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ABSTRACT 

The steady axisymmetric hydromagnetic 
flow of an incompressible viscous electrically 
conducting fluid impinging on a porous flat plate 
with heat transfer are investigated.  An external 
uniform magnetic field and a uniform suction or 
injection are applied normal to the plate which is 
maintained at a constant temperature.  Numerical 
solution for the governing nonlinear equations is 
obtained. 
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INTRODUCTION 

The viscous fluid motion generated by a 
stagnation point flow impinging on a flat plate is 
a classical problem in fluid mechanics.  The 
stagnation point flow, first examined by Hiemenz 
[1],  is of great technical importance, for example 
in the prediction of skin-friction as well as 
heat/mass transfer near stagnation regions of 
bodies in high speed flows and also in the design 
of thrust bearings and radial diffusers, drag 
reduction, transpiration cooling and thermal oil 
recovery.  The effect of uniform suction on the 
stagnation point flow is considered by Preston [2]. 
In hydromagnetics, the problem of Hiemenz flow 
was solved using approximate methods in [3,4]. 
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 The study of heat transfer in boundary 
layer flows is of importance in many engineering 
applications such as the design of thrust bearings 
and radial diffusers, transpiration cooling, drag 
reduction, thermal recovery of oil, etc. [5].  
Massoudi and Ramezan [5] used a perturbation 
technique to solve for the stagnation point flow 
and heat transfer of a non-Newtonian fluid of 
second grade.  Their analysis is valid only for 
small values of the parameter that determines the 
behavior of the non-Newtonian fluid.  Later 
Massoudi and Ramezan [6] extended the problem 
to nonisothermal surface.  Garg [8] improved the 
solution obtained by Massoudi [6] by computing 
numerically the flow characteristics for any value 
of the non-Newtonian parameter using a pseudo-
similarity solution.  In references [5-7], the 
authors considered the case of two-dimensional 
stagnation point flow of a non-conducting fluid. 
 The purpose of the present paper is to 
study the steady laminar flow of an 
incompressible viscous electrically conducting 
fluid at an axisymmetric three-dimensional 
stagnation point impinging on a porous flat plate 
with heat transfer.  The fluid is acted upon by an 
external uniform magnetic field and a uniform 
suction or injection directed normal to the plane 
of the wall.  The magnetic Reynolds number is 
assumed very small so that the induced magnetic 
field is neglected [8].  The wall and stream 
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temperatures are assumed to be constants.  A 
numerical solution is obtained for the governing 
momentum and energy equations using finite 
difference approximations which takes into 
account the asymptotic boundary conditions.  The 
numerical solution computes the flow and heat 
characteristics for any value of the Hartmann 
number, the suction or injection parameter and 
Prandtl number. 
 
FORMULATION OF THE PROBLEM 
Consider the axisymmetric three-dimensional 
stagnation point flow of a viscous incompressible 
electrically conducting fluid impinging 
perpendicular to a porous plate. This is an 
example of a potential flow which arrives from 
the entire space above the plate and impinges on a 
flat wall placed at z=0, flows away radially in all 
directions. (u,w) are the components of velocity at 
any point (r,φ,z) for the viscous flow and the 
velocity component in the φ-direction vanishes 
whereas (U,W) are the velocity components for 
the potential flow.  A uniform magnetic field Bo 
and a uniform suction or injection with a 
transpiration velocity at the boundary of the plate 
given by -wo  for suction and wo for injection are 
applied normal to the plane. 

Then, for the three-dimensional steady 
state flow, the continuity and momentum 
equations, using the usual boundary layer 
approximations [9] and by introducing Lorentz 
force, reduce to 
 
∂u/∂r + u/r + ∂w/∂z = 0,                                  (1)             
 
u∂u/∂r + w∂u/∂z = -1/ρ ∂p/∂r  + υ (∂2u/∂r2 + 
1/r∂u/∂r – u/r2 + ∂2u/∂z2) + σBo

2/ρ (U(r)-u),   (2)              
(2)                                              
 
u∂w/∂r + w∂w/∂z = -1/ρ ∂p/∂z  + υ (∂2w/∂r2 + 
1/r∂w/∂r + ∂2w/∂z2),                                       (3)              
 
where ∂/∂φ=0, ρ, υ and σ are, respectively, the 
density, the kinematic viscosity, and the electric 
conductivity of the fluid and U(r) is the radial 
component of the inviscid potential flow velocity 
above the boundary layer formed over the plate 
surface.  The boundary conditions for the velocity 
problem, assuming the absence of magnetic field 
in the potential flow region, are given by, 
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u(r,0)=0, w(r,0)=-wo, for suction or w(r,0)=wo for 
injection,                                                     (4a) 
 
u(r,∞)=U(r)=ar,  w(r,∞)=W(z)=-2az,  p(r,∞)=Po – 
ρa2/2 (r2 + z2 )                                             (4b)                  
 
where ‘a’ is a constant.  The temperature 
distribution can be found from the energy 
equation which may be written as (neglecting the 
dissipation) [10], 
 
ρ cp (u∂T/∂r + w∂T/∂z)= k ∂2T/∂z2             (5)                   
 
where T is the temperature of the fluid, cp is the 
specific heat capacity at constant pressure of the 
fluid, and k is the thermal conductivity of the 
fluid.  The boundary conditions for the 
temperature problem are given by 
 
T(r,0)=Tw,  T(r,∞)=T∞                               (6)                     
 
By introducing the following dimensionless 
variables and parameters 
 
ζ= υ/a  z,  u(r,z)=ar φ′(ζ), w(r,z)=- υa φ(ζ), 
θ(ζ)=(T-T∞)/(Tw-T∞) 
                                                                                            
Ha

2= σBo
2/ρa,  Ha  is the modified Hartmann 

number, 
 
Pr=µcp/k,  Pr is the Prandtl number, 
 
A= φ(0)=±wo/ υa , A is the suction parameter; 
A>0 for suction and A<0 for injection,  
the governing Eqs. (1) to (5), respectively, reduce 
to  
 
φ′′′ + 2 φφ′′ - φ′2 + Ha2 (1- φ′) +1 = 0,      (7)                     
 
φ(0)=A,  φ′(0)=0,  φ′(∞)=1,                      (8)                     
 
θ′′ + Pr φ θ′ =0,                                         (9)                      
 
θ(0)=1,  θ(∞)=0,                                       (10)                    
 
where prime denotes differentiation with respect 
to ζ. 
 The flow Eqs. (7) and (8) are solved 
numerically using finite differences.  A quasi-
linearization technique [3] is first applied to 
Copyright © 2003 by ASME 
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replace the non-linear terms at a linear stage, with 
the corrections incorporated in subsequent 
iterative steps until convergence.  The quasi-
linearized form of Eq. (7) is, 
 
φ′′′n+1 + 2 φn φ′′n+1 + 2 φn+1 φ′′n   - 2 φn φ′′n – 2 φ′n 
φ′n+1 + φ′n2 + Ha2 (1- φ′n+1) +1 = 0     
 
where the subscript n or n+1 represents the nth or 
(n+1)th approximation to the solution.  Then, the 
Crank-Nicolson implicit method is used to replace 
the different terms by their second order central 
difference approximations [3].  An iterative 
scheme is used to solve the quasi-linearized 
system of difference equations.  The solution for 
the non-magnetic and Newtonian case is chosen 
as an initial guess and the iterations are continued 
till convergence within prescribed accuracy.  
Finally, the resulting block tridiagonal system 
was solved using generalized Thomas' algorithm. 
 The energy Eq. (9) is a linear second 
order ordinary differential equation with variable 
coefficient, φ(ζ), which is known from the 
solution of the flow Eqs. (7) and (8) and the 
Prandtl number Pr is assumed constant.  Having 
determined the function φ(ζ), Eqs. (9) and (10) 
are solved numerically using central differences 
for the derivatives and Thomas algorithm for the 
solution of the set of discritized equations.  The 
resulting system of equations has to be solved in 
the infinite domain 0<ζ<∞.  A finite domain in 
the ζ-direction can be used instead with ζ chosen 
large enough to ensure that the solutions are not 
affected  by imposing the asymptotic conditions 
at a finite distance.  Grid-independence studies 
show that the computational domain 0<ζ<ζ∞ can 
be divided into intervals each of uniform step size 
which equals 0.02.  This reduces the number of 
points between 0<ζ<ζ∞  without sacrificing 
accuracy.  The value ζ∞=10 was found to be 
adequate for all the ranges of parameters studied 
here. 
 
 
RESULTS AND DISCUSSION 

Figures 1 and 2 present the velocity 
profiles φ(ζ) and φ′(ζ) respectively for various 
values of Ha and A.  The figures show that 
increasing the parameter Ha or A increases both 
φ(ζ) and φ′(ζ).  The figures indicate also that the 
effect of Ha on φ(ζ) and φ′(ζ) is more pronounced 
3
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for smaller values of A (case of injection).  Figure 
1 shows that increasing the magnetic field or the 
injection velocity (decreasing A) decreases the 
velocity boundary layer thickness.   
 Figure 3 presents the temperature profile 
θ(ζ) for various values of A and Ha and Pr=0.5.  
The figure indicates that the thermal boundary 
layer thickness decreases as A or Ha increases.  
This emphasizes the influence of the injected flow 
in the cooling process and the role of the 
magnetic field in controlling the rate of this 
cooling.  The action of fluid injection (A<0) is to 
fill the space immediately adjacent to the disk 
with fluid having nearly the same temperature as 
that of the disk.  As the injection becomes 
stronger, so that does the blanket extend to greater 
distances from the surface.  As shown in Fig. 3, 
these effects are manifested by the progressive 
flattening of the temperature profile adjacent to 
the disk.  Thus, the injected flow forms an 
effective insulating layer, decreasing the heat 
transfer from the disk.  Suction, on the other hand, 
serves the function of bringing large quantities of 
ambient fluid into the immediate neighborhood of 
the disk surface.  As a consequence of the 
increased heat-consuming ability of this augment 
flow, the temperature drops quickly as we 
proceed away from the disk.  The presence of 
fluid at near-ambient temperature close to the 
surface increases the heat transfer.  Also, it is 
clear from the figure that the magnetic field has 
an apparent effect on θ(ζ) for small values of A 
while its influence can be neglected in the case of 
large A.  Figure 4 presents the temperature 
profiles for various values of Pr and A and for 
Ha=1.  The figure brings out clearly the effect of 
the Prandtl number on the thermal boundary layer 
thickness.  Increasing Pr or A decreases the 
thermal boundary layer thickness.  The effect of 
A on θ(ζ) is more pronounced for larger values of 
Pr.  In general, the velocity boundary layer is 
thicker than the thermal boundary layer. 
 
CONCLUSION 

The axisymmetric three-dimensional 
stagnation point flow of a viscous incompressible 
electrically conducting fluid with heat transfer is 
studied.  A numerical solution for the governing 
equations is obtained which allows the 
computation of the flow and heat transfer 
characteristics for various values of the Hartmann 
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number Ha, the suction parameter A, and Prandtl 
number Pr.  The results indicate that increasing 
the parameter Ha or A decreases both the velocity 
and thermal boundary layer thickness.   
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