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Abstract: A novel detection approach for signals in digital communications is 
proposed in this paper by using the neural network with transiently chaos and 
time-variant gain (NNTCTG) developed by author. The maximum likelihood 
signal detection problem can be always described as a complex optimization 
problem with so many local optima that conventional Hopfield-type neural 
networks cannot be applied. To amend the drawbacks of Hopfield-type networks, 
the NNTCTG is used to search for globally optimal or near-optimal solutions of the 
optimization problems with lots of local optima since it has richer and more flexible 
dynamics over conventional networks only with point attractors. We established a 
neuro-based detection model for the signal in digital communication and analyzed 
its working procedure in detail. Two simulation experiments were conducted to 
illustrate the validity and effectiveness of the proposed approach. 
 
 
I.  INTRODUCTION  
 
  It is well known that under the assumption of time-dispersive, time-varying channels 
and additive Gaussian noise, the maximum-likelihood sequence estimation (MLSE) 
based signal detection is often adopted. Although this kind of detectors exhibits an 
optimum error rate performance, it is often impractical to construct due to the 
computation-intensive complexity [1]. Therefore, an important researching direction is 
how to design a detector with both good error rate performance and an acceptable 
computation complexity. 
  Motivated by the pioneer work of Hopfield and Tank, the collective computational 
properties and the massively parallel architectures of artificial neural network are 
extensively utilized in solving for difficult optimization problems in many fields over 
conventional approaches [2]. The application of the neural network in digital 
communication systems [3,4] was motivated by its adaptive learning capability and 
potential of real-time processing. 
  According to the communication theory, the signal detection problem can be 
represented as an optimization problem. In particular, the MLSE can be described as a 
combinatorial minimization of the cost function over all possible sequences which is a 
large but finite set, of a certain length [3]. Among which we desire to find the one which 
globally minimizes the cost function involved. 
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  Because of so many local optima in the optimization problem for the signal detection, 
the main difficulty using conventional Hopfield-like neural network is that the network 
tends to become trapped in local optima due to its gradient descent dynamics. To avoid 
getting stuck in local minima, both stochastic simulated annealing (SSA) and various 
deterministic simulated annealing (DSA) approaches such as hardware annealing and 
mean field approximate annealing have been proposed [5]. Very recently, [6] and [7] 
proposed a new artificial neural network with transient chaos and time-variant gain 
(NNTCTG). Unlike the conventional networks only utilizing gradient descent dynamics, 
it has richer and far-from equilibrium dynamics with various coexisting attractors, not 
only of fixed points and periodic points but also of strange attractors. This kind of 
complicated neuro-dynamics is a promising technique for information processing and 
optimization. In particular, an intriguing property of chaotic neural network to move 
chaotically over fractal structure in the phase space may be an efficient heuristic method 
searching for global optimal or near-optimal solution, avoiding getting stuck at local 
minima. 
  On the basis of the chaotic simulated annealing property of NNTCTG, we propose a 
new detection approach for signals in digital communications and give a concrete signal 
detector model. This paper is organized as follows. After a concise introduction to 
NNTCTG is given in section II, we present the NNTCTG-based signal detector in digital 
communication in detail in section III. In section IV, simulation experiments are 
performed for the comparison with the existing approaches. Finally, a conclusion is 
given.  
 
 
II. CHAOTIC NEURAL NETWORK  
 
   It is well known that Hopfield network with continuous-time or asynchronously 
discrete-time state transitions guarantee convergence to a stable equilibrium solution but 
suffer from local minimum problems. Since the chaotic neural network is of richer and 
more flexible neuro-dynamics whose running region is only a fractal structure in the 
phase space and may be used to efficiently escape from the local minima problem in 
chaotic manner. Therefore, in order to take advantage of both the chaotic dynamics with 
convergent dynamics, a neural network with transient chaos and time-variant gain 
(NNTCTG) is proposed in [6, 7], as defined below: 
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where xi  and yi  are the output and internal state of ith neuron, respectively, wij
 is 

the synaptic weight from neuron j to neuron i , I i  is input bias, I 0  is a positive 

parameter,  is a positive scaling parameter for inputs, k  is a damping factor of 
nerve membrane ( )0 1≤ ≤k , ( )z ti

 is self-feedback synaptic connection weight or 

refractory strength, ( )ε i t  is gain parameter of the output function,  and 

( )0 1≤ ≤β γ,  are damping factors. 
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  It is clear that NNTCTG in (1)-(3) has related to existing ANN models, such as if 

( )ε i t = 0  and ( )z ti = 0 , then it is degraded as the famous HNN[2]; if 

( )ε εi it = > 0 , ( )z t zi i= > 0 and I 0 0=  , the NNTCTG is reduced as the chaotic 

neural network (CNN) [8]; if ( )ε εi it = >0 , it is reduced as TCNN[9]. A 

switched-capacitor implementation of transiently chaotic neural networks is given in [9].  
  It can be shown that NNTCTG actually has transiently chaotic dynamics which 
eventually converges to a stable equilibrium point through successive bifurcations like a 

route of reversed period-doubling bifurcations, with the temporal evolution of ( )z ti  

and ( )ε i t  in (3), which harness the chaotic behavior for convergence and the speed of 

reversed bifurcation since they correspond to the temperature in simulated annealing 
process in exponential cooling schedule 
  Generally, the procedure of NNTCTG in solving for general optimization problem can 
be divided into two phases: chaotic bifurcations phase and gradient convergent phase. In 
the first phase, a complicated and rich chaotic bifurcations process is created by big 
values of refractoriness and gain for the network to escape from local minima, whose 
mechanics can be regarded as a kind of DSA, and called chaotic simulated annealing 
(CSA). In the second phase, a good initial state at a neighborhood of globally optimal 
solution is provided for the gradient descent dynamics so that the network can easily 
reach the global optimal or near-optimal solution of the problem.  
  In solving optimization problem, one can map the problem onto the network by letting 
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where J is the cost function of the problem and N is the number of free variables. Note 
that the symbol ‘ in this paper is completely equivalent to symbol ‘’. 
 
 
III.   NNTCTG-BASED SIGNAL DETECTOR  

 
  Here we consider a digital communication system over the intersymbol interference 
(ISI) and additive Gaussian noise channel and make the assumption of the time-invariant 
channel during at least n symbol intervals. The actual ISI channel together with baseband 
Nyquist filters in the transmitter and receiver can be modeled as a finite impulse response 

filter of length L + 1 whose impulse response is given by ( )h k hk= . Here L  is the 

number of symbol intervals over which the ISI spans and hence ( )h k = 0  for 

k L∉ [ , ]0 . Hence, the received signal is produced by  
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where ( ) ( )u k u k iii= −∑ δ , ( )δ k  is the Kronecker delta function and ( )n k  is a 

white Gaussian noise of zero-mean and finite variance. 

  If the signaling alphabet { }α α= k , k M= 1 2, , ,/ , and sequence 

{ }un iu= ,i n= −0 1 2 1, , , ,/ , correspond to a finite set of numbers and the degree of 
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freedom, respectively, then there are M n  possible combinations over which the 
maximum-likelihood sequence estimator (MLSE) computes the cost function. It selects a 
sequence as a best estimate of the transmitted sequence, that maximizes the conditional a 

posterior probabilities ( )p r u| , where [ ]r = −r r rn
T

1 2 1, , ,/ is the received 

signal vector, [ ]u= −u u un
T

1 2 1, , ,/  is the transmitted sequence vector and superscript 

T indicates transpose operation. For a sufficiently large n, the MLSE algorithm is to 

choose a sequence from M n  possible sequences, that maximizes a scalar cost function 
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After proper simplification, the minimization of (6)  is equivalent to minimize 
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here subscript I and Q of above variables respectively denote the real part and imaginary 
part of the corresponding variables. z r h= *  is cross-correlation between the received 
signal and channel impulse response, M is the correlation matrix of transmission 
channel.     

By cumbersome derivatives, we can have the following objective function 
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   It was shown from (8) that the cost function to be minimized in the MLSE has the 
same quadratic form as the Lyapunov function associated with the network. If the cost 
function is mapped onto the network then the desired estimate is obtained at the output. 
However, for a combinatorial optimization it suffers from the local minimum problem as 
in Hopfield neural networks[2]. Optimum or near-optimum solutions can be obtained by 
applying various annealing approaches[5-8]. As an efficient method for MLSE of digital 
signal, a chaotic-annealed network is proposed. 
  When the MLSE cost function of (8) is directly mapped onto a neural network, one 

difficulty may arise. For m0 0≥ , the matrix M  is positive semidefinite and J is a 

convex function of output. Correspondingly, the continuous-valued steady-state output 

x ∈D n2  may occur although the desired binary output can also be obtained by using 
additional limiting devices at the output. However, in order to reduce the circuit 
complexity and the effect of noise, a network with combinatorial solutions is highly 
desirable. So, we need an additional constraint energy 

( ) ( )Ec
T= + −µ x 1 x 1                             (9) 

where 1 is 2n-dimension constant vector with element of one and µ is a constant. The 

constraint energy satisfies E Dc
n≥ ∈0 2,x , where the equality holds only if 
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{ }x ∈ − +1 1
2

,
n

. If we neglect the constant term , the final modified objective function 

for MLSE problem is given by 

( )J T T= + −1
2 x M E x x zµ                        (10) 

where E is a unity matrix. The parameter  controls the shape of energy landscape and 

is chosen according to the maximum eigenvalue of M so that J  is a concave function. 

In many actual applications,  can be coarsely selected as µ < −m0 . 
   When the objective function of (10) mapped onto the network by (4), the synaptic 
weights and neuron bias of the proposed neural network detector can be determined by 

  W = − −M Eµ ,         I = z                      (11) 
where W is the synaptic connection weights matrix and I is the neuron bias vector of the 
neural network. 
  Hence, the MLSE problem can be easily solved by the NNTCTG based receiver.  
 

 
Fig.1  One of the output trajectories and energy evolution plot of the network at SNR=10 dB 

 
 

IV.  SIMULATION RESULTS  
 

   As was known that the signaling alphabet { }α α= k
, k M= 1 2, , ,/  depends 

on the modulation techniques employed. For the sake of simplicity, we perform the 
simulation experiments of a simple binary communication system with two ISI channels 
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by solving the dynamic equations in (1)-(3). In this case, the transmitted signals are 

binary vectors. Randomly generated data sequence { }U u u un n= −0 1 1, , ,/  is 

convolved with a channel response h(k) which is assumed to be known exactly in our 
simulations.  
Experiment 1: The simulation is conducted on a binary communication system with the 
ISI channel given by 

( ) ( )H z zm = + −1
1

11 05
.25

. .   therefore, h(0)=0.8944, h(1)=0.4472; h(k)=0, if k ≠ 0 1,       

(12) 
   So the autocorrelation elements of above channel can be given by m0 10= . , 

m m1 1 0 4= =− . , mk = 0  for k ≥ 2 . 

Fig.1 shows one of the output trajectories and energy decrease plot of the network at 
SNR=10 dB. For each signal-to-noise ratio (SNR) value 100 simulation runs are 
performed independently with the sequence length of 1000. Fig.2 shows the probability 
of error of detection of the NNTCTG-based signal detector. For comparison with the 
existing detection methods, we also plot the probability of the error of HNN detector and 
Viterbi algorithm in Fig.2. The results shown in Fig.2 demonstrate that our approach is 
better in the probability of error than HNN detector (by dash-dotted line) and is less 
efficient than the Viterbi algorithm(VA) (by dashed-line) at the moderate values of SNR. 

 
Fig.2  Curves of the probability of error for several signal detection methods in digital 

communications 
 
 
Experiment 2: Consider communication system with the ISI channel as 

    ( ) ( )H z zm = + −1
1

105
.25

. .   i.e.,  h(0)=0.4472, h(1)=0.8944; h(k)=0, if k ≠ 0 1,           

(13) 
   Its autocorrelation matrix is same as one in experiment 1. In Fig.3 we plot the curves 
of the average probability of the error of several signal detection methods. Fig.3 shows 
that our approach is best one for channel in (13) among the three methods. 
   In summary, the simulation results shown in Fig.1 and Fig.3 demonstrate that our 
proposed approach is very efficient and has good robust. 
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Fig.3  Curves of the probability of error for several signal detection methods over channel of (13) 

 
 
 
V.   CONCLUSION 

 
  A neural network detection model for signals in digital communications is proposed in 
this paper. Although there are so many local optima in this problem, the proposed 
NNTCTG-based signal detector not only can easily reach the global optimum or its 
neighborhood after a transiently chaotic process but also has low computation 
complexity. Numerical simulation results show that our method is an more efficient and 
robust technique for implementing MLSE receiver for digital signals in communications 
than existing methods. 
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