
Design of Large-Scale Symmetric Multiprocessors (SMPs) using
Parallel Optical Interconnects
Ahmed Louri and Avinash Karanth Kodi

Department of Electrical and Computer Engineering
University of Arizona, Tucson, AZ - 85721, USA

E-mail: louri@ece.arizona.edu

Abstract
In this paper, we address the primary limitation of band-

width demands for address transaction in future cache co-
herent symmetric multiprocessors (SMPs). As a solution, we
propose a scalable optical address sub-network called Sym-
metric Multiprocessor Network (SYMNET). SYMNET, not
only has the ability to pipeline address requests, but also
multiple address requests from different processors can prop-
agate through the address sub-network simultaneously. This
is in contrast to all electrical bus-based SMPs, where only a
single request is broadcast on the physical address bus at any
given point in time. The simultaneous propagation of mul-
tiple address requests in SYMNET increases the available
address bandwidth and lowers the latency of the network,
but the preservation of cache coherence can no longer be
maintained with the usual fast snooping protocols. A mod-
ified snooping coherence protocol, Coherence in SYMNET
(COSYM) is introduced to solve the coherence problem. We
evaluated COSYM with a subset of Splash-2 benchmarks and
compared it with the electrical bus-based MOESI protocol.
Our simulation studies have shown a 5-66% improvement in
execution time for COSYM as compared to MOESI for var-
ious applications. Simulations have also shown that the av-
erage latency for a transaction to complete using COSYM
protocol was 5-78% better than the MOESI protocol. SYM-
NET improves system performance and scalability and that
additional performance gains may be attained with further
improvement in optical device technology.
Keywords
SMPs, optical interconnects, architectures, cache coherence.

1 INTRODUCTION

Symmetric multiprocessors (SMPs) dominate the server
market as the most prevalent form of parallel processing
commercially available. In SMPs, each address request is
broadcast to all processors/memory modules connected to
the network using a shared-bus. This address request is
snooped by all the processors enabling simultaneous up-
date or invalidation of cache blocks, thereby maintaining
the caches coherent with low latency[1]. As the number
of processors grows in the network, contention to acquire
the bus also increases. The evolution of faster processors

further aggravates the situation because the shared bus can-
not run at speeds comparable to that of faster processors.
This is because shared buses running at greater than 100Mhz
face some fundamental problems such as wave reflection,
impedance mismatch and parasitic capacitance which sig-
nificantly limit the speed improvements[2], [3], [4]. There-
fore the bus speed and the coherence overhead limit the rate
at which address requests can be broadcast to all the pro-
cessors/memory modules connected to the network[5], [6].
This in turn, limits the number of processors that can share
the bus, affecting the scalability of SMP systems[6]. This
address rate/bandwidth is the main scaling limit, which can-
not follow the increasing demands of faster and large num-
ber of processors, limiting the scalability of shared-bus based
SMPs.

In order to increase the address bandwidth, several tech-
niques have been introduced. These techniques include split
transaction buses[7], multiple address buses[6], physically
separate address and data sub-networks[6] and moving from
physically shared buses to logical buses which are imple-
mented as point-to-point links. More aggressive solutions
using multiple crossbars have been adopted to increase the
address bandwidth by using a combination of snooping and
directory cache coherence protocols in the FirePlane[8] de-
sign from Sun Microsystems. Directory protocols[9] are
more scalable than snooping protocols, since the requests, re-
sponses (acknowledgements) and data responses need not be
broadcast as in snooping protocols. Snooping protocols are
more popular because they obtain data quickly (without in-
direction) and avoid the overhead of message sequencing as
in directory protocols[10]. However, snooping protocols are
limited to small systems as all transactions must be broad-
cast to all processors. New shared-memory architectures[8],
[10] have moved away from implementing pure-snooping or
pure-directory protocols to hybridization of cache coherence
protocols by implementing both protocols within a single ar-
chitecture model. Using current electrical technology, it re-
mains a big challenge to have a large number of processors
and at the same time implement fast, pure snooping cache-
coherence protocols.

One technology that can provide high communication
bandwidth, low latency and scalability is optical intercon-
nection technology[2], [5]. The recent advances in optical in-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357597729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

terconnect devices and packaging techniques such as multi-
dimensional arrays of vertical cavity surface emitting lasers
(VCSELs), arrays of photodetectors (PDs) and waveguide
optics[11] are making optical interconnects a serious and po-
tentially viable interconnect technology for parallel comput-
ing. The data transmission rate of a VCSEL is approximately
3−5 Gbps. An array of such VCSELs enables address trans-
mission with data rates in excess of 200 − 300 Gbps[12],
[13], [14]. This could satisfy the bandwidth demands of fu-
ture SMPs[5]. Two unique properties of optics, namely uni-
directional propagation and predictable path delays[15] are
exploited in this paper to significantly reduce latency and in-
crease the address bandwidth. Optical pulses can co-exist on
the same optical line without interference if they are suffi-
ciently separated. This enables multiple address requests to
propagate within the same waveguide/fiber simultaneously.
It can be argued that in electronic pipelined address buses,
there could be several address requests in different phases
of address translation such as bus arbitration, address trans-
mission or waiting for the snoop response. Our contention
is that, in electronic SMPs, only a single address request is
transmitted on the physical address bus at any given point
in time. Optically, we can easily have more than one ad-
dress request in propagation simultaneously as discussed be-
fore. Moreover, scalability of optical interconnects depends
on power budget constraints and not on coherence protocols
as in electrical interconnects. These advantages provide us
the impetus to look at optical technology to develop scalable
SMPs with hundreds of processors while still using snooping
cache coherence schemes.

Optical multiprocessors such as opto-electronic buses[15]
photobus[16], U-bus[5], SPEED[17] and Lightning net-
works[18] have been previously reported. Optical networks
mentioned above with the exception of the U-bus employ
serial links to transmit address and data requests/responses
using wavelength division multiplexing (WDM) technology.
Moreover, directory cache coherence protocols are used to
maintain coherency, which increases the latency as discussed
before. U-bus extends the address bandwidth, but a new co-
herence protocol must be designed to maintain consistency
across the caches. The optical solutions so far have not been
able to integrate fast, pure-snooping cache coherence proto-
cols and improve the address bandwidth demands to scale
the architecture significantly.

This paper proposes an integrated solution to solve the ad-
dress bandwidth requirements of large, scalable SMPs and
still use fast snooping protocols to maintain cache coher-
ence with low-latency using optical technology. An address
sub-network, called Optical Symmetric Multiprocessor Net-
work (SYMNET) using parallel optical interconnects is pro-
posed using one-to-many communications. Parallel opti-
cal interconnects provide higher bandwidth-density product
as compared to serial interconnects which provide higher
bandwidth-distance product. SYMNET, not only has the
ability to pipeline address requests, but also multiple address

requests from different processors can propagate through the
address sub-network simultaneously. The simultaneous in-
sertion of multiple address requests complicates cache co-
herence. We have introduced a modified snooping coher-
ence protocol, called Coherence in SYMNET (COSYM) and
verified its correctness using several transient states. The
use of transient states is not a new concept as it has been
widely documented, but the transient states in our archi-
tecture is used to solve the write atomicity along with the
snoop response requirements. COSYM relies completely on
snooping protocols and avoids directory protocols altogether.
SYMNET using the COSYM protocol is compared against
electrical bus based systems using the MOESI protocol with
Splash-2 benchmarks[19].

2 SYMNET:ADDRESS SUB-NETWORK

The proposed optical symmetric multiprocessor network,
SYMNET is shown in figure 1. SYMNET consists of
the processing elements/memory modules and an intercon-
nection network. The interconnection network consists of
two sub-networks; address and data sub-networks. The ad-
dress and data sub-networks are separated, reducing the de-
sign complexity and enabling the design of large scalable
SMPs. Several scalable data sub-networks have been re-
ported[20], therefore this paper focuses only on the address
sub-network. The address sub-network consists of two com-
ponents, a transport part capable of transmitting multiple ad-
dress requests and a control part which ensures collision-
less transmission of these address requests. The transport
part in SYMNET is implemented using bidirectional cou-
plers/splitters and the control part is implemented using an
optical token. In what follows, we describe the SYMNET
address sub-network and then explain how the architecture
is implemented.

The address sub-network follows a two-level hierarchical
architecture design. The first level consists of grouping few
processors on the boards using intra-board interconnections
and the second level consists of interconnecting these boards
by using inter-board interconnections. The inter-board and
intra-board interconnections are constructed using bidirec-
tional Y-splitter/coupler combination. Time division mul-
tiple access (TDMA) protocol is used as a control mecha-
nism to achieve mutual exclusive access to the transport part.
Several TDMA protocols such as pre-allocation-based proto-
cols, reservation-based protocols with pre-allocated reserva-
tion control and token based TDMA protocols have been re-
ported [18], [17]. In this paper, we consider an optical token
based TDMA protocol with pre-allocation to prevent colli-
sion of address requests.

The basic building block of SYMNET address sub-
network is shown in figure 2. The address sub-network is
constructed using bidirectional Y-couplers, which provides
two-way address transmission (see the inset in figure 2). The
up-stream Y-couplers are used for combining the address re-
quests from the processors. After reaching higher levels,

2

Board n

Intra-board
interconnections

P P P P

Scalable Optical Address Subnetwork

Scalable Optical Data Subnetwork

P Processor SYMNET address sub-network

Y-Splitters/Couplers
Optical Data Subnetwork interconnection

Board 1

Optical Token Ring

Inter-board
interconnections

Intra-board
interconnections

OTG

OTG Optical Token Generator

P P P P

Optical Token
Ring

constructed using bi-directional

Figure 1. The proposed optical Symmetric Multiprocessor
Network (SYMNET) in which processors are connected to
two sub-network; address and data sub-networks.

this address request is re-routed through the downstream Y-
splitters which enables broadcasting of the address requests
to all the processors and memory modules. It should be noted
that the broadcasting allows a request to reach all processors
and memory at the same time. The optical token is a single
pulse generated by the token generator. It provides a time ref-
erence for insertion of address requests into the sub-network
by each individual processor. The optical token is tapped by
the processor, which triggers the electronic interface to drive
the address request. The token is delayed by using a delay
element, which provides sufficient time to drive the electron-
ics and also ensures that the address requests from successive
processors are transmitted without collision. The address re-
quests from different processors are pipelined which allows
multiple requests to be propagating through the address sub-
network. Using the properties of optics, namely unidirec-
tional propagation and predictable path delays, it is possible
in SYMNET to transmit multiple address requests simultane-
ously on the same waveguide/fiber. This is in contrast to all
electrical shared-bus solutions where only a single address
request is transmitted on the physical address buses at any
given point in time. These address requests move up the hi-
erarchy and then are re-transmitted back to all processors and
memory simultaneously. This ensures that different requests
from different processors are serialized in the global order of
requests needed to maintain memory consistency.

The optical clock and the token generator are synchro-
nized; thus successive processors receive the token every
clock cycle. As shown in figure 2, in cycle 1 indicated by
square shape, the optical token is received by processor 1,
which transmits an address request. During cycle 2, when
this address from processor 1 is in propagation at the next
level of the address sub-network, the token is received by

Delay Element

VCSEL Array

Photodetector Array

Address Request from Processor 1 at clock i i

Token
Generator

Processor2 Processor3 Memory

Optical Token Ring

Processor1

1

2 3 3

4 4 4

2

3

Address Request from Processor 2 at clock i i

4

4 4

5 5 5 5

Up-stream
Y-coupler

Down-stream
Y-Splitter

Board

Y-Coupler/
Splitter

Y-Coupler/
Splitter

Y-Coupler/
Splitter Bi-directional Y-

coupler/splitter

Up-stream address
signal transmission

Down-stream address
signal transmission

Figure 2. An overview of a single board in SYMNET. The pro-
cessors are interconnected using bi-directional up-stream
and down-stream Y-couplers/splitters.

processor 2, which can transmit an address request. This
is shown in the shape of a diamond in figure 2 . In cycle
3, the address request from processor 1 is being re-routed
using the downward Y-splitter and at the same time the ad-
dress request from processor 2 has moved up the address sub-
network. The optical token is now received by processor 3,
which can transmit an address. In cycle 4, the address request
from processor 1 has reached all the processors, thereby the
address request is broadcast to all the processors simultane-
ously. In cycle 5, the address request from processor 2 has
reached all the processors. Broadcasting the address request
results in simultaneous reception of the request by all the
processors/memory modules enabling snooping of the same
request, after which appropriate coherence action is taken as
dictated by the snooping protocols. A detailed optical im-
plementation of SYMNET using current optical devices has
been submitted elsewhere.

3 CACHE COHERENCE IN SYMNET

Coherence in SYMNET, called COSYM is modified from
the popular MOESI (Modified, Owned, Exclusive, Shared,
Invalid)[21] protocol. In SYMNET, an address request is
issued on a cache-miss. This request is inserted into the ad-
dress sub-network when the optical token is received by the
processor. The address request traverses through several Y-
splitters and couplers, and then becomes visible to all proces-
sors simultaneously. In SYMNET, there is a fixed latency be-
tween the time when the address request is inserted into the
address sub-network and when this request becomes visible
to all processors. At the time of inserting an address request,
there could be potentially other requests propagating through

3

the address sub-network affecting the same cache block for
which the request is issued. COSYM protocol handles all
race conditions that arises due to the simultaneous propa-
gation of multiple address requests using several transient
states. In what follows, we discuss the snoop response re-
quirement, the working of COSYM protocol and how write-
backs are handled.

3.1 Design Space for Snooping Protocols Implemented
Optically

In the electrical networks, the snoop response is imple-
mented using two wired-OR lines, shared and owned[9].
The processors sharing the block assert the shared line if the
block is in the shared state or the owned line if the block is
in any of the following states; E, M, or O. The shared snoop
line could be asserted by more than one processor. In an opti-
cally interconnected multiprocessor system, if more than one
pulse is inserted into the network as snoop response by mul-
tiple processors, collision of snoop responses from several
processors result in erroneous response being received by the
requestor as they operate at a single wavelength. Therefore,
the constraint for the snoop response in our architecture is
that it should be a single response from a single processor.
To achieve this, we maintain an owner for every cache block
shared. The owner is responsible for providing the snoop re-
sponse. In case of a dirty block, the owner is the most recent
processor which wrote to that block. In case of clean block,
there could be several processors sharing the block. In order
to determine a single owner, MOESI protocol is modified
such that if a read miss request is issued to an E block, the
block is upgraded to O, instead of S, thereby becoming the
owner of the block. This does not change any other protocol
constraints. Reads from the processor can still be satisfied
and writes will still require an invalidation transaction to be
issued. In the COSYM protocol, a single snoop response
(HIGH or LOW) signal can determine all the relevant infor-
mation required as follows:
Snoop High: Dirty block exists, memory need not respond
to the requestor and if it was for a read request, the block is
loaded in S state.
Snoop Low: No dirty block exists, memory responds with
the data to the requestor and if it was for a read request the
block is loaded in E state.

This simple strategy of responding with snoop results and
recording of it, can lead to race conditions when simultane-
ous reads to the same block are issued by different proces-
sors. To illustrate this point, let us assume that processors
P1, P2 and P3 share a block B and it is in E, I and I states
in the three caches respectively. Processors P2 and P3 issue
read miss requests to the same block B and P2’s request be-
comes visible before P3’s request. P2 becomes active after
seeing its request and now begins reacting to other incom-
ing requests. When P3’s request becomes visible, there is a
possibility that P2 may respond with the snoop signal. The
reason why P2 may respond is, by default, a read-miss block

is destined to be loaded in E state when the data is received.
But, for this block, the owner, P1 does exist. This may result
in both P1 and P2 responding with snoop response signals
resulting in a potential race condition.

The solution for the race condition in reporting snoop re-
sponse signals is that the processor should monitor all trans-
actions after inserting a read-miss request and not when the
request becomes visible. Therefore, in the above scenario,
processor P3 should monitor transactions after inserting a
read-miss request. When P2’s read-miss request becomes
visible, processor P3 makes note of P2’s request by chang-
ing state such that the block will be loaded to S state upon
data availability. Processor P2 should not respond to P3’s re-
quest if its own snoop response is not received. At the same
time, P2 should change state such that, if there is no snoop
response, the block should be loaded in O state when the data
is received and become the owner for the block. In the above
example, P1 responds to P2’s request by virtue of being in the
E state and changes to O state. If there is no owner, proces-
sor P2 loads the block in O state when the data is available.
For the write-miss case, race conditions do not arise, as the
processor waits only for the address request to be serialized
in the total order and not the snoop response.

We should note that it is very hard to verify a coher-
ence protocol with many stable/transient states as it was in-
dicated in[10]. In this paper, we attempt to provide a brief
description of the verification methodology. The verifica-
tion procedure for validating the coherence scheme is the ta-
ble/graphical approach[10], [9] describing all the state tran-
sitions that occur when the processor issues new requests or
when requests from other processors become visible. Our
network is a completely ordered network, thereby provid-
ing a basis for snooping protocols to be implemented. The
memory controller is also simplified with no dirty bit being
present for every block. A transaction, once inserted into
the network is assured to be completed without the processor
having to retry the transaction. The responsibility of pro-
viding the snoop response rests solely with the owner of the
block in our protocol. In case of a clean block, the owner is
the cache which acquired the block first from the memory.

3.2 Implementation of COSYM Protocol

The cache controller reacts to two kinds of requests, is-
sued either from the processor or from the interconnect. The
address requests issued in SYMNET are read-miss, write-
miss and upgrade/invalidation requests. The cache con-
trollers make transitions based on their current state and cur-
rent events. The transient state diagram, refer to figure 3,
indicates the change in transient states according to differ-
ent events. The events that cause the transitions are address
request being issued from the processor, the request being
inserted into the interconnect, the request becoming visible,
receiving high/low snoop response for the request and finally
receiving the data.

The various transient states in COSYM in case of a read

4

Invalid-
Exclusive
(IE-ads)

Invalid-
Exclusive
(IE-ads)

Invalid-
Shared
(IS-ads)

Invalid-
Exclusive

(IE-ds)

Invalid-
Shared
(IS-ds)

Invalid-
Owned
(IO-ds)

Invalid Shared Owned Exclusive

Invalid-
Invalid
(II-d)

Invalid-
Shared
(IS-d)

Invalid-
Owned
(IO-d)

Invalid-
Exclusive

(IE-d)

Data Received

Address Request Visible

Address Request Inserted

Read-miss Request: Issued

IC: Read Req

IC: Read Req

Snoop High/Low

IC: Write Req

I C : W r i t e
 R e q

I C : W r i t e R e q
I C : W r i t e R e q

I C : W
 r i t e

 R e q

S n
 o o

 p
 L o

 w

S n o o p H i g h S n o o p H i g h

S n
 o o

 p
 L o

 w

IC: Write Req

Read-miss cache block transitions based on events such as Address
request insertion, visibility, snoop responses and data receiving

Read-miss cache block transitions based on Interconnect requests such as
the visibility of read/write miss requests of another processor

Address Request Visible

Data Received Data Received Data Received

Figure 3. COSYM cache coherence protocol described us-
ing state diagram for all the transient states when a read
miss occurs.

miss are shown in figure 3. The states indicated with gray
shade imply that the protocol does not react to incoming ad-
dress requests. The white circles, which are not bold, indi-
cate the states in which the protocol reacts to transactions.
The bold circles indicate the stable states. The text associ-
ated with the arrow from one state to another transient state
indicates the event that caused the transition. Each transient
state is indicated in the following manner[10]: <present
state>-<next state>-<abbreviation-”a/d/s”>. For exam-
ple, when a read miss occurs, the transient state is indicated
as: <Invalid-Exclusive (IE-ads)>. Invalid (I) indicates the
present state, the next state is Exclusive (E) and ”ads” stands
for pending address, data and snoop response. When the ad-
dress request is inserted, the cache is reactive to other re-
quests issued to the same block. When the address request
becomes visible, the state changes to <Invalid-Exclusive
(IE-ds)> which indicates that the data and the snoop sig-
nal is pending. The other state reachable from IE-ads is IS-

ads and IE-ds. IS-ads indicates that the processor has seen a
read-miss request issued by another processor before its own
request. The controller will not react to any other transac-
tion until its own address request becomes visible. When the
address request becomes visible, the transition takes place
to either IE-ds or IS-ds depending on the previous state. If
the block is in IE-ds and a read-miss request from another
processor is visible, the block transits to IO-ds. All write-
miss requests from the interconnect will result in the block
being downgraded to II-d state. When the snoop signal is re-
ceived, depending on whether it is high or low, the next pos-
sible states are IE-d, IO-d, IS-d or II-d. The snoop signal is
not relevant when the state is in IS-<any> as the cache con-
troller will load the block as shared irrespective of the snoop
signal. Finally, when the data is received, the block makes
the transition to E, S, O or I states depending on the previous
transient state. A similar approach is adopted to verify the
write-miss case and is not shown due to page limitation.

3.3 Write-back Handling

The snoop response is always provided by the owner of
the block which informs both the memory whether to re-
spond or not and the requesting processor whether to load the
block in S or E state in case of a read-miss request. When the
owned block itself is replaced, there are potential sharers in
the system. So if a new request is issued, the caches sharing
the block will not respond, memory responds and the issuing
processor loads the block erroneously in the E state. There-
fore there is a need to transfer the ownership of the block
when the owned block is being replaced. The added advan-
tage is that by transferring the ownership, no data transfer is
required back to memory when a dirty block is evicted with
potential sharers in the system. This implies that the mem-
ory will be updated only when there are no sharers in the
network. In order to perform the above requirement, each
cache block, in addition to tag, address bits and cache state,
maintains the next sharer for the block. The next sharer is
maintained only if the block is in either O or S state. If the
block is in E or M state, then it is the only cached, valid copy
in the system and there are no next sharers for the block. To
illustrate this point, let’s consider an example as shown in
figure 4. Let us assume that P0 issues a read-miss request to
block B as shown in figure 4(a). This is the first processor is-
suing the request, the block is loaded in the E state, the data is
supplied by the memory and is indicated as P0(E). P0 has no
next sharer for block B. In figure 4(b), P1 issues a read-miss
request to block B, P0 provides the snoop high signal, sup-
plies the data, sets the next sharer to P1, changes the state of
block B to O and is indicated as P0(O). P2 loads the block in
S state, has no next sharer and is indicated as P1(S). In figure
4(c), P2 issues a read-miss request to block B, P0 provides
the snoop high signal, supplies the data, but does not set the
next sharer. P1 sets the next sharer for the block B to P2. P2
loads the block in S state and has no next sharer. This con-
tinues, as new requests arrive, the last processor sets the next

5

P0 (E)

P0 (O)

P0 (O)

P1 (S)

P1 (S) P2 (S)

Data Path (From Memory for read-miss and memory/processor for write-miss)

(b) P1 issues a read-miss request to block B

(c) P2 issues a read-miss request to block B

(a) P0 issues a read-miss request to a block B

P1 (S) P2 (S)

P1 (O) P2 (S)

P1 (O)

Next Sharer Path

Data and Snoop Path (Processor)
Ordinary Write-back (to Memory)

Transfer Write-back Type 2

Transfer Write-back Type 1

(d) P0 issues a Transfer Write-back Type 1 request

(e) P2 issues a Transfer Write-back Type 2 request

(f) P1 makes an Ordinary Write-back

P0 (O)

Figure 4. Figure 4(a) shows P0 issuing a read-miss request
for block B, loads the block in E state and the data is sup-
plied by memory. This is denoted as P0(E). In figure 4(b,c)
processors P1 and P2 successively issue read-miss re-
quests to the same block B. In figure 4(d,e,f), Transfer write-
back Type 1, Type 2 and ordinary write-backs are shown.

sharer to be the processor that requested the block. A write-
back to S/O block that transfers either the next sharer infor-
mation or the ownership for the block constitutes a transfer
write-back. We, therefore, define three types of write-back;
transfer write-back Type 1, transfer write-back Type 2 and
ordinary write-back.

Transfer Write-back Type 1: When an owned block is
evicted from the cache, it transfers the ownership to the next
sharer of the block, refer to figure 4(d). Here, the owner
processor P0 transfers the ownership to processor P1. This is
implemented by obtaining the optical token and inserting a
transfer write-back type 1 request. This is acknowledged by
processor P1.

Transfer Write-back Type 2: When a shared block is
evicted from the cache, then the cache transfers the next
sharer of the block to the previous sharer shown in figure

4(e). This is implemented by obtaining the token and in-
serting a transfer write-back type 2 request. In figure 4(e),
P2 transfers the information of no sharer to P1. This is ac-
knowledged by processor P1.

Ordinary Write-back: When a M/O block is evicted
from the cache, then the block is written back to the mem-
ory. In figure 4(f), Processor P1 writes the victimized block
B back to memory, since there are no sharers for the block.
This does not cause another transaction to be inserted into
the address sub-network. The evicted block in maintained in
the write-back buffer, until the block is written back. Any
intermediate transaction for this block will be responded by
the controller as it is the owner of the block.

All transfer write-back transactions are acknowledged by
the processor which changes the next sharer. When the trans-
fer write-back transaction is snooped, no address request
transaction is visible and no snoop response signal is needed.
The snoop line can, therefore be used for acknowledgements
when transfer write-back type 1 or 2 is snooped. An ac-
knowledgement need not necessarily mean that the transac-
tion has been completed. Race conditions may arise if si-
multaneous write-back requests for the same cache block is
inserted by successive processors sharing the block. An al-
gorithm has been devised to handle all subtle race conditions
by re-issuing the transfer write-back request and has not been
included here due to page limitations.

4 PERFORMANCE EVALUATION

We have chosen Limes (Linux Memory Simulator)[22],
an event-driven execution simulator to evaluate the perfor-
mance of SYMNET with electrical bus based systems con-
sidering realistic delays for address and data transactions.
Limes models a single level cache and a blocking bus. We
have extended the simulator to implement a two-level cache
with a split transaction bus by merging or delaying conflict-
ing requests for the electrical system. We assume that the
data network and memory are contention-free to maximize
the effects of the limited address bus bandwidth. The electri-
cal SMP considered for comparison is similar in design to the
Gigaplane and StarFire models[6], [23]. We do not compare
SYMNET, a pure-snooping based SMP with the Fireplane[8]
model as the Fireplane architecture follows a hybrid coher-
ence model containing both the snooping and the directory-
based protocols.

In this study, we use eight benchmarks, which cover a
spectrum of memory sharing and access patterns from the
SPLASH-2 suite[19], namely FFT with input data set 64K
points; LU with 256 × 256,16 × 16 block; Ocean with
130 × 130; Radix with 1M integers,1024 radix; , Water-
nsquared with 512 molecules and Cholesky with tk16.0, to
evaluate the performance of COSYM and MOESI protocols.
We varied the number of processors from 2 to 32 to evalu-
ate the performance of SYMNET. Each node of the simu-
lated network contains 1 Ghz processor and has two cache
levels, namely L1 and L2. The L1 cache is a 16 KByte

6

direct-mapped, with 32 byte block size and a write-through
policy. The L2 cache is 64 KByte, 4-way set-associative
with 32 byte block size and a write-back policy. Both the
caches implement an LRU replacement policy. The access
time to L2 cache is 4 processor clock cycles. Throughout
this evaluation, we have considered processor clock cycles
(pcc) as the base time unit for all measurements. All first-
level cache read/write hits are assumed to take one processor
clock cycle(pcc). The processor and the cache parameters
are kept constant for both electrical and optical networks.

4.1 Electrical and Optical Simulation Parameters

In electrical SMPs, the address bandwidth is affected by
several factors such as the bus speed, coherence protocol
and the number of address buses. In electrical bus based
SMPs[6], [7], [8], the processor clock is always a fraction
of the system clock rate. For example, in the StarFire model,
UltraSparc3 is clocked at 250Mhz, where as the system bus
is clocked at 83.3MHz[6]. This implies that the system
clock is around 1/3rd processor clock. With a 1GHz sim-
ulated processor, and an improved system clock, we assume
that the system clock runs at 1/6th the processor clock. In
the Gigaplane[23] architecture, it takes 2 cycles to broadcast
a single address request. With the above assumption, it takes
12pcc to broadcast a single address request in our simulated
address bus. This single address request per cycle (RPC)
is denoted in all results as (RPC = 1). In the StarFire[6]
architecture, processors snoop up to 2 address requests per
cycle using 4 address buses. This case is simulated where
each processor receives 2 address requests per cycle and is
accomplished by reducing the number of cycles required to
broadcast an address request to 6pcc. This two address re-
quests per cycle, is denoted in all results as (RPC = 2).
Data network is contention-free and is implemented using
a crossbar for both RPC = 1 and RPC = 2 cases. The
number of cycles required for data transfer is fixed at 2 elec-
trical network cycles irrespective of whether the memory or
some cache responds as in StarFire[6] design. This results in
24pcc for data transfer in our simulated network for both the
simulated electrical cases.

In SYMNET, the optical token is implemented such that
the optical signal, generated by a laser source is split into two
parts. One part of the optical signal is detected by the address
port controller and the other part is delayed at the delay el-
ement implemented using a fiber loop. Now, we calculate
the delay, D in transmitting an address request into the ad-
dress sub-network by the address port controller. This delay
should account for the signal detection, opto-electronic con-
version and the rise time of address pulses driven by VCSEL
arrays. The delay D, is given by:

D =
Sp

vc
+ 2.Oe + Gd +

b

m.Vd
(1)

where Sp is the distance of separation between the delay el-
ement at processor n and the detector at processor n + 1, vc

is the velocity of light in fibers, Oe is the latency of opto-
electronic conversion, Gd is the gate delay faced by the to-
ken at the address port controller, m is the number of parallel
links, b is the number of address bits (including one bit for
snoop response) and Vd is the VCSEL data rate. O-E con-
version takes place when the optical signal is detected by
the address port controller and E-O conversion takes place
when the address bits encoded as optical pulses are driven
by the VCSEL array. It is assumed that a single gate de-
lay is seen by the address port controller when it receives
the token. Assuming that Sp = 4cm, vc = 2 × 108, Oe =
75psec, Gd = 0.2nsec, Vd = 3Gbps and with m = b, D is es-
timated to be 0.88nsec. The optical token should be seen by
the next processor with a delay greater than 0.88nsec to pre-
vent collision of address requests. Therefore, the other part
of the optical signal at the delay element should be delayed
by more than 0.88nsec. Adding guard time to D, we assume
the delay to be 1nsec. Considering 1nsec as the required
delay, we can estimate the length of the delay element to be
20cm (= (2 × 108) × 1nsec). The delay element is imple-
mented by using a fiber loop 20cms in length. Therefore, the
time taken by each processor to insert its address request is
estimated to be 1nsec or 1pcc. The delay encountered by a
address transaction to be visible is equivalent to the number
of stages in the address sub-network. This is assumed to be
twice the logarithm of the number of processors connected
in the address sub-network. The snoop response also takes
similar number of cycles after the address is snooped. The
data network considered for SYMNET is the optical cross-
bar[20] network. The data sub-network for SYMNET is also
assumed to be conflict-free. The delay in data transfer for
the optical network depends on the data rate of current multi-
wavelength VCSEL arrays. At 5 Gbps VCSEL data rate, to
transmit 32 byte block, it takes around 52nsec (= (32 × 8) /
(5 × 109)) and this corresponds to 52pcc.

4.2 Simulation Results

We determined the normalized execution time and the av-
erage delay for each read/write miss from the L2 cache for
SYMNET and the electrical bus-based SMP varying from 2
to 32 processors.

Normalized Execution Time: Figure 5 shows the nor-
malized execution time for varying number of processors for
different applications. Normalized execution time is calcu-
lated by considering the maximum number of simulated cy-
cles for a given application and given number of processors
and dividing the simulated cycles for the other cases with
the maximum number of cycles. For FFT, COSYM shows
25% improvement over MOESI protocol for RPC = 1 and
8% improvement for RPC = 2 running for 32 processors.
For the LU application, the improvement in execution time
is around 30-35% for both the cases. The best improvement
is visible for Ocean application, where the improvement is
over 62% for RPC = 1 and over 52% for RPC = 2 run-
ning for 32 processors. The improvement in performance for

7

radix is 38% for RPC = 1 for 32 processors. Cholesky
and Water-nsquared applications show lower improvement
in performance for COSYM protocol, with cholesky show-
ing an improvement of 5% for RPC = 1 and water show-
ing an improvement of 16-19% for both the cases. Cholesky
showed higher transfer write-backs for 32 processors which
increased the write-back time. This affected the execution
time and showed better performance for MOESI protocol
with RPC = 2 than COSYM protocol by almost 5%.

FFT

0
0.2
0.4
0.6
0.8

1
1.2

2 4 8 16 32
Number of Processors

N
 o r

 m
 a l

 i z
 e d

 E
 x e

 c u
 t i

 o n
 T

 i m
 e

LU

0
0.2
0.4
0.6
0.8

1
1.2

2 4 8 16 32
Number of Processors

N
 o r

 m
 a l

 i z
 e d

 E
 x e

 c u
 t i

o n
 T

 i m
 e

RADIX

0
0.2
0.4
0.6
0.8

1
1.2

2 4 8 16 32
Number of Processors N

 o r
 m

 a l
 i z

 e d
 E

 x
e c

 u t
 i o

 n
 T

 i m
 e

OCEAN

0
0.2
0.4
0.6
0.8

1
1.2

2 4 8 16 32
Number of Processors N

 o r
 m

 a l
 i z

 e d
 E

 x e
 c u

 t i
o n

 T
 i m

 e

WATER-NSQUARED

0
0.2
0.4
0.6
0.8

1
1.2

2 4 8 16 32
Number of Processors N

 o r
 m

 a l
 i z

 e d
 E

 x e
 c u

 t i
o n

 T
 i m

 e

CHOLESKY

0.75
0.8

0.85
0.9

0.95
1

1.05

2 4 8 16 32
Number of Processors N

 o r
 m

 a l
 i z

 e d
 E

 x e
 c u

 t i
 o n

 T
 i m

 e

SYMNET implementing the COSYM protocol

Electrical Bus implementing the MOESI protocol with RPC = 1

Electrical Bus implementing the MOESI protocol with RPC = 2

Figure 5. Normalized Execution time for processors varying
from 2 to 32 for various Splash-2 benchmarks. The execu-
tion time for the electrical bus implementing the MOESI pro-
tocol with a single address request per cycle (RPC = 1),
two address requests per cycle (RPC = 2) and the SYM-
NET address sub-network implementing COSYM protocol is
shown. Normalized execution time is calculated for a given
number of processors and a given application by consider-
ing the maximum number of simulated cycles and dividing
the remaining two cases with the maximum value.

Average Latency: Figure 6 shows the normalized aver-
age delay for a transaction to be completed for both the elec-
trical and the optical case. The delay in completing a trans-
action was calculated from the time the read/write miss was
received by the L2 cache to the time the data was received
by the L2 cache for each processor. The ratio of the total
number of transactions to the total time consumed for all pro-
cessors was used to determine the average delay. This delay
was then normalized by considering the maximum average
delay for a given application and then dividing all the re-
maining cases with that value. The average delay was much
higher for the electrical case for all applications which in-

creased linearly with the number of processors. The delay
for RPC = 1 case was higher than RPC = 2 case as ex-
pected. Most applications showed lower delay for MOESI
protocol for smaller configurations. As the number of pro-
cessors increased, COSYM outperformed both the electrical
cases. This is directly attributed to the saturation of the elec-
trical bus. As the number of processors increases in the inter-
connect, the delay to acquire the bus also increases, thereby
increasing the latency for a transaction to complete. The re-
duction in latency for FFT using the COSYM protocol is as
high as 76% for RPC = 1 and 57% for RPC = 2. For LU,
the reduction in latency for COSYM protocol ranged from
51% for RPC = 1 to 25% for RPC = 2. For Cholesky ap-
plication, the latency for COSYM was a fraction (2%) better
than MOESI with RPC = 2 condition for the same reason
explained above.

FFT

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40
Number of Processors

N
 o r

 m
 a l

 i z
 e d

 A
 v e

 r a
 g e

 L
 a t

 e n
 c y

LU

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40
Number of Processors

N
 o r

 m
 a l

 i z
 e d

 A
 v e

 r a
 g e

 L
 a t

 e n
 c y

RADIX

0

0.2

0.4
0.6

0.8

1

1.2

0 10 20 30 40
Number of Processors

N
 o r

 m
 a l

 i z
 e d

 A
 v e

 r a
 g e

 L
 a t

 e n
 c y

OCEAN

0

0.2

0.4
0.6
0.8

1

1.2

0 10 20 30 40
Number of Processors

N
 o r

 m
 a l

 i z
 e d

 A
 v e

 r a
 g e

 L
 a t

 e n
 c y

SYMNET implementing the COSYM protocol
Electrical Bus implementing the MOESI protocol with RPC = 2
Electrical Bus implementing the MOESI protocol with RPC = 1

WATER-NSQUARED

0

0.2

0.4
0.6

0.8
1

1.2

0 10 20 30 40
Number of Processors N

 o r
 m

 a
 l i

z e
 d

 A
 v e

 r a
 g

e
 L

a t
 e n

 c
y

CHOLESKY

0
0.2
0.4
0.6
0.8

1
1.2

0 10 20 30 40
Number of Processors N

 o r
 m

 a l
 i z

 e d
 A

 v e
 r a

 g
e

 L
 a t

 e n
 c y

SYMNET
SYMNET

SYMNET SYMNET

SYMNET

SYMNET

Figure 6. Normalized Average latency of a transaction for
processors varying from 2 to 32 for various Splash-2 bench-
marks. The average latency for the electrical bus imple-
menting the MOESI protocol with a single address request
per cycle (RPC = 1), two address requests per cycle
(RPC = 2) and the SYMNET address sub-network imple-
menting COSYM protocol is shown. Normalized average la-
tency is calculated by considering the maximum value of
average latency for a given application and dividing all the
remaining cases with the maximum value.

In COSYM protocol, transfer write-backs use the ad-
dress sub-network to insert write-back transactions. This is
in contrast to the electrical case which uses the data sub-
network for write-backs. Transfer write-backs, therefore re-
quire lesser number of cycles to complete in COSYM. The

8

overhead in the COSYM protocol is the transfer write-back
Type 2 where, even a shared block evicted from the cache
needs to inform the previous processor of the change in
the next sharer. Our simulation studies have shown that in
COSYM, the write-back time is dominated by the time re-
quired to evict the M/O block from the cache. The write-
back latency in COSYM exceeds MOESI, and this is due to
the fact that the write-back time for COSYM is almost twice
as that for MOESI protocol. The average latency for a cache-
miss transaction to complete is lower for the COSYM proto-
col. This is attributed to the SYMNET architecture which
pipelines multiple address requests from different proces-
sors. The improvement in the average latency for cache-
miss request offsets the increase in write-back latency in
COSYM protocol. This results in improved execution time
for COSYM as compared to electrical MOESI protocol as
our simulation studies have shown.

When a transfer write-back transaction does not com-
plete due to race conditions, the write-back transaction is re-
issued. Our simulation studies for various applications and
varying processors have shown that re-issuing of transactions
is negligible compared to the total number of transfer write-
backs that take place. For FFT, running for 32 processors, the
number of re-issued transactions is only 0.002% of the to-
tal number of requests inserted into the address sub-network.
Hence, the race condition which cause the write-back request
to be re-inserted occurs for a very small percentage of write-
backs.

The theoretical power budget analysis has shown that this
architecture can scale up to 128 processors using current op-
tical device technology, while still using fast snooping-based
cache coherence protocols. This is significant improvement
considering the largest pure-snoopy electrical SMP can sup-
port 64 processors[6]. The simulation results clearly indicate
that the proposed optical SYMNET with COSYM as the co-
herence protocol provide a better support for scalable SMPs
than their electrical counterparts.

5 CONLCUSION

In this paper, we addressed the primary limitation of ad-
dress bandwidth in SMPs. As a solution, we propose a par-
allel optical interconnect based Symmetric Multiprocessor
Network (SYMNET) and a modified cache coherence proto-
col called COSYM. SYMNET improves execution time and
reduces the latency by pipelining multiple address requests
from different processors simultaneously. Using the modi-
fied Limes simulator, we simulated SYMNET implementing
the COSYM protocol from 2 to 32 processors. The improve-
ment in execution time was seen for all applications ranging
from 5% for cholesky to 66% for ocean. The average la-
tency for the transaction also decreased by as much as 78%
for various applications of the Splash-2 benchmarks.

Our objective to implement the snoop response signals
optically resulted in handling write-backs differently with
ownership transfer. In SYMNET, the overhead is to main-

tain the next sharer for every shared cache block. This con-
cept has been previously introduced in multicast snooping
protocol for mask prediction. Transfer write-back Type 1 im-
proves system performance as the faster address sub-network
is used instead of the slower data crossbar. Transfer write-
back Type 2 affects system performance as even a block in
S state needs to inform the change in sharing information.
Techniques such as speculating the next sharer or random
choosing a processor as the next sharer are currently being
studied to reduce the number of Transfer write-back Type 2.
The improvement in latency for an address transaction off-
sets the write-back latency, resulting in better performance
for the COSYM protocol. The simulation results provide en-
couragement that SYMNET has the potential to match the
bandwidth needs of future SMPs. Parallel optical intercon-
nects and integrated waveguide technology makes SYMNET
a viable solution for SMPs with distinct cost and perfor-
mance advantages over traditional electronics. Greater im-
provements in terms of bandwidth, latency and scalability
can be expected with further improvement in optical device
technology.

Acknowledgement

This research is sponsored by NSF grant no. CCR-0000518.
We would like to thank Prof.D.Litaize and Prof.J.Collet for
first pointing out the limitations of SMPs in a quantitative
manner, and for numerous comments and suggestions on this
work.

References

[1] James R. Goodman, “Using cache memory to re-
duce processor-memory traffic,” in Proceedings of the
10th International Symposium on Computer Architec-
ture, June 1983, pp. 124–131.

[2] David A.B.Miller, “Rationale and challenges for opti-
cal interconnects to electronic chips,” Proceedings of
the IEEE, vol. 88, pp. 728–749, June 2000.

[3] Fong Pong, Michel Dubois, and Ken Lee, “Design and
performance of smps with asynchronous caches,” Tech.
Rep. HPL-1999-149, Hewlett Packard, HP Laborato-
ries Palo Alto, November 1999.

[4] H. S. Stone and J. Cocke, “Computer architecture in
the 1990s,” IEEE Computers, vol. 24, no. 9, pp. 30–38,
Jan-Feb 1991.

[5] Jacques Henri Collet, Wissam Hlayhel, and Daniel
Litaize, “Parallel optical interconnects may reduce the
communication bottleneck in symmetric multiproces-
sors,” Applied Optics, vol. 40, pp. 3371–3378, 2001.

[6] Alan Charlesworth, “Starfire: Extending the smp enve-
lope,” IEEE Micro, vol. 18, no. 1, pp. 39–49, Jan-Feb
1998.

9

[7] Mike Galles and Eric Williams, “Performance opti-
mizations, implementation and verification of the sgi
challenge multiprocessor,” in Proceedings of 27th An-
nual Hawaii International Conference on Systems Sci-
ences, 1996, pp. 134–143.

[8] Alan Charlesworth, “The sun fireplane smp intercon-
nect in the sunfire 3800-6800,” in Hot Interconnects 9,
August 2001, pp. 37–42.

[9] David E. Culler, Jaswinder Pal Singh, and Anoop
Gupta, Parallel Computer Architecture: A Hard-
ware/Software Approach, Morgan Kaufmann, San
Fransisco, 1999.

[10] Daniel J. Sorin, Manoj Plakal, Anne E. Condon,
Mark D. Hill, Milo M. Martin, and David A. Wood,
“Specifying and verifying a broadcast and a multi-
cast snooping cache coherence protocol,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 13,
2002.

[11] Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, P. A. Pia-
cente, J. Rowlette, J. Stack, M. Kader-Kallen, Yue Liu,
A. Peczalski, A. Nahata, and J. Yardley, “Plastic vcsel
array packaging and high density polymer waveguides
for board and backplane optical interconnect,” in Pro-
ceedings of the Electronic Components and Technology
Conference, 1998, pp. 999–1005.

[12] A.V.Krishnamoorthy, K.W.Goossen, L.M.F.Chirovsky,
R.G.Rozier, P.Chandramani, S.P.Hui, J.Lopata,
J.A.Walker, and L.A.D’Asaro, “16 x 16 vcsel array
flip-chip bonded to cmos vlsi circuit,” IEEE Photonics
Technology Letters, vol. 12, no. 8, pp. 1073–1075,
August 2000.

[13] Yue Liu, “Heterogeneous integration of oe arrays with
si electronics and micro-optics,” in Proceedings of the
Electronic Components and Technology Conference,
2001, pp. 864–869.

[14] Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, J. P.
Bristow, Yue Liu, A. Peczalski, J. Rowlette, A. Plotts,
J. Stack, M. Kader-Kallen, J. Yardley, L. Eldada, R. M.
Osgood, R. Scarmozzino, S. H. Lee, V. Ozgus, and
S. Patra, “Polymer optical interconnect technology
(point)-optoelectronic packaging and interconnect for
board and backplane applications,” in Proceedings
of the Electronic Components and Technology Confer-
ence, 1996, pp. 308–315.

[15] Donald M. Chiarulli, Stephen P.Levitan, Rami G.
Melhem, Manoj Bidnurkar, Robert Ditmore, Gregory
Gravenstreter, Zicheng Guo, Chungming Qiao, Majd F.
Sakr, and James P. Teza, “Optoelectronic buses for
high-performance computing,” in Proceedings of the
IEEE, 1994, pp. 1701–1710.

[16] Paul Lukowicz, “The photobus smart pixel intercon-
nection system for symmetric multiprocessing using
workstation clusters,” in 6th International Conference
on Parallel Interconnects, 1999, pp. 106–113.

[17] Joon-Ho Ha and T.M.Pinkston, “The speed cache co-
herence for an optical multi-access interconnect archi-
tecture,” in Proceedings of the 2nd International Con-
ference on Massively Parallel Processing Using Opti-
cal Interconnections, 1995, pp. 98–107.

[18] Patrick Dowd, James Perreault, John Chu, David C.
Hoffmeister, Ron Minnich, Dan Burns, Frank Hady,
Y. J. Chen, and M. Dagenais, “Lighnting network and
systems architecture,” Journal of Lightwave Technol-
ogy, vol. 14, pp. 1371–1387, 1996.

[19] C.S.Woo, M.Ohara, E.Torrie, J.P.Singh, and A.Gupta,
“The splash-2 programs: Characterization and method-
ological considerations,” in Proceedings of the 22nd
Annual International Symposium on Computer Archi-
tecture, June 1995, pp. 24–37.

[20] Brian Webb and Ahmed Louri, “A class of highly scal-
able optical crossbar-connected interconnection net-
works (socns) for parallel computing systems,” IEEE
Transactions on Parallel and Distributed Systems, vol.
11, no. 1, pp. 444–458, May 2000.

[21] Sweazey P. and A.J.Smith, “A class of compatible
cache consistency protocols and their support by the
ieee futurebus,” in Proceedings of the 13th Annual In-
ternational Symposium on Computer Architecture, May
1986, pp. 414–423.

[22] Igor Ikodinovic, Aleksander Milenkovic, Veljko Mi-
lutinovic, and Davor Magdic, “Limes: A multipro-
cessor simulation environment for pc platforms,” in
PPAM, September 1999.

[23] Ashok Singhal, David Broniarczyk, Fred Cerauskis,
Jeff Price, Leo Yuan, Chris Cheng, Drew Doblar, Steve
Fosth, Nalini Agarwal, Kenneth Harvey, Erik Hager-
sten, and Bjorn Liencres, “Gigaplane: A high perfor-
mance bus for large smps,” in Proceedings Hot Inter-
connects 4, 1996, pp. 97–112.

10

