shocks. We know from Anderson and
Philpott [4] that the optimality condition of a vertical offer q from firm g in node
i facing an uncertain residual demand is:∫ p

0

Z (p, q) dp = 0

with the second-order condition that
∫ p

0
Zq (p, q) dp ≤ 0. For radial networks with

Cournot competition, Z (p, q) can be calculated as in Proposition 1 if one sets
S ′k (pk) = −D′k (pk) .
Our approach is not limited to cases with local marginal prices. As long as the

network operator accepts feasible offers and bids in order to maximize stated social
welfare, it is often straightforward to adjust our optimality conditions to networks
with other auction formats. For example, consider networks with discriminatory
(pay-as-bid) pricing as in the electricity market of Britain. Anderson et al. [3]
show that the optimality condition of a firm’s offer in such an auction is given by
24

Z =
∂ψig
∂p

(p− C ′ig(q))− 1 + ψig (p, q) ,

24Note that we have changed the sign of the Z function in Anderson et al [3] for pay-as-bid
markets to keep it consistent with the Z function used in this paper.
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and the same conditions as in (7). For a radial network,
∂ψig
∂p

and ψig (p, q) are
given by (19) and (20), respectively. Jp (ω) can be calculated as in (18), and
Lemma 13 (see Appendix).

6 Conclusions

We derive optimality conditions for firms offering supply functions into a net-
work with transport constraints and local demand shocks. In principle, a system
of such optimality conditions can be used to numerically calculate asymmetric
Supply Function Equilibria (SFE) in a general network. In the paper, we focus
on characterizing symmetric SFE in symmetric radial networks. We verify that
monotonic solutions to the first-order conditions are Supply Function Equilibria
(SFE) when the joint probability density of the local demand shocks is suffi ciently
evenly distributed, i.e. close to a uniform multi-dimensional distribution. But ex-
istence of SFE cannot be taken for granted. Perfectly correlated shocks or steep
slopes and discontinuities in the shock density will not smooth the kinks in the
residual demand curves suffi ciently well, and then profitable deviations from the
first-order solution will exist.
In an isolated node, the optimal output of a producer is proportional to its

mark-up and the slope of the residual demand that it is facing. We show that
in a network with multi-dimensional shocks, this generalizes: the optimal out-
put of a producer is proportional to its mark-up and the expected slope of the
residual demand that it is facing. Thus the probability with which the producer’s
node is completely integrated with other nodes, i.e. connected to other nodes via
uncongested arcs, is of great importance for the optimal offer.
For symmetric equilibria it is useful to define a market integration function,

which equals the expected number of nodes that are completely integrated with a
particular node; a node is always completely integrated with itself. Firms’supply
functions depend on the number of firms in the market. Still it can be shown
that in a symmetric equilibrium with inelastic demand, market integration is a
function of the total nodal production in a node. The function is exogenous in
the sense that it can be determined from exogenous parameters: the network
topology, the demand shock distribution and production and transport capacities.
The implication is that oligopoly producers will have high mark-ups at output
levels for which the exogenous market integration function returns small values,
and lower mark-ups at output levels where market integration is expected to be
high.
The market integration function simplifies to a constant for multi-dimensional

uniformly distributed demand shocks in symmetric radial networks, also for elas-
tic demand. We use our optimality conditions to explicitly solve for symmetric
equilibria in two-node and star networks for such shocks. We show that an equi-
librium offer in a node of such a network is identical to the equilibrium offer in
an isolated node where the number of symmetric firms per node and the demand
slope have been scaled by the market integration function. Thus previous results
for symmetric SFE in single node networks become applicable to symmetric SFE
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in symmetric radial networks with transport constraints. We also show that these
symmetric equilibria are well-behaved: (i) mark-ups are positive for a positive
output, and (ii) for a given total production cost, mark-ups decrease with more
firms in the market.
We focus on characterising SFE in radial networks, but we also show how our

optimality conditions can be generalized to consider meshed networks, albeit with
a significant increase in complexity. We also present optimality conditions for
SFE in networks with discriminatory pricing and Cournot NE in networks with
uncertain demand. Typically each node in our network represents a geographical
location, and typically a commodity is transported between two geographical lo-
cations. But nodes and transports in our network could be interpreted in a more
general sense. For example, a node could represent a point in time or a geograph-
ical location at a particular point in time. Moreover, storage at a geographical
location can be represented by an arc that can transport the commodity to a later
point in time. The transport capacity of such an arc corresponds to the storage
capacity at the geographical location. Thus, in principle our approach could be
used to model producers’strategic behaviour in a network with local storage.
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Appendix

We start the appendix by exploring some special properties of the node-arc inci-
dence matrix A for a radial network. We have the following technical results.

Lemma 11 Suppose A is the node-arc incidence matrix for a radial network with
M nodes. If j < M then detA−j = − detA−(j+1)

Proof. Introduce a new matrix Z which is identical to A−j, except that row
j of A−j, which is equal to Aj+1, has been replaced by the sum of all rows in
A−j. Such manipulations are allowed without changing the determinant [40], so
det (Z) = detA−j. Node-arc incidence matrices are such that Zj, the sum of all
rows in A−j, is equal to −Aj (row j of A). Thus Z is identical to A−(j+1) except
that elements have opposite signs in row j. In the calculation of the determinants
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we can expand them along row j of both Z and A−(j+1), which gives the stated
result [40].

By applying Lemma 11 |k − j| times we get the following result.

Corollary 12 If A is the node-arc incidence matrix for a radial network then
(−1)j detA−j = (−1)k detA−k

The three lemmas below derive explicit expressions for the substitution factors
Jp(ω) and Jq(ω) in (18) and (21), respectively.

Lemma 13 Jp(ω) =
(
S ′i,−g (π) +

∑
k∈Ξ(ω)\i S

′
k (π)

)
Jz(ω), where

Jz(ω) =

∣∣∣∣∣ ∂εz(ω)

∂(tzB(ω),ρU(ω),σL(ω))

∣∣∣∣∣ . (73)

Proof. Given a state ω, the price in node i and all nodes j ∈ Ξ (ω) is π
(irrespective of ρU(ω) and σL(ω)). Thus it follows from (2) and (17) that

∂εj
∂ρk

= s′j (pj)
∂pj
∂ρk

= 0, if j ∈ Ξ (ω) and k ∈ U (ω) (74)

∂εj
∂σk

= s′j (pj)
∂pj
∂σk

= 0, if j ∈ Ξ (ω) and k ∈ L (ω) (75)

∂εj
∂π

=

{
S ′j (π) if j ∈ Ξ (ω) \i
S ′j,−g (π) if j = i.

(76)

The nodal flow balance in (2) can be written as follows:

AΞ(ω)tΞ(ω) + sΞ(ω)(p) = εΞ(ω)

Az(ω)tz(ω) + sz(ω)(p) = εz(ω).

Thus

∂
(
εΞ(ω)

)
k

∂
(
tΞ(ω)

)
j

=
(
AΞ(ω)

)
kj

(77)

∂
(
εΞ(ω)

)
k

∂
(
tzB(ω)

)
j

= 0 (78)

and

∂
(
εz(ω)

)
k

∂
(
tz(ω)

)
j

=
(
Az(ω)

)
kj

(79)

∂
(
εz(ω)

)
k

∂
(
tΞ(ω)

)
j

= 0. (80)
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From (74)-(80) we realize that

∂ε

∂
(
tB(ω),ρU(ω),σL(ω),π

) =

 AΞ(ω) 0
∂εΞ(ω)

∂π

0 ∂ε

∂
(
tz
B(ω)

,ρU(ω),σL(ω)

) ∂εz(ω)

∂π

 (81)

Let

B =

[
AΞ(ω) 0
0 ∂ε

∂
(
tz
B(ω)

,ρU(ω),σL(ω)

)
]
. (82)

When calculating Jp(ω) =

∣∣∣∣ ∂ε

∂(tB(ω),ρU(ω),σL(ω),π)

∣∣∣∣, we will expand the determinant
along the Mth column in (81) with entries ∂εk

∂π
giving the net-supply slopes as

shown in (76). It follows from (76) and the definition of the determinant that [40]:

Jp(ω) =

∣∣∣∣∣(−1)i+M S ′i,−g (π) det (B−i) +
∑
k 6=i

(−1)k+M S ′k (π) det (B−k)

∣∣∣∣∣ .
AΞ(ω) is the node arc incidence matrix of a connected radial network. This matrix
has linearly dependent rows and has rank MΞ(ω) − 1. Thus it follows from (82)
that det (B−k) = 0 if k ∈ z(ω). If k ∈ Ξ(ω) then B−k is a block matrix with

determinant
∣∣∣(AΞ(ω)

)
−k

∣∣∣ Jz(ω). Thus Jp(ω) can be written as

Jz(ω)
∣∣∣(−1)i+M S ′i,−g (π) det

(
AΞ(ω)

)
−i +

∑
k∈Ξ(ω)\i (−1)k+M S ′k (π) det

(
AΞ(ω)

)
−k

∣∣∣
= Jz(ω)

(
S ′i,−g (π) +

∑
k∈Ξ(ω)\i S

′
k (π)

) ∣∣∣(−1)MΞ(ω) det
(
AΞ(ω)

)
−i

∣∣∣
by Corollary 12 and the monotonicity of net-supply functions. Now, since AΞ(ω)

is the node-arc incidence matrix of a connected radial network, it follows from
Bapat [10] (p. 13) that

∣∣∣(−1)MΞ(ω) det
(
AΞ(ω)

)
−j

∣∣∣ is 1.

Lemma 14 Jq(ω) = Jz(ω).

Proof. We have from (2) and (17) that

∂εk
∂r

=

{
0 if k 6= i
1 if k = i.

Similar to (81) we have

∂ε

∂
(
tB(ω),ρU(ω),σL(ω),r

) =

 AΞ(ω) 0
∂εΞ(ω)

∂r

0 ∂ε

∂
(
tz
B(ω)

,ρU(ω),σL(ω)

) ∂εz(ω)

∂r

 . (83)

As in the proof of Lemma 13, we expand the determinant

∣∣∣∣ ∂ε

∂(tB(ω),ρU(ω),σL(ω),r)

∣∣∣∣
along the Mth column, which has zeros in rows k 6= i and a one in row i. We
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use the definition of B in (82), so it follows from the definition of the determinant
that [40]:

Jq(ω) =
∣∣∣(−1)i+M det (B−i)

∣∣∣ = |det (B−i)|

=
∣∣∣(AΞ(ω)

)
−i

∣∣∣ Jz(ω)

because B−i is a block matrix with determinant
∣∣∣(AΞ(ω)

)
−k

∣∣∣ Jz(ω). AΞ(ω) is a
node-arc incidence matrix of a connected radial network. Thus it follows from
Bapat [10] (p. 13) that

∣∣∣det
(
AΞ(ω)

)
−i

∣∣∣ is 1, which gives the stated result.

Jz(ω) =

∣∣∣∣ ∂εz(ω)

∂(tz
B(ω)

,ρU(ω),σL(ω))

∣∣∣∣ can be calculated from the following result.

Lemma 15 Row k of the Jacobian matrix
∂εz(ω)

∂
(
tz
B(ω)

,ρU(ω),σL(ω)

) can be constructed
as follows for the state ω: ∂εz(ω)

∂
(
tzB(ω),ρU(ω),σL(ω)

)

k

=
[ (
Az
B(ω)

)
k
S ′k (pk)

(
EU(ω)

)
k
−S ′k (pk)

(
EL(ω)

)
k

]
(84)

for k ∈ z (ω).

Proof. We partition the columns of Az(ω) into Az
L(ω), A

z
B(ω) and A

z
U(ω), cor-

responding to flows tz being at their lower bounds, strictly between their bounds,
and at their upper bounds. Thus the flow balance in (2) can be written as follows

Az
B(ω)t

z
B(ω) +Az

U(ω)tU(ω) +Az
L(ω)tL(ω)+sz(ω) (p) = εz(ω). (85)

Observe that (14) implies that

∂εzk
∂ρj

=
∂εzk
∂pk

∂pk
∂ρj

= S ′k (pk)
(
EU(ω)

)
kj

and
∂εzk
∂σj

=
∂εzk
∂pk

∂pk
∂σj

= −S ′k (pk)
(
EL(ω)

)
kj

which gives the result.
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