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How to Approximate a Histogram by a Normal Density 
Lawrence D. BROWN and J. T. Gene HWANG (formerly Jiunn T. HWANG)* 

Which normal density curve best approximates the sam- 
ple histogram? The answer suggested here is the normal 
curve that minimizes the integrated squared deviation 
between the histogram and the normal curve. A simple 
computational procedure is described to produce this 
best-fitting normal density. A few examples are pre- 
sented to illustrate that this normal curve does indeed 
provide a visually satisfying fit, one that is better than 
the traditional xi, s answer. Some further aspects of this 
procedure are investigated. In particular it is shown that 
there is a satisfactory answer that is independent of the 
bar width of the histogram. It is also noted that this 
graphical procedure provides highly robust estimates of 
the sample mean and standard deviation. We demon- 
strate our technique by using data including Newcomb's 
data of passage time of light and Fisher's iris data. 

KEY WORDS: Graphical approximation; Least squares 
approximation; Robust estimation. 

1. INTRODUCTION 

The composition of a numerical random sample is 
conveniently pictured by its histogram. For many classes 
of data one expects the underlying population to be 
approximately normal, and hence the histogram of the 
sample also to be approximately normal. If so, it may 
be further convenient to smooth the histogram by ap- 
proximating it by a suitable normal density curve. 

Figures 1 and 2 illustrate this process with two historic 
sets of statistical data. The data in Figure 1 are Newcomb's 
classical measurements of the passage time of light. (See 
Stigler 1977.) The data in Figure 2 are measurements 
of iris sepal width for 150 plants of three species, as 
presented in Fisher (1936). (See also Andrews and 
Herzberg 1985, pp. 5-8.) In each case the approxi- 
mating normal density curve is chosen in the common- 
sense fashion-its mean, ,u is x, the sample mean, and 
its standard deviation a-, is s, the sample standard de- 
viation as defined by s2 (n - 1)1x(xi - 

In each figure the approximating normal density pro- 
vides a reasonable visual fit to the underlying histogram; 
however, in both cases (and particularly in the first) the 
visual fit can be significantly improved by using a dif- 
ferent value of ,u and a-. This fact is displayed in Figures 
3 and 4. 

The intent of this article is to describe a method of 
choosing ,u and a- so as to provide the best fit to a given 
histogram. The "fit" will be measured in a least square 
sense. This is mathematically convenient; it enables 

mathematical precision in our answer, and it appears 
in examples to provide a normal density that does in- 
deed provide a visually satisfying fit. 

Finding the best ,t, o- in the above sense requires the 
solution of a pair of simultaneous transcendental equa- 
tions. These can easily be solved numerically. We used 
Gauss on an IBM PC, but any other standard program- 
ming language will suffice. 

The bar width of the histogram has an influence on 
the choice of the approximating normal density. How- 
ever, for small to moderate bar widths (those below, 
say, o-/3), this influence is very minor. For a given set 
of data the best approximating normal density con- 
verges to a limiting answer as the bar width converges 
to zero. This limiting answer therefore provides a nor- 
mal density that is a good fit for any histogram drawn 
from the data, so long as the bar width is not too large. 
The simultaneous equations needed to calculate this 
limiting answer are somewhat easier to compute, to 
manipulate, and to solve than are the corresponding 
equations that take into account the bar width. 

One other feature of this limiting answer may also 
be of interest. The approximating normal density is of 
course determined by values ,i, & computed from the 
data, as described in Theorems 3.1 or 4.1 or Corollary 
3.1. These values ,i and 5f are highly robust estimators 
of the corresponding population values ,ut and u. This 
desirable robustness property is not shared by x and s. 

2. NORMALIZING THE HISTOGRAM 

A normal density curve encloses an area of one. For 
this reason it is appropriate before fitting to a histogram 
that the histogram itself should be rescaled so that it 
encloses an area of one. To do this, let 

(O = left endpoint of first histogram bar, 
(M = right endpoint of last histogram bar, 

b = bar width, = + bj, 
M = ((M - o)lb= number of histogram bars, 
n = sample size, and 

ni = number of observations in the jth bar interval. 

A scaled histogram is given by 

h(t) = C .n if j -1<t?,j,j= 1,. . . ,M, (2.1) 

with C = (bn)1 to give area one. 

3. FITTING A HISTOGRAM WITH A NORMAL 
DENSITY 

The basic mathematical results to be derived are ac- 
tually valid for fitting any nonnegative function by a 
normal density. Thus we let g(Q) denote a nonnegative 
function on the line. In our applications g will be an 
area one histogram, but that is not required in Theorem 
3.1. The objective as mentioned in the introduction, is 
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Figure 1. Histogram of Newcomb's Data and a Normal Density 
With the Same Mean and Standard Deviation. 

to find ,t, cr to minimize 

D(,u, a-) f (p,Ot(t) - g(t))2 dt, (3.1) 

where pn denotes the normal density with mean ,t and 
standard deviation a-. In a slightly different nonpara- 
metric approach Rudemo (1982) proposed a similar cri- 
terion. Here is the first result. 

Theorem 3.1. Values (,t, a-) minimizing (3.1) must 
exist. Any such values satisfy 

f (t - )ql(t)g(t) dt = 0, (3.2) 

and 

4 o fV T (1 - (t -/2 ) (t)g(t) dt = 1. (3.3) 

LL 

Figure 2. Histogram of Fisher's Iris Data and a Normal Density 
With the Same Mean and Standard Deviation. 

40 0 

Figure 3. Histogram of Newcomb's Data. Solid curve shows best- 
fitting normal density. Dotted curve is N(x, s2) density as in Figure 1. 

Proof. Note that 

SP,LcT(t) =- f. e- ((t- _)2/2_2) 

It is clear that the function D(,t, o-) is differentiable in 
both ,u and a- and satisfies 

lim D(,ut, o() =g2(t) dt + f 02 (t) dt 

lim D(,u, o) = f g2(t) dt uniformly in ,u 

lim D(,t, -) = c uniformly in ,u. 

Also, inf{D(,t, a-): (,u, a-)} < f g2(t) dt. Hence D(,u, a-) 

Figure 4. Histogram of Fisher's Iris Data. Solid curve shows best- 
fitting normal density. Dotted curve is N(k, s2) density as in Figure 2. 
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achieves its minimum, and all points of minima must 
satisfy 

aD O aD 
OFt acr 

The derivatives may be calculated inside the integral 
sign. Hence 

o D-D(t, o-) 

is equivalent to 

O = (t - - g(t)) dt. (3.4) 

By symmetry, 

f (t - ,u)4o,2Ijt) dt = 0. (3.5) 

Combining (3.4) and (3.5) yields (3.2). Similarly, 

o - D(Ft, o-) 
OcT 

is equivalent to 

f (t -t) - I 
(t)( (t) - g(t)) dt. (3.6) 

Now, (P,, ('p,o,l/2)/2o 1-V so that 

f (t -) - i)f(t) dt - (3.7) 

Substituting (3.7) in (3.6) and rearranging terms yields 
(3.3). 

For a general g Equations (3.2) and (3.3) may be 
moderately awkward to solve numerically. When g is a 
histogram, they can be reduced to a more convenient 
form, as follows. 

Corollary 3.1. When g is a scaled histogram (2.1), 
then Equations (3.2) and (3.3), which describe the op- 
timal ,t, o-, become 

M 

E nj[cp,t(4j) - p,U(4j-,)] = 0 (3.8) 
j=1 

and 

M 

4a /7T Cnj[(j* ,( j_ - p,- J ( j, (1)] =1 (3.9) 

Proof. The formulas follow from the facts that 

(t - an.)pdf(t) dt = [pff(tjfl} fj-l~~~~~~~~~~~~~~j 

and 

Equations (3.8) and (3.9) involve only sums and not 
integrals. They are consequently much more tractable 
for numerical solutions than are (3.2) and (3.3). 

Unfortunately, it appears that the system (3.8)-(3.9) 
may have multiple roots. If this occurs then not all 
solutions to the system will correspond to the desired 
minimum of D(kt, o-). However, multiple roots appear 
not to be a serious problem in several examples we have 
investigated. (Furthermore, as a referee points out, one 
way to ameliorate the multiple root problem is to, dur- 
ing the iteration to a solution of (3.8)-(3.9), take a step 
only when the distance (3.1) is reduced. Otherwise, cut 
the step in half repeatedly until there is a reduction. 
Stop if there is no significant reduction, since this in- 
dicates one is already near a local minimum.) 

4. AN ASYMPTOTIC SOLUTION 

The solution provided by Corollary 3.1 naturally de- 
pends on the bar width b used to construct the histo- 
gram. However, as b decreases, the values (,u, o-) min- 
imizing D(FL, o-) converge, say to (,u*, cr*). Whenever 
b is not large (as compared to o-), (,u*, o-') can be used 
in place of the minimizing (,u, o-) in order to provide a 
satisfactory fit to the histogram. Here is a precise result 
describing this convergence. 

Theorem 4.1. Consider a sample consisting of the 
values {xi: i = . . ., n}. Let bk > 0. For the given 
sample consider the scaled histogram hk, say, con- 
structed with bar width bk. Let Dk(F, o-) denote the 
corresponding squared error measure (3.1), and let (Lk, 

o-k) denote the parameter values yielding its minimum. 
Then there is a subsequence k' such that (Gk', Sk;) con- 
verges. Let /u*, cr* denote the limit of any convergent 
subsequence. Then ,u*, o-* satisfy 

n 
> (xi - )U*)(y*'A(xj) = 0 (4.1) 

4o* I~ - (( j * )) ,* *(xj) = 1. (4.2) 

Proof. Let Gk(t) = ft hk(t)dt. Then (except for 
t E {xi}) Gk(t) F11(t), the sample cdf. It follows that 

0 = f (t - It) k.uk(t)hk'(t) dt 

---> (t - 4U 4t) dF,,(t), 

which is the left side of (4.1). Similar convergence holds 
in (3.3), which converges to (4.2). The assertions of the 
theorem thus follow from Theorem 3.1 and standard 
convergence arguments. 

The solutions to (4.1) and (4.2) are as easily com- 
puted numerically as those to (3.8) and (3.9). (4.1) and 
(4.2) depend only on the data, not on the bar width b 
of the histogram. Thus one may compute the values 
ju* cr directly from the data, and expect the corre- 
sponding normal density to provide nearly the best fit 
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to the histogram produced from the data, unless M is 
small. 

5. EXAMPLES 

Figures 1 and 2 illustrate the process of fitting a his- 
togram with a normal density having ,u = x? o- = s. 
Figures 3 and 4 show these same histograms fitted by 
the least squares solution of Corollary 3.1. For com- 
parison the normal density curves of Figures 1 and 2 
are also shown on these plots. [A referee suggests we 
could also have compared the solution of Corollary 3.1 
with that produced from a conventional robust proce- 
dure such as a 25% trimmed mean for ,u and the ap- 
propriate mean absolute deviation (MAD) for o-. Those 
values turn out to be close to what Corollary 3.1 pro- 
duces, but not identical; and of course Corollary 3.1 
yields a better fit in the sense of (3.1).] 

Figure 5 is another illustration; the histogram this 
time is the population histogram of the Poisson prob- 
ability function with A = 2.5. This histogram of course 
possesses more regularity than one would expect from 
a statistical sample. It is also somewhat skewed. Be- 
cause of the central limit theorem this histogram is cus- 
tomarily compared to that of a normal ,u = 2.5, o-2 = 

2.5 density. Figure 5 also shows the best-fitting normal 
density as computed from Corollary 3.1. 

Table 1 summarizes numerical results related to Fig- 
ures 3 to 5. For comparison it also gives the values of 
u*I, cr* for the asymptotic (as b -- 0) best fit for the 
Newcomb and Fisher data. Note that in each case ,u*, 
cr* are rather close to the optimal ,t, o- found from 
Corollary 3.1. 

6. ROBUSTNESS PROPERTY 

The estimators u = ,u* and cr = oc* obtained by 
solving ( ok, *) in (4.1) and (4.2) seem to be quite 
robust. To examine ft, we carried out a simulation study 
in which xi, 1 c i c n, are iid standard Cauchy random 
variables with n = 20, 30, 50. We compared the perfor- 
mance of f with x. One thousand n vectors of Cauchy 
random variables are generated in each case of Table 
2. Although the theoretical value of the standard de- 
viation of x is infinite, the numerical values are included 
for comparison. As expected the numerical values of x- 
fluctuate a lot, as illustrated by the simulation standard 
deviations in Table 2. 

Since the estimators (,u, 6-) are location and scale 
invariant, the above simulation provides useful infor- 

.20 

1 .1v 0.0 

Figure 5. Histogram of the Poisson (A 2.5) Distribution. Solid 
curve is best-fitting normal density. Dotted curve is N(2.5, 2.5) density. 

mation for other parameter configurations as well. If 
instead of observing the Cauchy random variable xi, we 
observe a + bxi, then the bias of ft and its standard 
deviation will be multiplied by b and Ibl. This also in- 
dicates that , is an unbiased estimator for this Cauchy 
example. Indeed it must be unbiased for any symmetric 
model since the distributions of a + bxi and a - bxi 
are the same. 

Technical difficulty arises in solving (4.1) and (4.2). 
Newton's method, simultaneously applied to both ,u and 
oa (in which a gradient matrix is calculated) does not 
work well. Instead, by fixing o-*, we solve ju* from (4.1) 
via a one-dimensional Newton method and then plug 
such a value of ,u* into (4.2) and solve o-* in (4.2), again 
via a one-dimensional Newton method. The procedure 
is iterated until numerical convergence is attained. The 
initial points for ju* and cr* are taken to be the median 
and interquartile range of the data. 

This stepwise Newton method works well because for 
a fixed o-*, a precise determination of ,u* is very easy 
to obtain from (4.1). There was also usually no problem 
in solving cr* from (4.2) during the simulation study. A 
referee also argues that this works well since ,t and oc 
are nearly orthogonal. However, occasionally, it did 
happen that the solution strayed off to infinity. This is 

Table 1. Values of x, s; of t, (- From Corollary 3.1; and of b*, o-* From Theorem 4.1 
(where appropriate) 

Histogram x s a- p. * * 

Newcomb 26.2121 10.7453 27.3801 5.0687 27.2946 4.6726 
(as in Figs. 1 and 3) 

Fisher 30.5530 4.3728 30.3892 4.2042 30.1748 4.0583 
(as in Figs. 2 and 4) 

Poisson (A = 2.5) 2.5 1.58 2.07 1.53 
(as in Fig. 5) 
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Table 2. Simulated Bias 

m= 20 30 50 
,u* .00190 - .0069 .014 

(.340) (.289) (.223) 
46 -1.83 .276 

(40.42) (59.46) (37.18) 

NOTE: The simulation standard deviations are reported in parentheses. 

due to the fact that D has a "local maximum" at infinity, 
in the sense that it converges to a constant. Therefore 
in the simulation we restricted the region of o(* to be 
(0, max xi - min xi) and when it overshot we generated 
a new initial point U(max xi - min xi) where U is a 
uniform random number over [0, 1]. 

The result shows that bt* has a fairly small standard 
deviation. 

7. RELATION TO ROOTOGRAMS 

Velleman and Hoaglin (1981) discussed the "rooto- 
gram" procedure derived from Freeman and Tukey 
(1950). Essentially, this procedure examines the resid- 
uals between the square root of the histogram and the 
square root of a fitted normal density. The resulting 
differences are called double-root residuals. (Actually, 
a small correction factor is introduced into the formulae 
to avoid difficulties with small cell counts.) 

Velleman and Hoaglin suggested either visually fit- 
ting the best normal density or using some robust es- 
timator of bu and a- to produce this fit. Alternately, it 
would be possible to extend the ideas of the current 

article to produce the normal density which minimizes 
the sum of squares of their double-root residuals. We 
believe that the method of the present article, based on 
ordinary residuals, will generally produce a better visual 
fit. (On the other hand, the double-root residuals may 
be preferable for other purposes. It may result in more 
efficient estimation under appropriate assumptions. Also 
the double-root residual produces a convenient test of 
goodness of fit. This is because the sampling distribution 
of this sum of squares is probably very well approxi- 
mated by a x2 distribution.) The rootogram is also re- 
lated to minimum Hellinger distance estimation. See 
Simpson (1987) for more on this topic. 

[Received November 1991. Revised Septemiber 1992.] 
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