
Applied Mathematical Sciences, Vol. 5, 2011, no. 22, 1065 - 1072

Sine-Cosine Method for New Coupled ZK System1
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Abstract

The sine-cosine method is used to construct exact solutions of a new coupled ZK

system. Traveling wave solutions are determined. It is shown that the sine-cosine

method provides a powerful mathematical tool for solving a great many nonlinear

partial differential equations in mathematical physics.
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1 Introduction

The KdV equation is a model that governs the one-dimensional propagation of small-

amplitude, weakly dispersive waves [4,5]. The nonlinear term uux in the KdV equation

ut + auux + uxxx = 0, (1.1)

causes the steepening of wave form, whereas the dispersion effect term uxxx in the same

equation makes the wave form spread. The balance between this weak nonlinear steep-

ening and dispersion gives rise to solitons. The KdV equation is therefore incapable of

shock waves [6]. The KdV equation plays an important role in the development of the

soliton theory, where nonlinearity and dispersion dominate, while dissipation effects are

small enough to be neglected in the lowest order approximation [7,8]. Soliton is a local-

ized wave that has an infinite support or a localized wave with exponential wings. Wadati

[9-11] defined soliton as a nonlinear wave that has the following properties:
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(1) A localized wave propagates without change of its properties (shape, velocity, etc.).

(2) Localized waves are stable against mutual collisions and retain their identities.

This means that soliton has the property of a particle.

The KdV equation is considered a spatially one-dimensional model. An extensive

research work has been done in developing higher dimensional models, particularly those

in the (2+1), two spatial and one time, dimensions [12]. The best known two-dimensional

generalizations of the KdV equations are the Kadomtsov-Petviashivilli (KP) equation, and

the Zakharov-Kuznetsov (ZK) equation. The Zakharov-Kuznetsov (ZK) equation given

by

ut + auux + b(uxx + uyy)x = 0, (1.2)

is investigated in [4-6,13-16] by many distinct approaches.

Recently, a new hierarchy of nonlinear evolution equations was derived by Qin [1] by

using a finite-dimensional integrable system. An interesting equation in this hierarchy is

a new coupled KdV equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = βuxxx + α(uv)x + γ(vw)x,

vt = βvxxx + λ(wu)x,

wt = βwxxx + λ(uv)x, (1.3)

where α, β, γ, λ are arbitrary constants. Later, this new coupled equation was investi-

gated by Wu [2], by using matrix transformation and Lax pair. Most recently, in the sense

of the KP equation, Wazwaz [3] has extend the new coupled KdV equation to the new

coupled ZK equation and studied the new coupled KdV equation and the new coupled

ZK equation, by using the Hirota’s bilinear method. The physical phenomena for this

system was investigated thoroughly in [1,2,3].

Following the sense of the ZK Eq. (1.2) we can extend the coupled KdV system (1.3)

to the new coupled ZK system in the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut − α(uv)x − γ(vw)x − β(uxx + uyy)x = 0,

vt − λ(wu)x − β(vxx + vyy)x = 0,

wt − λ(uv)x − β(wxx + wyy)x = 0. (1.4)

The derivation of this system is simply made by following the sense of the ZK equation.

The sine-cosine method will be mainly used to back up our analysis.



Sine-cosine method for new coupled ZK system 1067

2 The method

In what follows, the method will be reviewed briefly. Full details can be found in [17,18]

and the references therein.

For the method, we first use the wave variable ξ = x + y − ct to carry a PDE in three

independent variables

P (u, ut, ux, uy, uxx, uyx, uyy, uxxx, ...) = 0, (2.1)

into an ODE

Q(u, u′, u′′, u′′′, ...) = 0. (2.2)

Eq. (2.2) is then integrated as long as all terms contain derivatives where integration

constants are considered zeros.

The sine-cosine algorithm admits the use of the ansätz

u(x, y, t) =

⎧⎨
⎩

λcosβ(μξ), | μξ |< π
2
,

0, otherwise, (2.3)

or the ansätz

u(x, y, t) =

⎧⎨
⎩

λsinβ(μξ), | μξ |< π,

0, otherwise, (2.4)

where λ, μ, and β are parameters that will be determined.

Substituting (2.3) or (2.4) into the integrated ODE gives a trigonometric equation of

cosβ(μξ) or sinβ(μξ) terms. The parameters β, μ and λ, are then obtained by equating

the exponents of each pair of cosine or sine, and by collecting all coefficients of the same

power in cosβ(μξ) or sinβ(μξ), and set it equal to zero.

3 Using the sine-cosine method

Let

u(μξ) = λ1 cosa1(μξ), v(μξ) = λ2 cosa2(μξ), w(μξ) = λ3 cosa3(μξ). (3.1)
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Substituting (3.1) into (1.4) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2β[−μ2a2
1λ1 cosa1(μξ) + μ2λ1a1(a1 − 1) cosa1−2(μξ)]

= −cλ1 cosa1(μξ) − αλ1λ2 cosa1+a2(μξ) − γλ2λ3 cosa2+a3(μξ),

2β[−μ2a2
2λ2 cosa2(μξ) + μ2λ2a2(a2 − 1) cosa2−2(μξ)]

= −cλ2 cosa2(μξ) − λλ1λ3 cosa1+a3(μξ),

2β[−μ2a2
3λ3 cosa3(μξ) + μ2λ3a3(a3 − 1) cosa3−2(μξ)]

= −cλ3 cosa3(μξ) − λλ1λ2 cosa1+a3(μξ). (3.2)

Eq. (3.2) is satisfied only if the following system of algebraic equations holds:

λγ �= 0, a1 �= 1, a2 �= 1, a3 �= 1, a1 − 2 = a1 + a2 = a2 + a3 = a3 − 2, a2 − 2 = a1 + a3,

2βμ2a2
1 = 2βμ2a2

2 = 2βμ2a2
3 = c, 2βμ2λ1a1(a1 − 1) = −αλ1λ2 − γλ2λ3,

2βμ2λ2a2(a2 − 1) = −λλ1λ3, 2βμ2λ3a3(a3 − 1) = −λλ1λ2. (3.3)

Solving the system (3.3) give

Case 1 a1 = a2 = a3 = −2, μ2 = c
8β

, c = c,

λ1 =
3c

2λ
, λ2 = −λ3 =

3c

4λγ
(α ±

√
α2 + 4λγ). (3.4)

Case 2 a1 = a2 = a3 = −2, μ2 = c
8β

, c = c,

λ1 = − 3c

2λ
, λ2 = λ3 =

3c

4λγ
(α ±

√
α2 + 4λγ). (3.5)

The results (3.4) and (3.5) can be easily obtained if we also use the sine method (2.4).

Combining (3.4) and (3.5) with (2.3) and (2.4), the following triangular periodic solutions

for (1.2):

Case 1

u1(x, y, t) =

⎧⎨
⎩

3c
2λ

sec2
√

c
8β

(x + y − ct), | x + y − ct |<
√

2β
c
π,

0, otherwise,

v1(x, y, t) =

⎧⎨
⎩

3c
4λ

(α ±√
α2 + 4λγ) sec2

√
c

8β
(x + y − ct), | x + y − ct |<

√
2β
c
π,

0, otherwise,

w1(x, y, t) =

⎧⎨
⎩

− 3c
4λ

(α ±√
α2 + 4λγ) sec2

√
c

8β
(x + y − ct), | x + y − ct |<

√
2β
c
π,

0, otherwise,
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cβ > 0, α2 + 4λγ ≥ 0. (3.6)

Case 2

u2(x, y, t) =

⎧⎨
⎩

− 3c
2λ

sec2
√

c
8β

(x + y − ct), | x + y − ct |<
√

2β
c
π,

0, otherwise,

v2(x, y, t) =

⎧⎨
⎩

3c
4λ

(α ±√
α2 + 4λγ) sec2

√
c

8β
(x + y − ct), | x + y − ct |<

√
2β
c
π,

0, otherwise,

w2(x, y, t) =

⎧⎨
⎩

3c
4λ

(α ±√
α2 + 4λγ) sec2

√
c

8β
(x + y − ct), | x + y − ct |<

√
2β
c
π,

0, otherwise,

cβ > 0, α2 + 4λγ ≥ 0. (3.7)

Case 3

u3(x, y, t) =

⎧⎨
⎩

3c
2λ

csc2
√

c
8β

(x + y − ct), | x + y − ct |<
√

2β
c
π,

0, otherwise,

v3(x, y, t) =

⎧⎨
⎩

3c
4λ

(α ±√
α2 + 4λγ) csc2

√
c

8β
(x + y − ct), | x + y − ct |<

√
2β
c
π,

0, otherwise,

w3(x, y, t) =

⎧⎨
⎩

− 3c
4λ

(α ±√
α2 + 4λγ) csc2

√
c

8β
(x + y − ct), | x + y − ct |<

√
2β
c
π,

0, otherwise,

cβ > 0, α2 + 4λγ ≥ 0. (3.8)

Case 4

u(x, y, t) =

⎧⎨
⎩

− 3c
2λ

csc2
√

c
8β

(x + y − ct), | x + y − ct |<
√

2β
c
π,

0, otherwise,

v4(x, y, t) =

⎧⎨
⎩

3c
4λ

(α ±√
α2 + 4λγ) csc2

√
c

8β
(x + y − ct), | x + y − ct |<

√
2β
c
π,

0, otherwise,

w4(x, y, t) =

⎧⎨
⎩

3c
4λ

(α ±√
α2 + 4λγ) csc2

√
c

8β
(x + y − ct), | x + y − ct |<

√
2β
c
π,

0, otherwise,

cβ > 0, α2 + 4λγ ≥ 0. (3.9)

However, for cβ < 0, we obtain the following solitary solutions:
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Case 5
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u5(x, y, t) = 3c
2λ

sech2
√−c

8β
(x + y − ct),

v5(x, y, t) = 3c
4λ

(α ±√
α2 + 4λγ)sech2

√−c
8β

(x + y − ct),

w5(x, y, t) = − 3c
4λ

(α ±√
α2 + 4λγ)sech2

√−c
8β

(x + y − ct), α2 + 4λγ ≥ 0. (3.10)

Case 6
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u6(x, y, t) = − 3c
2λ

sech2
√−c

8β
(x + y − ct),

v6(x, y, t) = 3c
4λ

(α ±√
α2 + 4λγ)sech2

√−c
8β

(x + y − ct),

w6(x, y, t) = 3c
4λ

(α ±√
α2 + 4λγ)sech2

√−c
8β

(x + y − ct), α2 + 4λγ ≥ 0. (3.11)

Case 7
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u7(x, y, t) = 3c
2λ

csch2
√−c

8β
(x + y − ct),

v7(x, y, t) = 3c
4λ

(α ±√
α2 + 4λγ)csc2

√−c
8β

(x + y − ct),

w7(x, y, t) = − 3c
4λ

(α ±√
α2 + 4λγ)csc2

√−c
8β

(x + y − ct), α2 + 4λγ ≥ 0. (3.12)

Case 8
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u8(x, y, t) = − 3c
2λ

csch2
√−c

8β
(x + y − ct),

v8(x, y, t) = 3c
4λ

(α ±√
α2 + 4λγ)csch2

√−c
8β

(x + y − ct),

w8(x, y, t) = 3c
4λ

(α ±√
α2 + 4λγ)sech2

√−c
8β

(x + y − ct), α2 + 4λγ ≥ 0. (3.13)

4 Discussion

In this paper, we used the sine-cosine method to study a new coupled ZK equation.

As a result, we obtained eight kinds of exact solutions including solitary waves and pe-

riodic waves. The method provided solitary wave solutions and triangular periodic wave

solutions. Moreover, the obtained results in this work clearly demonstrate the reliability

of the methods that were used.
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