
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Relating two semantic descriptions of functional logic
programs

(Work in progress)
1

F.J. López-Fraguas 2 J. Rodŕıguez-Hortalá 2 J. Sánchez-Hernández 2

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid

Madrid, Spain

Abstract

A distinctive feature of modern functional logic languages like Toy or Curry is the possibility of
programming non-strict and non-deterministic functions with call-time choice semantics. For almost
ten years the CRWL framework [6,7] has been the only formal setting covering all these semantic
aspects. But recently [1] an alternative proposal has appeared, focusing more on operational aspects.
In this work we investigate the relation between both approaches, which is far from being obvious due
to the wide gap between both descriptions, even at syntactical level.

Key words: Functional Logic Programming, Operational Semantics, Declarative
Semantics

1 Introduction

In its origin functional logic programming (FLP) did not consider non-deterministic functions
(see [8] for a survey of that era). Inspired in those ancestors and in Hussmann’s work [12],
the CRWL framework [6,7] was proposed in 1996 as a formal basis for FLP having as main
notion that of non-strict non-deterministic function with call-time choice semantics. At the
operational level, modern FLP has been mostly influenced by the notions of definitional trees
[2] and needed narrowing [3].

Both approaches –CRWL and needed narrowing– coexist with success in the development
of FLP (see [15,9] for recent respective surveys). It is tacitly accepted in the FLP community
that they essentially speak of the same ‘programming stuff’, realized by systems like Curry
[11] or Toy [14], but up to now they remain technically disconnected. One of the reasons has
been that the formal setting for needed narrowing is classical rewriting, which is known to be
unsound for call-time choice, which requires sharing.

But recently [1] a new operational formal description of FLP has been proposed, coping
with narrowing, residuation, laziness, non-determinism and sharing, for a flat language, called
here FLC for its proximity to Flat Curry [10].

1 This work has been partially supported by the spanish projects TIN2005-09207-C03-03 and S-0505/TIC/0407.
2 Email: {fraguas,juan,jaime}@sip.ucm.es

c©2006 Published by Elsevier Science B. V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357598648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

There is a long distance in the formal aspects of the two approaches, each having its own
merit: CRWL provides a concise and clear way for giving logical semantics to programs, with a
high level of abstraction and a syntax close to the user, while FLC and its semantics are closer
to computations and concrete implementations with details about variable bindings represen-
tation.

The goal of our work is to relate both in a technically precise manner. In this way, some
known or future results obtained for one of them could be applied to the other.

The rest of the paper is organized as follows. Sections 2 and 3 present the essentials of
CRWL and FLC needed to relate them. Section 4 sets some restrictions assumed in our work
and gives an overview of the structure of our results. Section 5 relates CRWL to CRWLFLC ,
a new intermediate formal description. Section 6 is the main part of the work and studies
the relation between CRWLFLC and FLC. Section 7 gives some conclusions. Proofs are mostly
omitted and some of them are still under development 3 .

2 The CRWL Framework: a Summary

We assume a signature Σ = CS ∪FS, where CS (FS) is a set of constructor symbols (defined
function symbols) each of them with an associated arity; we sometimes write CSn (FSn resp.)
to denote the set of constructor (function) symbols of arity n. As usual notations write c, d . . .
for constructors, f, g . . . for functions and x, y . . . for variables taken from a numerable set V .

The set of expressions Exp is defined as usual: e ::= x | h(e1, . . . , en), where h ∈ CSn∪FSn

and e1, . . . , en ∈ Exp. The set of constructed terms is defined analogously but with h restricted
to CS, i.e., function symbols are not allowed. The intended meaning is that Exp stands for
evaluable expressions while CTerm are data terms. We will also use the extended signature
Σ⊥ = Σ∪{⊥}, where ⊥ is a new constant (0-arity constructor) that stands for undefined value.
Over this signature we build the sets Exp⊥ and Exp⊥ in the natural way. The set CSubst
(CSubst⊥ resp.) stands for substitutions or mappings from V to CTerm (CTerm⊥ resp.).
Both kind of substitutions will be written as θ, σ The notation σθ denotes the composition
of substitutions in the usual way. The notation o stands for tuples of any of the previous
syntactic constructions.

(B)
e → ⊥

(RR)
x → x

x ∈ V

(DC)
e1 → t1 . . . en → tn

c(e1, . . . , en) → c(t1, . . . , tn)
c ∈ CSn, ti ∈ CTerm⊥

(DF)
e1 → t1θ . . . en → tnθ eθ → t

f(e1, . . . , en) → t

(f(t1, . . . , tn) = e) ∈ P
θ ∈ CSubst⊥

Fig. 1. Rules of CRWL

The original CRWL logic introduces strict equality as a built-in constraint and program-
rules optionally contain a sequence of equalities as condition. In the current work, as FLC does
not consider built-in equality, we restrict the class of programs. Then a CRWL-program P is a

3 See http://gpd.sip.ucm.es/juanrh/fullprole06.pdf for an extended version of this work.

2

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

set of rules of the form: f(t) = e, where f ∈ FSn, t is a linear (without multiple occurrences
of the same variable) n-tuple of c-terms and e ∈ Exp.

Rules of CRWL (without equality) are presented in Figure 1. Rule (1) allows any expression
to be undefined or not evaluated (non-strict semantics). Rule (4) is a proper reduction rule:
for evaluating a function call it uses a compatible program-rule, makes the parameter passing
(by means of a substitution θ) and then reduces the body. This logic proves approximation
statements of the form e → t, where e ∈ Exp⊥ and t ∈ CTerm⊥. Given a program P , the
denotation of an expression e with respect to CRWL is defined as [[e]]PCRWL = {t | e → t}.

3 The FLC Language and its Natural Semantics

The language FLC considered in [1] is a convenient –although somehow low-level– format to
which functional logic programs like those of Curry or Toy can be transformed (not in a unique
manner). This transformation embeds important aspects of the operational procedure of FLP
languages, like are definitional trees and inductive sequentiality.

The syntax of FLC is given in Fig. 2. Notice that each function symbol f has exactly one
definition rule f(x1, . . . , xn) = e with distinct variables x1, . . . , xn as formal parameters. All
non-determinism ix expressed by the use of or choices in right-hand sides and also all pattern
matching has been moved to right-hand sides by means of nesting of (f)case expressions. Let
bindings are a convenient way to achieve sharing.

Programs: P ::= D1 . . . Dm

Function definitions: D ::= f(x1, . . . , xn) = e

Expressions
e ::= x (variable)

| c(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| case e of {p1 → e1; . . . ; pn → en} (rigid case)
| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)
| e1 or e2 (disjunction)
| let x1 = e1, . . . , xn = en in e (let binding)

Patterns: p ::= c(x1, . . . , xn) = e

Fig. 2. Syntax for FLC programs

An additional normalization step over programs is assumed in [1]. In normalized expressions
each constructor o function symbol appears applied only to distinct variables. This can be
achieved via let-bindings. The normalization of e is written as e∗.

In [1] two operational semantics are given to FLC : a natural (big-step) semantics in the style
of Launchbury’s semantics [13] for lazy evaluation (with sharing) for functional programming,
and a small step semantics. CRWL itself being a big-step semantics, it seems more adequate
to compare it to the natural semantics of [1], which is shown 4 in Fig. 3. It consists of a set
of rules for a relation Γ : e ⇓ ∆ : v, indicating that one of the possible evaluations of e ends

4 Some of the rules are skipped, because they are not needed here due to some restrictions to be imposed in
the next section.

3

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

up with the head normal form (variable or constructor rooted) v. Γ, ∆ are heaps consisting of
bindings x 7→ e for variables. An initial configuration has the form [] : e.

(VarCons) Γ[x 7→ t] : x ⇓ Γ[x 7→ t] : t t constructor-rooted

(VarExp)
Γ[x 7→ e] : e ⇓ ∆ : v

Γ[x 7→ e] : x ⇓ ∆[x 7→ v] : v

e not constructor-rooted,
e 6= x

(Val) Γ : v ⇓ Γ : v v constructor-rooted or variable with Γ[v] = v

(Fun)
Γ : eρ ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v
f(xn) = e ∈ P and ρ = {yn 7→ xn}

(Let)
Γ[yk 7→ ekρ] : e ⇓ ∆ : v

Γ : let {xk = ek} in e ⇓ ∆ : v

ρ = {xk 7→ yk}
and yk are fresh variables

(Or)
Γ : ei ⇓ ∆ : v

Γ : e1or e2 ⇓ ∆ : v
i ∈ {1, 2}

(Select)
Γ : e ⇓ ∆ : c(yn) ∆ : eiρ ⇓ Θ : v

Γ : (f)case e of {pk 7→ ek} in e ⇓ Θ : v

pi = c(xn)

and ρ = {xn 7→ yn}

Fig. 3. Natural Semantics for FLC

4 CRWL vs. FLC: Working Plan

In order to establish the relation between CRWL and FLC (in Section 6) firstly we adapt
CRWL to the syntax of FLC. For this purpose we introduce the rewriting logic CRWLFLC as
a variant of CRWL with specific rules for managing let, or and case expressions.

Fig. 4. Proof’s plan

The relation between CRWL and FLC is established through this intermediate logic. The
working plan is sketched in Figure 4. Given a pair program/expression in CRWL we transform
them into FLC-syntax and study the semantic equivalence of both versions of CRWL (Theorems
5.1 and 5.3). Then we focus on the equivalence of FLC with respect to CRWLFLC in a common

4

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

syntax context (Theorems 6.7 and 6.1). FLC and CRWL are very different frameworks from
the syntactical and the semantical points of view. The advantage of splitting the problem is
that on one hand both versions of CRWL are very close from the point of view of semantics;
on the other hand CRWLFLC and FLC share the same syntax. The syntactic transformation
and its correctness will be explained in Sect. 5.1.

There are important differences between FLC and CRWLFLC that makes not easy its rela-
tion. The heaps used in FLC for storing variable bindings have not any (explicit) correspon-
dence in CRWL. Another important difference is that the first obtains head normal forms for
expressions, while the second is able to obtain any value of the denotation of an expression (in
particular a normal form if it exists).

Differences do not end here. There are still two important points that enforces us to take
some decisions: (1) FLC performs narrowing while CRWL is a pure rewriting relation. In
this paper we address this inconvenience by considering only the rewriting fragment of FLC.
Narrowing acts in FLC either due to the presence of logical variables in expressions to evaluate or
because of the use of extra variables in program rules (those not appearing in left-hand sides). So
we can isolate the rewriting fragment by excluding this kind of variables throughout this work.
(2) The other difference is due to the fact that FLC allows recursive let constructions. There
is not a general consensus about the semantics of such constructions in a non-deterministic
context (it is not clear if sharing must be done or not). Due to the divergence of opinions
on the matter and for the sake of simplicity, we exclude recursive let’s from the language in
this work. Once this decision is taken it is not difficult to see that a let with multiple variable
bindings may be expressed as a sequence of nested let’s, each with a unique binding. For
simplicity and without loss of generality we will consider only this kind of let’s.

We assume from now on that programs and expressions fulfil the conditions imposed in (1)
and (2).

5 The proof calculus CRWLFLC

The rewriting logic CRWLFLC preserves the main features of CRWL from a semantical point of
view, but it uses the FLC-syntax for expressions and programs. In particular it allows let, case
and or constructs, but like CRWL it proves statements of the form e → t where t ∈ CTerm⊥.

Rules of CRWLFLC are presented in Figure 5. The first three ones (B), (RR) and (DC)
are directly incorporated from CRWL. Rules (CASE), (OR) and (LET)) has also a clear
reading. Finally, rule (DF) is a simplified version of the corresponding in CRWL, as now
we can guarantee that any function call in a derivation can only use c-terms as arguments.
This is easy to check: the initial expression to reduce is in normalized form (arguments are all
variables) and the substitutions applied by the calculus (in rules (DF), (CASE) and (LET))
can only introduce c-terms. Given a program P the denotation of an expression e with respect
to CRWLFLC is defined as [[e]]PCRWLFLC

= {t | e → t}.

5.1 Relation between CRWLFLC and CRWL

We obtain here an equivalence result for CRWLFLC and CRWL. A skeleton of the proof is
given in the zoomed part of Fig 4. It is based on a program transformation from CRWL-syntax
(user syntax) to FLC-syntax. This translation is assumed but not made explicit in [1]. But we
need here to make it more precise, since otherwise CRWL and CRWLFLC will remain technically
disconnected. For technical convenience we split the transformation in two parts: first, and still

5

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

(B)
e → ⊥

(RR)
x → x

x ∈ V

(DC)
e1 → t1 . . . en → tn

c(e1, . . . , en) → c(t1, . . . , tn)
c ∈ CSn, ti ∈ CTerm⊥

(DF)
eθ → t

f(t) → t
(f(y) = e) ∈ P , θ = [y/t]

(CASE)
e → c(t) eiθ → t

case e of {pi → ei} → t

pi = c(x) for some i

θ = [y/t]

(OR)
ei → t

e1 or e2 → t
for some i ∈ {1, 2}

(LET)
e′ → t′ e[x/t′] → t

let {x = e′} in e → t

Fig. 5. Rules of CRWLFLC

within CRWL-syntax, we transform P into another program P ′ which is inductively sequential
([2,9]), except for a function or 5 , defined by the two rules X or Y = X and X or Y = Y. The
function or concentrates all the non-sequentiality (hence, all the indeterminism) of functions in
right-hand sides. We speak of ‘inductively sequential with or (ISor) programs’. Alternatively,
programs can be transformed into overlapping inductively sequential format (see [9]), where
a function might have several rules with the same left-hand side (as happens with the rules
of or). Both formats are easily interchangeable. Such kind of transformations are well-known
in functional logic programming. In the CRWL setting, a particular transformation has been
proposed in [16], where it is proved the following result:

Theorem 5.1 Let P be a CRWL-program and e an expression.

Then [[e]]PCRWL = [[e]]P
′

CRWL where P ′ is the ISor transformed program of P .

Now, to transform ISor programs into (normalized) FLC-syntax is not difficult, by simply
mimicking the inductive structure of function definitions by means of (possibly nested) case
expressions. The following algorithm performs it.

Definition 5.2 [FLC-transformation] Let P be an ISor CRWL-program.

A) Transformation of sets of rules. Let Q = {(f(t1) → e1), . . . , (f(tn) → en)} be a set of
rules for a function f in P (Q ⊆ Pf) and f(s) a pattern compatible with Q (i.e., it subsumes
the left-hand side of all the rules in Q). The expression ∆(Q, f(s)) is defined according to
the following (exhaustive, due to inductive sequentiality) possibilities:

(i) There is an inductive position (if several, choose any) in f(s) wrt Q, i.e., a position u
occupied by a variable X in (f(s)) and by constructor symbols c1, . . . , ck in the left-hand
sides of rules of Q. For each i ∈ {1, . . . , k} we write Qci

for the set of rules in Q having
the constructor ci at position u, and sci

for s[X/ci(Y)], where Y are fresh variables. Then

5 Not to be confused with boolean disjunction; or is written as // in Toy and ? in Curry.

6

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

∆(Q, f(s)) = case X of {c1 → ∆(Qc1 , f(sc1)); . . . ; ck → ∆(Qck
, f(sck

))}
(ii) There is no inductive position in f(s) wrt Q. It should be the case that Q = {f(s) = e}.

Then: ∆(Q, f(s)) = e∗, where e∗ is the normalization of e (see sect. 3).

B) Transformation of whole programs. The (normalized) FLC-transformation of P is

P̂ =
⋃

f∈FS

{f(X) = ∆(Pf , f(X))}

An example of the two program transformation steps (first to ISor, then to FLC) is given in
Fig. 6. Notice that the final FLC-program does not contain rules for or, since it is included in
the syntax of FLC, and there is a specific rule governing its semantics in the CRWLFLC-calculus.

Constructor symbols: 0∈ CS0, s∈ CS1

Source CRWL-program
f(0,Y) = s(Y)

f(X,0) = X

f(s(X),s(Y)) = s(f(X,Y))

Transformed ISor CRWL-program
f(X,Y) = f1(X,Y) or f2(X,Y)

f1(0,Y) = s(Y)

f1(s(X),s(Y)) = s(f(X,Y))

f2(X,0) = X

X or Y = X X or Y = Y
Transformed normalized FLC-program
f(X,Y) = f1(X,Y) or f2(X,Y)

f1(X,Y) = case X of { 0 → s(Y);

s(X1) → case Y of { s(Y1) → let U=f(X1,Y1)

in s(U)} }
f2(X,Y) = case Y of {0 → X}

Fig. 6. Transformation from CRWL to FLC syntax

The following equivalence result states the correctness of the transformation.

Theorem 5.3 Let P be an IS CRWL-program and, e an CRWL-expression, and P̂ , ê their
FLC-transformations. Then [[e]]PCRWL = [[ê]]P̂CRWLFLC

.

6 Relation between CRWLFLC and FLC

We need some more technical preliminaries and notations:

• dom(Γ): The set of variables bound in the heap Γ.

• var(e): The set of free variables in the expression e.

• Valid heap: A heap Γ is valid if [] : e ⇓ Γ : v for some e, v, i.e., Γ is reachable in a computation.

• ligs(Γ, e): The bindings of a valid heap Γ can be ordered in a way such that Γ = [x1 7→
e1, . . . , xn 7→ en] where each ei does not depend on xj iff j >= i. That is because recursive
bindings are forbidden. Then we define ligs([x1 7→ e1, . . . , xn 7→ en], e) =def let {x1 =
e1} in . . . let {xn = en} in e.

• [[Γ, e]]: Expresses the set of terms we can reach in CRWLFLC , applying a heap to an expres-
sion. Formally, [[Γ, e]] =def [[ligs(Γ, e)]]CRWLFLC

= {t | ligs(Γ, e) → t}.
• norm2(e): If e∗ = let {x1 = e1} in . . . in let {xn = en} in e′, then norm2(e) = ([x1 7→

e1, . . . , xn 7→ en], e′). It is a kind of reverse of ligs.

7

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

6.1 Completeness of CRWLFLC wrt FLC

Our main result concerning the completeness of CRWLFLC with respect to FLC is:

Theorem 6.1 (From FLC to CRWLFLC) If Γ : e ⇓ ∆ : v, then [[∆, v]] ⊆ [[Γ, e]].

Before proving it we must formulate some auxiliary results.

Lemma 6.2 If [[∆, x]] ⊆ [[Γ, x]], for all x ∈ var(e), then [[∆, e]] ⊆ [[Γ, e]].

Theorem 6.3 If Γ : e ⇓ ∆ : v, then:

(H) [[∆, x]] ⊆ [[Γ, x]], for all x ∈ dom(Γ).

(R) [[∆, v]] ⊆ [[∆, e]].

The property (H) tells us what happens with heaps, while (R) relates the results of the com-
putation. The following Corollary is an immediate consequence of Lemma 6.2 and(H).

Corollary 6.4 (H’) If Γ : e ⇓ ∆ : v, then [[∆, e]] ⊆ [[Γ, e]], for all e with var(e) ⊆ dom(Γ).

Now the proof of Theorem 6.1 becomes easy:

Proof. (Theorem 6.1)
Assume Γ : e ⇓ ∆ : v. Then, by property (R) of Theorem 6.3 we have [[∆, v]] ⊆ [[∆, e]], and by
Corollary 6.4 (H’) we have [[∆, e]] ⊆ [[Γ, e]], because it must happen var(e) ⊆ dom(Γ), because
the FLC-derivation has succeeded. But then [[∆, v]] ⊆ [[Γ, e]]. 2

Some additional conclusions can be extracted from Theorem 6.1, but to explain them we
must introduce the concept of shell of an expression in a heap, which is defined in Figure 7.

|Γ : x| =

x if Γ[x] = x

c(|Γ : x1|, . . . , |Γ : xn|) if Γ[x] = c(x1, . . . , xn)

⊥ in other case

|Γ : c(x1, . . . , xn)| = c(|Γ : x1|, . . . , |Γ : xn|) |Γ : e| =⊥ in other case

Fig. 7. Shell of an expression in a heap

We can prove the following results involving shells:

Lemma 6.5 If Γ : e ⇓ ∆ : v, then |∆ : v| ∈ [[∆, v]].

Corollary 6.6 If Γ : e ⇓ ∆ : v, then |∆ : v| ∈ [[Γ, e]].

Proof. Assume Γ : e ⇓ ∆ : v. Then by Lemma 6.5 we have |∆ : v| ∈ [[∆, v]] and by Theorem
6.1 we have [[∆, v]] ⊆ [[Γ, e]], so |∆ : v| ∈ [[Γ, e]]. 2

6.2 Completeness of FLC wrt CRWLFLC

Our main result concerning the completeness of FLC with respect to CRWLFLC is:

Theorem 6.7 (From CRWLFLC to FLC) If e → c(t1, . . . , tn) and (Γ, e′) = norm2(e), then
Γ : e′ ⇓ ∆ : c(x1, . . . , xn), for some x1, . . . , xn verifying ligs(∆, xi) → ti for each i ∈ {1, . . . , n}.

8

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

(Var*)
Γ : e ⇓ ∆ : x

Γ : e ⇓∗ ∆ : x
(RR*)

Γ : x ⇓∗ Γ : x

(Cons*)
Γ : e ⇓ ∆ : c(x1, . . . , xn) ∆i : xi ⇓∗ ∆i+1 : ti

Γ : e ⇓∗ ∆n+1 : c(t1, . . . , tn)

i ∈ {1, . . . , n}
∆1 = ∆

Fig. 8. Rules of ⇓∗

On the other hand we could follow an alternative approach consisting on defining a new
relation based on the ⇓ relation of FLC, that evaluates expressions beyond head normal forms.
We call this relation ⇓∗ and define it in Figure 8. This new relation has several interesting
properties:

• ⇓⊆⇓∗, because for any FLC-derivation of the form Γ : e ⇓ ∆ : v if v is a variable then
Γ : e ⇓∗ ∆ : v by the rule Var*, and if v = c(x1, . . . , xn) then Γ : e ⇓∗ ∆ : c(x1, . . . , xn)
applying Cons* and RR* for the premises.

• ∀ Γ, t such that t is a normalized Cterm and Γ is a valid heap, it happens Γ : t ⇓∗ Γ : t. We
can get this applying Cons* and RR* for the premises.

Now we can formulate an alternative theorem using this new relation:

Theorem 6.8 (From CRWLFLC to FLC, alternative version) If e → c(t1, . . . , tn), then
Γ : e′ ⇓∗ ∆ : c(t1, . . . , tn), where (Γ, e′) = norm2(e)

The proofs for these theorems are still under development.

7 Conclusions and Future Work

In this paper we study the relationship between CRWL [6,7] and FLC [1], two formal semantical
descriptions of first order functional logic programming with call-time choice semantics for non-
deterministic functions. The long distance between these two settings, even at syntactical level,
discourages any direct proof of equivalence. Instead, we have chosen FLC as common language,
to which CRWL can be adapted by means of a program transformation and a new CRWLFLC

proof calculus for the resulting FLC-programs. The program transformation itself is not very
novel, although its formulation here is original, but the CRWLFLC calculus and its relation to
the original are indeed novel and could be useful for future works.

The most important and involved part of the paper establishes the relation between the
CRWLFLC logic and the natural semantics given to FLC in [1]. We give an equivalence result
for ground expressions and for the class of FLC-programs not having recursive let bindings nor
extra variables. This is not so restrictive as it could seem: it has been proved [5,4] that extra
variables can be eliminated from programs, and recursive let’s do not appear in the translation
to FLC-syntax of CRWL-programs. Still, dropping such restrictions is desirable, and we hope
to do it in the next future.

We did not expect proofs to be easy. Despite of that, we are a bit surprised by the great
difficulties we have encountered, even with the imposed restrictions over expressions and pro-
grams. This suggest to look for new insights, not only at the level of the proofs but also in the
sense of finding new alternative semantical descriptions of functional logic programs.

9

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

References

[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational semantics for declarative
multi-paradigm languages. Journal of Symbolic Computation, 40(1):795–829, 2005.

[2] S. Antoy. Definitional trees. In Proc. 13th Algebraic and Logic Programming, pages 143–157.
Springer LNCS 632, 1992.

[3] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. ACM Symposium
on Principles of Programming Languages, pages 268–279, Portland, 1994.

[4] S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic programs.
Technical report, Christian-Albrechts-Universität Kiel, 2005.

[5] J. de Dios Castro. Eliminación de variables extra en programación lógico-funcional. Master’s
thesis, DSIP-UCM, May 2005.

[6] J. González-Moreno, T. Hortalá-González, F. López-Fraguas, and M. Rodŕıguez-Artalejo. A
rewriting logic for declarative programming. In Proc. European Symposium on Programming
(ESOP’96), pages 156–172. Springer LNCS 1058, 1996.

[7] J. González-Moreno, T. Hortalá-González, F. López-Fraguas, and M. Rodŕıguez-Artalejo. An
approach to declarative programming based on a rewriting logic. Journal of Logic Programming,
40(1):47–87, 1999.

[8] M. Hanus. The integration of functions into logic programming: A survey. Journal of Logic
Programming, 19-20:583–628, 1994. Special issue ”Ten Years of Logic Programming”.

[9] M. Hanus. Functional logic programming: From theory to Curry. Technical report, Christian-
Albrechts-Universität Kiel, 2005.

[10] M. Hanus and C. Prehofer. Higher-order narrowing with definitional trees. J. Funct. Program.,
9(1):33–75, 1999.

[11] M. Hanus (ed.). Curry: An integrated functional logic language (version 0.8.2). Available at
http://www.informatik.uni-kiel.de/~curry/report.html, March 2006.

[12] H. Hussmann. Nondeterministic algebraic specifications and nonconfluent term rewriting. Journal
of Logic Programming, 12:237–255, 1992.

[13] J. Launchbury. A natural semantics for lazy evaluation. In POPL, pages 144–154, 1993.

[14] F. López-Fraguas and J. Sánchez-Hernández. T OY: A multiparadigm declarative system. In Proc.
Rewriting Techniques and Applications (RTA’99), pages 244–247. Springer LNCS 1631, 1999.

[15] M. Rodŕıguez-Artalejo. Functional and constraint logic programming. In Revised Lectures of the
International Summer School CCL’99, chapter 5, pages 202–270. Springer LNCS 2002, 2001.

[16] J. Sánchez-Hernández. Una aproximación al fallo constructivo en programación declarativa
multiparadigma. PhD thesis, DSIP-UCM, June 2004.

10

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

8 Appendix A: Proofs

In order to clarify the proofs, some extra notation is introducted:

deps(Γ, e): This is the sets of variables in dom(Γ) such that e depends on, directly or indirectly. It can
be defined as deps(Γ, e) = var(e) ∪ {x | y ∈ deps(Γ, e) ∧ x ∈ deps(Γ, Γ[y])}.

subs(Γ): Given a heap Γ, subs(Γ) is the set of all substitutions under the variables in dom(Γ), then
came evaluating this heap. If we order the bings in Γ in a way such that Γ = [x1 7→
e1, . . . , xn 7→ en] and each ei could depend on xj iff j < i, then we define subs([x1 7→
e1, . . . , xn 7→ en]) =def {[xi/ti, . . . , xn/tn] | ligs([x1 7→ e1, . . . , xn 7→ en], (x1, . . . , xn)) →
(t1, . . . , tn)}.
Note that ∀ Γ. subs(Γ) ⊆ CSubst⊥, because every ti is in the right side of a CRWLLET -
derivation.

norm2(e): As we said in Section 6, this is a pair corresponding to the result of normalizing the expression
e in a similar way as Albert et al., but instead of using let expressions to store arguments,
storing them in the heap. Formally we can define this operation as follows:

norm2(x) = ([], x)

norm2(ϕ(x1, . . . , xn)) = ([], ϕ(x1, . . . , xn))

norm2(ϕ(x1, . . . , xi−1, ei, ei+1, . . . , en)) = ([xi 7→ e′i]] Γ]∆, e′)

where ei is not a variable and (Γ, e′i) = norm2(ei)

, (∆, e′) = norm2(ϕ(x1, . . . , xi−1, xi, ei+1, . . . , en)) and xi is fresh

norm2(let {x = e1} in e) = (Γ]∆, let {x = e′1} in e′)

where (Γ, e′1) = norm2(e1) and (∆, e′) = norm2(e)

norm2(e1 or e2) = (Γ1] Γ2, e
′
1 or e′2)

where (Γ1, e
′
1) = norm2(e1) and (Γ2, e

′
2) = norm2(e2)

norm2((f)case e of {pk → ek}) = (Γ] (
⊎

∆k), (f)case e′ of {pk → e′k})
where (Γ, e′) = norm2(e) and ∀xk (∆k, e

′
k) = norm2(ek)

We can use disjoint union (]) because each variable introducted in the heap is fresh.

Additionally, in the following we will suppose we are working with FLC-programs and FLC-
expressions subject to the following additional transformation,

case e of {pk 7→ ek} ↪→ let {x = e} in case x of {pk 7→ ek}

being x a fresh variable and e not a variable (in case e is a variable the transformation leaves
the expression untouched). Once this transformation has been applied, as all the substitu-
tions made in FLC are from variables to variables, we can state that this transformation lasts
in the calculus. Furthermore, if the calculus succeeds for a case expression like that, we can
state that x is defined in the heap, becase x is always demanded to compute the case expression.

11

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

Proof. [For Theorem 5.3](Sketch) We prove the inclusion [[e]]PCRWL ⊆ [[ê]]P̂CRWLFLC
(resp. [[e]]PCRWL ⊇

[[ê]]P̂CRWLFLC
) by induction over the depth of the CRWL-derivation (resp. CRWLFLC-derivation)

of an arbitrary arrow e → t (resp. ê → t), with t ∈ [[e]]PCRWL (resp. t ∈ [[ê]]P̂CRWLFLC
). 2

Before proving Theorem 6.3 some auxiliary lemmas are nedeed:

Lemma 8.1 (Ligs) ligs(Γ, e) → t iff ∃σ ∈ subs(Γ) such that σe → t. In other words, t ∈
[[Γ, e]] iff ∃σ ∈ sus(Γ) such that σe → t.

Lemma 8.2 ∀ Γ, x. [[Γ[x 7→ e], e]] = [[Γ[x 7→ e], x]]

Lemma 8.3 For any FLC-derivation of the form Γ : e ⇓ ∆ : v it happens that dom(Γ) ⊆
dom(∆). Heaps are always growing during the computation.

Lemma 8.4 ∀ Γ, x such that Γ[x] = c(y) then for all FLC-derivation of the form Γ : e ⇓ ∆ : v
it happens that ∆[x] = c(y). Bindings to returning values remain in all the heaps that follow in
the computation.

Lemma 8.5 ∀ Γ, x, e, e1 such that x 6∈ deps(Γ, e), then [[Γ[x 7→ e1], e]] = [[Γ, e]].

Lemma 8.6 ∀ Γ, x, e1, e2, e such that Γ is a valid heap, x 6∈ dom(Γ) and x 6∈ var(e1)∪ var(e2),
then ([[Γ, e1]] ⊆ [[Γ, e2]]) =⇒ ([[Γ[x 7→ e1], y]] ⊆ [[Γ[x 7→ e2], y]]), ∀y ∈ dom(Γ) ∪ {x}.
Lemma 8.7 For every valid heap Γ and every case-expression of the form case c(yn) of {pk 7→ ek}
such that pi = c(xn), if we define the substitution ρ = [xn/yn] then [[Γ, eiρ]] ⊆ [[Γ, case c(yn) of {pk 7→ ek}]]
Lemma 8.8 ∀ Γ, ∆, x, v such that Γ : x ⇓ ∆ : v it happens that ∆[x] = v.

These are the proofs for those lemmas:

Proof. [For Lemma 8.4](Sketch) Using Lemma 8.3 we know that there must be a binding for x,
all that’s left is ensuring that this binding never changes. The only way a binding for a variable
changes is through the rule VarExp, but this rule cannot be applied if e is constructor-rooted,
and that’s the case because e = c(y), so the binding for x remains the same. 2

Proof. [For Lemma 8.5](Sketch) To prove this statement we use Lemma 8.1 (Ligs) and realise
that the substitution σ can give ⊥ for x, and for every variable y such that y 6∈ deps(Γ, e), so
we can get the same result in [[Γ[x 7→ e1], e]] as in [[Γ, e]]. 2

Proof. [For Lemma 8.6] There are two possibilities:

• y ∈ dom(Γ): Then x 6∈ deps(Γ, y) because Γ is a valid heap and so no binding in Γ can
depend on x, since this variable isn’t in the heap and free variables are forbidden. So
[[Γ[x 7→ e1], y]] =Lemma8.5 [[Γ, y]] =Lemma8.5 [[Γ[x 7→ e2], y]]

• y = x: Then x 6∈ deps(Γ, e1) ∪ deps(Γ, e2) because x 6∈ var(e1) ∪ var(e2) and x 6∈ dom(Γ).
So [[Γ[x 7→ e1], x]] =Lemma8.2 [[Γ[x 7→ e1], e1]] =Lemma8.5 [[Γ, e1]] ⊆hypothesis [[Γ, e2]] =Lemma8.5
[[Γ[x 7→ e2], e2]] =Lemma8.2 [[Γ[x 7→ e2], x]]

2

Proof. [For Lemma 8.7] If we have that ligs(Γ, eiρ) → t then ∃σ ∈ sus(Γ) such that eiρσ → t.
Now let’s see the derivation for the case:

12

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

(c(yn))σ → c(ynσ) eiσ|(V ar\{xn}) γ → t

(case c(yn) of {pk 7→ ek})σ → t
CASE

where γ = [xn 7→ ynσ]. We can now prove that ∀z ∈ vars(ei). zρσ = zσ|(V ar\{xn})γ, doing
a case distinction:

z ∈ {xn}: For example z = xi. Then xiρσ = yiσ, and xiσ|(V ar\{xn})γ = xiγ = yiσ.

z 6∈ {xn}: Then zρσ = zσ, and zσ|(V ar\{xn})γ = zσγ = zσ, because all the variables that could come
from a substitution in sus(Γ) are variables from Γ, and dom(Γ) ∩ {xn} = ∅. We can state
this intersection is empty because all the variables in Γ are introducted by the Let rule of
FLC and so are fresh, and no substitution over a case expression can change the variables in
its patterns, because those are bounded variables.

2

Proof. [For Lemma 8.8] We can check this very easily looking at the rules VarCons and VarExp
of FLC: these are the only rules applicable for that derivation and they keep this property. 2

Now we are ready to prove Theorem 6.3:

Proof. [For Theorem 6.3] By induction of the structure of FLC-derivations:

Notation: IHHi
means apply the induction hypothesis for the property H over the i-th premise

of the rule Select. IHRi
means the same but for the property R.

(i) Base:
• VarCons

H: It follows trivially because we have only one heap.
R: [[Γ[x 7→ t], t]] =Lemma 8.2 [[Γ[x 7→ t], x]], so this condition is fulfilled also.

• Val
H: It follows trivially because we have only one heap.
R: It follows trivially because we have only one heap and one expression to reduce.

(ii) Inductive step:
• VarExp

R: [[∆[x 7→ v], v]] =Lemma 8.2 [[∆[x 7→ v], x]], so this condition is fulfilled.
H: Heap ∆ in the premise must fulfil ∆[x] = e, because ∆ is one of the results obtained

during the calculation of e. If x had changed in any heap during this calculation, that
should be because x had been consulted to calculate e and so e depends on x. That
should mean we have a recursive binding and this is forbidden, hence ∆ ≡ ∆′[x 7→ e],
in other worrds, ∆[x] = e

Now we want to prove this property: (P1) ≡ ∀y ∈ dom(∆[x 7→ v]), [[∆[x 7→
v], y]] ⊆ [[∆[x 7→ e], y]]. Applying Lemma 8.5 all we have to prove to have (P1) is
that [[∆′, v]] ⊆ [[∆′, e]], and we can prove that in the following way:

[[∆′, v]] ⊆? [[∆′, e]]

‖Lemma 8.6 ‖Lemma 8.6

[[∆, v]] ⊆IHR
[[∆, e]]

13

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

where IHR denotes the R part of the induction hypothesis. We are sure we can
apply Lemma 8.6 because of the absence of recursive bindings that forces e and v to
be independent from x.

So we have (P1), and we have also dom(Γ[x 7→ e]) ⊆ dom(∆[x 7→ v]) by Lemma 8.3,
hence we have ∀y ∈ dom(Γ[x 7→ e]), [[∆[x 7→ v], y]] ⊆ [[∆, y]] (because ∆ ≡ ∆[x 7→
e]). Applying the H part of the induction hypothesis we have ∀y ∈ dom(Γ[x 7→
e]), [[∆, y]] ⊆ [[Γ[x 7→ e], y]], so H follows by transitivity of subsets.

• Select

H: ∀x ∈ dom(Γ), [[Θ, x]] ⊆IHH2
+ dom(Γ)⊆dom(∆), Lemma 8.3 [[∆, x]] ⊆IHH1

[[Γ, x]], so the

property holds.
R: Following the assumptions in Section 4 we can suppose that e is a variable, x for

example. So we want to prove [[Θ, v]] ⊆ [[Θ, case x of {pk 7→ ek}]]

[[Θ, v]] ⊆IHR2
[[Θ, ρ(ei)]] ⊆Lemma 8.7 [[Θ, case c(yn) of {pk 7→ ek}]]

So all we need to prove is that [[Θ, c(yn)]] ⊆ [[Θ, x]]. To do that we apply Lemma
8.8 to the first premise to obtain that ∆[x] = c(yn), and with this and Lemma 8.4 we
get that Θ[x] = c(yn). So Θ ≡ Θ[x 7→ c(yn)], hence by Lemma 8.2 [[Θ, c(yn)]] = [[Θ, x]]:
the property holds.

• Fun
H: It follows by induction hypothesis.
R: We want to prove that [[∆, v]] ⊆ [[(∆, f(xn)]], that is,(ligs(∆, v) → t) =⇒ (ligs(∆, f(xn)) →

t).

ligs(∆, v) → t =⇒HIR
ligs(∆, ρ(e)) → t =⇒Lema 8.1 ∃σ ∈ sus(∆) such that σ(ρ(e)) →

t. If for this substitution σ we could prove that σ(f(xn)) → t then, using Lema 8.1
we would prove that ligs(∆, f(xn)) → t and so R would be proved. That proof should
look like this:

θ(e) → t

σ(f(xn)) ≡ f(σ(xn)) → t
DF

, with θ = [yn 7→ σ(xn)], because f(yn) = e ∈ P

So, as free vars in e must be in {yn}, θ(e) ≡ σ(ρ(e)) if ∀yi ∈ yn, θ(yi) = σ(ρ(yi)), and
that happens because θ(yi) =def of θ σ(xi) =def of ρ σ(ρ(yi)). So que θ(e) ≡ σ(ρ(e))
and as σ(ρ(e)) → t then θ(e) → t thusR holds.

• Or
H: It follows by induction hypothesis.
R: We want to prove that [[∆, v]] ⊆ [[(∆, e1 or e2)]], that is, (ligs(∆, v) → t) =⇒

(ligs(∆, e1 or e2) → t)

ligs(∆, v) → t =⇒IHR
for ej ∈ {e1, e2} used in the premise we get ligs(∆, ej) →

t =⇒Lema 4.5 ∃σ ∈ sus(∆) such that σ(ej) → t. So:

14

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

σ(ej) → t

σ(e1 or e2) ≡ σ(e1) or σ(e2) → t
OR

ligs(∆, e1 or e2) → t
Lemma8.1

using Lemma 8.1 in the first step.
• Let

H: It follows by induction hypothesis, because dom(Γ[yk 7→ ρ(ek)]) ⊃ dom(Γ), since
we get Γ[yk 7→ ρ(ek)] adding bindings for fresh variables to Γ, and because ∀x ∈
dom(Γ), Γ[yk 7→ ρ(ek)][x] = Γ[x] . So we get R applying Lemma 8.5 to every variable
in dom(Γ).

R: It follows by induction hypothesis since except for renaming:

ligs(Γ[yk 7→ ρ(ek)], ρ(e)) ≡renombramiento ligs(Γ, let {xk = ek} in e)

2

Proof. [For Lemma 6.5] As v is a result of a FLC-derivation it can only be v = c(x1, . . . , xm).
So what we want is to prove that ligs(∆, c(x1, . . . , xm)) → |∆ : c(x1, . . . , xm)|. To do that we
order the bindings in ∆ in the same way as in Ligs, that is, in a way such that Γ = [z1 7→
e1, . . . , zm 7→ em] and each ei could depend on zj iff j < i. Now we define σi =def [zi 7→ |∆ : zi|],
and σi =def σi ◦ σi−1 ◦ . . . ◦ σ1. We affirm that (∀zi ∈ dom(∆), (∆[zi])σ

i−1 → |∆ : zi|) ≡ (L)
holds. We can prove distinguishing cases over ∆[zi]:

a) ∆[zi] = c(x1, . . . , xn), then |∆ : zi| = c(|∆ : x1|, . . . , |∆ : xn), so

x1σ
i−1 → |∆ : x1| . . . xnσi−1 → |∆ : xn|

(∆[zi])σ
i−1 ≡ c(x1σ

i−1, . . . , xnσi−1) → c(|∆ : x1|, . . . , |∆ : xn)
DC

so we have to prove that ∀xk ∈ {x1, . . . , xn}, xkσ
i−1 → |∆ : xk|. For the ordering of

dependences in Γ we have done before, we know that each xk must belong to {z1, . . . , zi−1}.
Let’s suppose xk = zj such that j < i, then:

zjσ
i−1 =1 zjσ1 . . . σjσj+1 . . . σi−1 =2 zjσjσj+1 . . . σi−1 =3 |∆ : zj|σj+1 . . . σi−1 =4 |∆ : zj|

We must justify each one of these steps:
1. By definition of σi−1

2. Because the domain of each σl is just {zl} and zj is distinct from each element in {z1, . . . , zj−1}
3. By definition of σj

4. Because under our working context |∆ : zj| must be ground (it has no variables), because
logical variables are forbidden.

So, as |∆ : zj is a ground Cterm⊥, using the rule DC many times we can get xkσ
i−1 ≡ |∆ :

xk| → |∆ : xk|.
b) As we have forbidden logical variables, the only possibility is that |∆ : zi| =⊥, so using the

rule B we are done.

Now when we derive ligs(∆, c(x1, . . . , xm)) we can use L with the fists binding to see that
∆[z1] → |∆ : z1|, doing that with the rest of the bindings, following the LET rule (note that
ligs(∆, c(x1, . . . , xm)) is a let expression), we go constructing σ1, σ2, ..., until σm. So all we
have to prove is that c(x1, . . . , xm)σm → |∆ : c(x1, . . . , xm)|, and this can we proven using rule
DC and similar techniques as the used in the a case of the proof for (L). 2

15

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

9 Appendix B: Examples

9.1 An example for Section 6.1

Maybe an example could come in useful to assimilate the results above. Given the following
CRWL-program (where the pair constructor ’()’ is a constructor symbol):

f(x) = (x, plus(x)) f(x) = (x, minus(x))

plus(0) = 1 plus(1) = 2

minus(0) = −1 minus(1) = 0

coin = 0 coin = 1

and f(coin) as the CRWL-expression to evaluate, we can translate it to normalized FLC syntax
getting the FLC-program:

f(x) = (let {p = plus(x)} in (x, p)) or (let {m = minus(x)} in (x, p))

plus(x) = case x of {0 → 1; 1 → 2}
minus(x) = case x of {0 → −1; 1 → 0}
coin = 0 or 1

and let {c = coin} in f(c) as the FLC-expression to evaluate. Now let’s see how Theorem 6.1
and Corollary 6.6 apply to this setting. Firstly we must construct a FLC-derivation for that
expression:

[c1 7→ coin, p1 7→ plus(c1)] : (c1, p1) ⇓ [c1 7→ coin, p1 7→ plus(c1)] : (c1, p1)
V al

[c1 7→ coin] : let {p = plus(c1)} in (c1, p) ⇓ [c1 7→ coin, p1 7→ plus(c1)] : (c1, p1)
Let

[c1 7→ coin] : (let {p = plus(c1)} in (c1, p)) or . . . ⇓ [c1 7→ coin, p1 7→ plus(c1)] : (c1, p1)
Or

[c1 7→ coin] : f(c1) ⇓ [c1 7→ coin, p1 7→ plus(c1)] : (c1, p1)
Fun

[] : let {c = coin} in f(c) ⇓ [c1 7→ coin, p1 7→ plus(c1)] : (c1, p1)
Let

By Theorem 6.1, [[[c1 7→ coin, p1 7→ plus(c1)], (c1, p1)]] ⊆ [[[], let {c = coin} in f(c)]]. We can
check this by constructing each CRWL-derivation from ligs([c1 7→ coin, p1 7→ plus(c1)], (c1, p1)):

0 → 0 DC

0 or 1 → 0 OR

coin → 0 DF

0 → 0 DC 1 → 1 DC

case 0 of {0 → 1; 1 → 2} → 1
CASE

plus(0) → 1
DF

0 → 0 DC 1 → 1 DC

(0, 1) → (0, 1)
DC

let {p1 = plus(0)} in (0, p1) → (0, 1)
LET

let {c1 = coin} in let {p1 = plus(c1)} in (c1, p1) → (0, 1)
LET

The other possible CRWL-derivations for this expression are similar and lead us to the follow-
ing conclusion: [[[c1 7→ coin, p1 7→ plus(c1)], (c1, p1)]] = {(0, 1), (1, 2), (0,⊥), (1,⊥), (⊥, 1), (⊥
, 2), (⊥,⊥),⊥}. By Theorem 6.1, it must happen that (0, 1) ∈ [[[], let {c = coin} in f(c)]], let’s

16

López-Fraguas, Rodŕıguez-Hortalá, Sánchez-Hernández

check this deriving ligs([], let {c = coin} in f(c)):

0 → 0 DC

0 or 1 → 0 OR

coin → 0 DF

0 → 0 DC 1 → 1 DC

case 0 of {0 → 1; 1 → 2} → 1
CASE

plus(0) → 1
DF

let {p = plus(0)} in (0, p)) → (0, 1)
LET

0 → 0 DC 1 → 1 DC

(0, 1) → (0, 1)
DC

(let {p = plus(0)} in (0, p)) or . . . → (0, 1)
OR

f(0) → (0, 1)
DF

let {c = coin} in f(c) → (0, 1)
LET

Doing the other CRWL-derivations for this expression we get [[[], let {c = coin} in f(c)]] =
{(0, 1), (1, 2), (0,⊥), (1,⊥), (⊥, 1), (⊥, 2), (⊥,⊥),⊥, (0,−1), (1, 0), (⊥,−1), (⊥, 0)}. Therefore The-
orem 6.1 holds and so does Corollary 6.6 as |[c1 7→ coin, p1 7→ plus(c1)] : (c1, p1)| = (⊥,⊥).

17

