

 Developing Agent Based Applications

with JADE

F. Bergenti, A. Poggi, G. Rimassa, P. Turci and M. Tomaiuolo

JADE (Java Agent Development Framework) is an “open source”

FIPA-compliant software environment to build agent systems.

JADE offers an agent middleware to implement efficient FIPA2000

compliant multi-agent systems and supports their development

through the availability of a predefined programmable agent model,

an ontology development support, and a set of management and

testing tools. This chapter describes JADE and its use in three in-

ternational projects to develop applications in the fields of: corpo-

rate memory management, integration of fixed and mobile net-

works, and integration of Web services.

1 Introduction

Agents are one of the most promising information technologies;

however, agent-based technologies cannot keep their promises, and

will not become widespread, until there are standards to support

agent interoperability and adequate environments for the develop-

ment of agent systems.

In these last years, there is a lot of activity concerning the standard-

ization of agent-based technologies, where in the past KSE (Patil et

al., 1992), OMG (Milojicic et al., 1998) and then FIPA (FIPA,

1997) led the activity.

The Foundation for Intelligent Physical Agents (FIPA) is an inter-

national non-profit association of companies and organizations

sharing the effort to produce specifications for generic agent tech-

nologies. FIPA does not promote a technology for just a single ap-

plication domain but a set of general technologies for different ap-

plication areas that developers can integrate to make complex sys-

tems with a high degree of interoperability. The standardisation

work of FIPA is centred on the definition of the Agent Communi-

cation Language (ACL), but also specifies the key agents necessary

for the management of an agent system and the shared ontology to

be used for the interaction between two systems.

In this paper, we present JADE (Java Agent DEvelopment frame-

work), one of most known and used software framework to write

agent applications in compliance with the last FIPA specifications

for interoperable intelligent multi-agent systems. The next section

describes the main features of JADE. Sections three, four and five

respectively present three projects, LEAP, CoMMA and

Agenticities funded by European Commission. LEAP addressed the

need for open infrastructures and services that support dynamic,

mobile enterprises and extended JADE to support mobile and wire-

less applications. CoMMA realized a multi-agent system to help

users in the management of an organization corporate memory and

in particular to facilitate the creation, dissemination, transmission

and reuse of knowledge in the organization. Agentcities created an

on-line, distributed testbed to explore and validate the potential of

agent technology for future dynamic service environments. Finally

the last section summarizes the advantages of using JADE to de-

velop agent applications, its limits and gives a short comparison

with other similar software frameworks.

2 JADE

JADE (Java Agent DEvelopment framework) is a software frame-

work to aid the development of agent applications in compliance

with the FIPA specifications for interoperable intelligent multi-

agent systems. JADE is an “open source” project, and the complete

system can be downloaded from JADE Home Page (JADE, 1999;

Bellifemine et al, 2001).

The JADE system can be described from two different points of

view. On the one hand, JADE is a middleware for FIPA-compliant

Multi Agent Systems, supporting application agents whenever they

need to exploit some feature covered by the FIPA standard specifi-

cation (message passing, agent life-cycle management, etc.). On the

other hand, JADE is a Java framework for developing FIPA-

compliant agent applications, making FIPA standard assets availa-

ble to the programmer through object oriented abstractions.

2.1 Platform architecture

JADE agent platform architecture tries to offer flexible and effi-

cient messaging, transparently choosing the best transport available

and leveraging state-of-the-art distributed object technology em-

bedded within the Java runtime environment. While appearing as a

single entity to the outside world, a JADE agent platform is itself a

distributed system, since it can be split over several hosts with one

of them acting as a front end where AMS and DF agents are placed.

A JADE system comprises one or more Agent Containers, each liv-

ing in a separate Java Virtual Machine and delivering run-time en-

vironment support to some JADE agents. The JADE middleware

tries to provide efficient and flexible messaging services to user

applications. An agent platform must contain a component called

Agent Communication Channel (ACC for short), whose task is to

transparently provide a Message Transport Service (MTS for short),

relying upon one or more FIPA compliant Message Transport Pro-

tocols (MTPs), e.g., IIOP, HTTP and WAP protocols.

Figure 1. Jade agent platform architecture.

JADE distinguishes between inter-platform messaging (the sender

and the receiver agents live on different platforms) and intra-

platform messaging (the two interacting agents are within the same

platform). While inter-platform messaging has to comply with

FIPA specifications, intra-platform message delivery is strictly a

JADE issue, so a more convenient proprietary transport can be ex-

ploited. JADE usually uses Java RMI for intra-platform communi-

cations, but support different transport protocols for intra-platform

messaging to allow the distribution of the platform on devices

providing different transport protocols.

Since JADE is a distributed agent platform, the ACC component is

split in different parts, running on the different agent containers that

make up the platform. The major features of JADE ACC are: i)

multiple MTPs, deployed as plug-ins on multiple containers; ii) one

Network protocol stack

JRE 1.2 JRE 1.2 JRE 1.2

Jade Front-end Jade Agent Container Jade Agent Container

Jade distributed Agent Platform

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

A
p
p
li

ca
ti

o
n
 A

g
en

t

Host 1 Host 2 Host 3

hop message routing for outgoing and incoming messages, and iii)

protocol independent address caching.

The general JADE messaging framework allows to deploy new

transport ports during normal platform operation: the JADE admin-

istrator can add a new protocol to any agent container, simply log-

ging in the management GUI and providing the Java class that im-

plements the MTP.

An agent platform can now have any number of addresses, scat-

tered around different hosts. Message routing support is needed to

manage this rather general topology; the ACC provides a routing

service that is guaranteed to require at most one hop. When a mes-

sage reaches the platform through one of the available external

communication ports, the ACC looks up the receiver agent ID to

retrieve the agent container where it must dispatch the incoming

ACL message. If the agent lives within the same container, the

ACC uses an optimized local call; otherwise it relies on Java RMI.

When an agent wants to send a message to another, living on a dif-

ferent platform, it asks its local ACC for delivery service. The ACC

reads the address list of the agent ID of the message recipient and

tries all the addresses until one of them succeeds; for a specific ad-

dress, the ACC discovers which MTP has to be used (FIPA ad-

dresses are URLs, so they contain a part that identifies the protocol)

and checks to see whether that MTP is installed on the current

agent container. If so, the locally available MTP is used, otherwise

the ACC routes the message to a suitable container using a table

that stores the deployment location of each MTP in the agent plat-

form.

The JADE messaging subsystem also has an address caching fea-

ture that allows direct communication between agents, without un-

necessary table lookups: intra-platform addresses and standard

FIPA addresses are cached on each container exactly in the same

way: on cache hits, the messaging subsystem does not even need to

know whether the receiver is local, intra-platform or inter-platform.

The cache is updated according to an optimistic attitude (i.e., if a

cached address becomes stale the message delivery operation fails

with an exception and the cached item is refreshed) and the cache

replacement policy is the usual Least Recently Used one.

The JADE ACC can also be deployed on its own, without a com-

plete agent container. This is meant to enable users to build and de-

ploy agent level gateways and firewalls: a standalone ACC lives

within a JVM that can route and filter ACL messages but cannot

host FIPA agents.

2.2 Agent architecture

An agent is defined as a collection of behaviours that are scheduled

and executed to carry on agent duties. Behaviours represent logical

threads of a software agent implementation. According to Active

Object design pattern, every JADE agent runs in its own Java

thread, satisfying autonomy property; instead, to limit the threads

required to run an agent platform, all agent behaviours are executed

cooperatively within a single Java thread. So, JADE uses a thread-

per-agent execution model with cooperative intra-agent scheduling.

JADE agents schedule their behaviour with a “cooperative schedul-

ing on top of the stack”, in which all behaviours are run from a sin-

gle stack frame (on top of the stack) and a behaviour runs until it

returns from its main function and cannot be preempted by other

behaviours (cooperative scheduling).

JADE agent architecture model is an effort to provide fine-grained

parallelism on coarser grained hardware. A likewise, stack based

execution model is followed by Illinois Concert runtime system

(Karamcheti et al., 1996) for parallel object oriented languages.

Concert executes concurrent method calls optimistically on the

stack, reverting to real thread spawning only when the method is

about to block, saving the context for the current call only when

forced to.

Figure 2. JADE agent architecture.

JADE thread-per-agent model can deal alone with the most com-

mon situations involving only agents: this is because every JADE

agent owns a single message queue from which ACL messages are

retrieved. Having multiple threads but a single mailbox would

bring no benefit in message dispatching. On the other hand, when

writing agent wrappers for non-agent software, there can be many

interesting events from the environment beyond ACL message arri-

vals. Therefore, application developers are free to choose whatever

concurrency model they feel is needed for their particular wrapper

agent; ordinary Java threading is still possible from within an agent

behaviour.

The developer implementing an agent must extend Agent class and

implement agent-specific tasks by writing one or more Behaviour

subclasses. User defined agents inherit from their superclass the

capability of registering and deregistering with their platform and a

basic set of methods (e.g. send and receive ACL messages, use

private inbox of

ACL messages

scheduler of

behaviours

p
at

te
rn

 m
at

ch
in

g

ti
m

eo
u
t-

b
as

ed

b
lo

ck
in

g
-b

as
ed

p
o
ll

in
g
-b

as
ed

life-cycle

manager

a
cc

es
s

m
o
d
e

application

dependent

agent resources

beliefs

capabi-

lities

b
eh

av
io

u
r

1

b
eh

av
io

u
r

2

b
eh

av
io

u
r

n

…
active

agent behaviours

(i.e. agent intentions)

standard interaction protocols, register with several domains).

Moreover, user agents inherit from their Agent superclass some

methods to manage the agent behaviours.

JADE contains ready made behaviours for the most common tasks

in agent programming, such as sending and receiving messages and

structuring complex tasks as aggregations of simpler ones. JADE

recursive aggregation of behaviour objects resembles the technique

used for graphical user interfaces, where every interface widget can

be a leaf of a tree whose intermediate nodes are special container

widgets, with rendering and children management features. An im-

portant distinction, however, exists: JADE behaviours reify execu-

tion tasks, so task scheduling and suspension are to be considered,

too.

Thinking in terms of software patterns, if Composite is the main

structural pattern used for JADE behaviours, on the behavioural

side we have Chain of Responsibility: agent scheduling directly af-

fects only top-level nodes of the behaviour tree, but every compo-

site behaviour is responsible for its children scheduling within its

time frame.

2.3 Ontology Management

Complex knowledge management domain leads to complex inter-

actions between agents; in order to support this complexity it is

necessary to have a good support for content language and ontolo-

gy. JADE offers a general support for ontologies based on a model

of the content language, which is able to describe:

i) object, construct that represents an identifiable entity;

this is mainly important to realize a typed knowledge

base;

ii) proposition, e.g. the content of an “inform” communica-

tive-act is a predicate (a subtype of proposition);

iii) action, e.g. in the “request” communicative-act, tries to

express an activity that can be carried out by an object;

iv) IRE (Identifying Reference Expression) , e.g. in the

“query-ref” communicative-act.

This model is composed of:

i) An abstract content language; ontology independent ab-

stract model, that is a generic model of the concepts that

any content language must be able to express (e.g.

schemas representation, like predicate, action, etc.);

ii) a concrete content language (instance of the abstract

content language with possible different logic frame-

works, like modal logic, deontic logic, etc.).

The whole ontology support framework is characterized by four hot

spots: it is possible to have different content language instances

(e.g., deontic logic content language, modal logic content language,

etc.), different content language concrete syntaxes (e.g. RDFS, SL-

expression), different ontologies, and different ontology concrete

representations (RDFS, SL-expression).

2.4 Management and Testing Tools

JADE also offers some tools to manage the running agent platform

and to monitor and debug agent societies. All these tools are im-

plemented as FIPA agents themselves, and they require no special

support to perform their tasks, they simply rely on JADE AMS. The

general management console for a JADE agent platform is called

RMA (Remote Management Agent). The RMA acquires the infor-

mation about the platform and executes the GUI commands to

modify the status of the platform (creating new agents, shutting

down peripheral containers, etc.) through the AMS. On the one

hand, the RMA asks the AMS to be notified about the changes of

state of platform agents, on the other hand, it transmits to the AMS

the requests for creation, deletion, suspension and restart received

by the user. The Directory Facilitator agent also has a GUI of its

own, with which the DF can be administered, adding or removing

agents and configuring their advertised services.

The three graphical tools with which JADE users can debug their

agents are the Dummy Agent, the Sniffer Agent and the Debugger

Agent.

 The Dummy Agent is a simple, yet very useful, tool for inspecting

message exchanges among agents. The Dummy Agent facilitates

validation of an agent message exchange pattern before its integra-

tion into a Multi Agent System and facilitates interactive testing of

an agent. The graphic interface provides support to edit, compose

and send ACL messages to agents, to receive and view messages

from agents, and, eventually, to save/load messages to/from disk.

The Sniffer Agent makes it possible to track messages exchanged

in a JADE agent platform. When the user decides to sniff a single

agent or a group of agents, every message directed to or coming

from that agent or group is tracked and displayed in the sniffer

window, using a notation similar to UML Sequence Diagrams. The

user, who can also save and load every message track for later anal-

ysis, can examine every ACL message.

The Debugger Agent makes to trace the internal execution of each

agent. In particular, it allows viewing the input message queue, the

agent life cycle state and the behaviors running.

3 LEAP

The LEAP project developed a platform, called LEAP, to allow the

seamless deployment of agents on all Java-enabled, connected de-

vices ranging from cellular phones to enterprise servers (LEAP,

2000). In order to meet its goal, the LEAP project decided to start

the development of its platform from JADE. LEAP is a new kernel

for JADE that allows running legacy JADE agents on handy devic-

es without any modification, provided that the device offers suffi-

cient resources and processing power. When running on a device

with no severe resource constraints, LEAP provides the same func-

tionality as the original kernel of JADE. Summarizing, the follow-

ing are the most important characteristics of LEAP:

1. It runs seamlessly on desktop PCs and on handy devices with

limited resources, such as Palm Pilots and Java-enabled phones;

2. It adapts its functionality to the available resources in terms of

memory, processing power, screen, etc.;

3. It guarantees connectivity to handy devices via wireless net-

works, like TCP/IP over GSM and GPRS, and IEEE 802.11

wireless LANs.

Figure 3 shows some pictures of LEAP running on different devic-

es, with different connectivity.

The design of LEAP makes it sufficiently lightweight to execute on

a handy device, but also sufficiently flexible and open to be a first-

class choice for enterprise servers. LEAP can be deployed accord-

ing to a set of profiles that identify the functionality available on

each particular device. The basic profile supports only the function-

ality that FIPA requires and it suits the smallest device that we ad-

dress, i.e., a cellular phone. The full-featured profile provides the

functionality of an agent platform designed to run on desktop com-

puters and it copes well with any device with sufficient memory

and processing power. The choice of implementing LEAP as a

lightweight and extensible kernel for JADE allows using the ser-

vices that JADE offers across all profiles.

Figure 3. Three devices running LEAP.

In its current implementation, the basic profile provides the subset

of the APIs of JADE that do not deal with the behaviour abstrac-

tion, and it does not integrate any run-time tool, such as the RMA

or the Sniffer. Such limitations save memory and allow running

LEAP on the current implementation of the KVM for Palm Pilots,

which reserves only 200Kbytes of heap memory for Java applica-

tions. On the contrary, the full-featured profile integrates all tools

that JADE provides and, from the developer point of view, it offers

the same functionality and the same APIs of JADE. All profiles are

instantiations of the FIPA abstract architecture and agents running

on platforms configured with different profiles can interoperate.

LEAP allows different locations of the same platform to be de-

ployed according to different profiles.

The implementation of LEAP is basically different from that of

JADE because the latter was not implemented taking into account

the limitations of handy devices. The introduction of the concept of

profile required a substantial redesign of the internals of JADE, but

we succeeded in it without changing the APIs and agents developed

for JADE can still run on LEAP. As a consequence, the community

of JADE users can run existing applications on handy devices

without any modification, provided that the device offers sufficient

resources. Reasonably, such applications will need to spread the

computation effort across the fixed infrastructure and the handy de-

vice. As applications are already decomposed into agents, the load

balancing of the tasks is as simple as allocating agents to network

nodes on the fixed and on the mobile network. These deployment

issues are transparent to the developer as LEAP implements loca-

tion transparency.

LEAP is not only meant for handy devices, it is also intended to

support enterprise servers and we cannot constraint its functionality

when running on devices with no limitations on resources. To

achieve this, we decided to go for the worst case, i.e., J2ME

CLDC (Sun Microsystems, 2000), and we implemented an extensi-

ble architecture over a layer of adaptation. Such a layer is capable

of matching the classes available on J2ME CLDC with the ones

available on the others Java 2 editions. This allows using the clas-

ses that express the maximum functionality where available and

others with restricted functionality otherwise, without changing the

source code of the agents.

LEAP is naturally distributed as it is composed of a number of lo-

cations that provide the run-time resources that agents need to exe-

cute. Mimicking the nomenclature of JADE, we say that locations

contain agents and we call them agent containers, or simply con-

tainers. We impose no restrictions on the way containers can be de-

ployed across the nodes of the network, but the best way of deploy-

ing the platform is having one container running in one Java virtual

machine for every node. It is worth noting that splitting the plat-

form into several containers distributed on different devices is not

mandatory. According to the context and to the requirements of a

given application, it is possible to concentrate the whole platform

into a single container or to distribute it across the nodes of a net-

work. For example, if the application consists simply of a personal

assistant supporting the user in managing the information on her

palmtop, probably the best deployment choice is to have a single-

container platform running on the palmtop. On the contrary, given

an application where each user in a team is assisted by an agent

running on her mobile phone and all such agents interoperate, the

choice of a distributed platform composed of one main container

and several peripheral containers on the users’ phones can be the

best solution.

The nodes of the network can be of any kind, from cellular phones

to enterprise servers, and they can access indifferently any transport

mechanism for which a proper handler in the platform is available.

At the moment, only handlers based on TCP/IP are available. Such

handlers have been designed to support TCP/IP both over wired

and wireless connections, such as GSM, GPRS and IEEE 802.11,

exploiting the possibility of using full-duplex connections.

The choice of spreading the platform across the network poses

some problems for agents running on other platforms to communi-

cate with agents running on LEAP. Following the design of JADE,

we solved this problem introducing a privileged container, called

main container, to allow agents on other platforms to see the plat-

form as a whole. The main container is unique and it acts as a front-

end for the platform. It maintains platform-wide information and

provides platform-wide services. This container must be always

reachable by all active containers in the platform. A LEAP platform

is composed of a single main container and a set of peripheral con-

tainers, allowing a high modularity by running lightweight periph-

eral containers on handy devices. The main container provides

FIPA mandatory services, i.e., the AMS and the DF, and it is man-

datory to preserve FIPA compliancy. The amount of resources

needed by the AMS and by the DF in their current implementation

suggests that the main container should run on a full-featured com-

puter.

4 CoMMA

CoMMA (Corporate Memory Management through Agents) is a

FIPA compliant multi-agent system for the management of a

corporate memory, implemented by using JADE (Gandon et al.

2002). It is the result of an international project funded by the

European Commission (CoMMA, 2000). The project lasted two

years, ending in January 2002, and it spanned two

iterations of a complete development life cycle, including two field

trials, carried out by end user project partners. The system was

completely implemented and used in different companies to offer a

helping service for enhancing the insertion of new employees and

as a support system for technology monitoring.

The innovative aspect of the system is the integration of several

emerging technologies that were generally used separately in the

former information retrieval and management systems. These tech-

nologies are: agent technology, knowledge modeling, XML tech-

nology, information retrieval techniques and machine learning

techniques.

The multi-agent approach, relying on loosely-coupled software

components, is naturally prone to facilitate integration of different

and heterogeneous technologies in one system. The CoMMA

developers decided, therefore, to use agents for wrapping

information repositories defining the corporate memory, for the

retrieval of information, for enhancing scaling, flexibility and

extensibility of the corporate memory and to adapt the system

interface to the users. One of the points that makes CoMMA system

different from the majority of the former multi-agent information

systems is that agents are not only used for the retrieval of

information, but also for the insertion of new information in the

corporate memory.

The use of JADE increases system modularity and flexibility. The

separation between the software platform infrastructure managing

agent life-cycle, distribution and communication and the software

implementing agent tasks decouples modifications in these two

parts. The behavior based agent model offered by JADE allows to

separate the software code realizing the different tasks of the

agents; therefore, the modification of a task or the introduction of

new tasks usually do not cause the modification of other parts of

agent code

4.1 CoMMA Architecture

The system aims at helping users in the management of an organi-

zation corporate memory and in particular at facilitating the crea-

tion, dissemination, transmission and reuse of knowledge in an or-

ganization. The services offered by the CoMMA system are the re-

sult of three main tasks: insertion of XML annotations of new or

updated documents, search of existing documents, and autonomous

document delivery in a push fashion to provide her/him with infor-

mation about new interesting documents (Figure 4 shows a sche-

matic view of the CoMMA multi-agent system).

These tasks are performed through the cooperation among different

kinds of agents that can be divided in four sub-societies: document

and annotation management; ontology (enterprise and user models)

management; user management; agent interconnection and match-

making.

Figure 4. Schematic view of the CoMMA multi-agent system.

The agents belonging to the document dedicated sub-society are

concerned with the exploitation of the documents and annotations

composing the corporate memory, they will search and retrieve the

references matching the query of the user with the help of the onto-

logical agents. A hierarchical organization for the document sub-

society has been chosen since separates the task of maintaining

document repositories from the task of intelligent interface towards

the other agents of the system.

The agents belonging to the ontology dedicated sub-society are

concerned with the management of the ontological aspects of the

information retrieval activity, especially the queries about the hier-

archy of concepts and the different views. The ontology repository,

composed of RDF schema forms, maintains a set of concepts and

their relationships. Documents of the community are annotated us-

ing these ontologies and ontologies are used to search documents

into the corporate memory and to navigate into it. In particular, the

CoMMA ontology describes the documents maintained in the or-

ganization corporate memory and the enterprise model describes

the structure of the organization ruling, for example, the access to

the different type of documents of the corporate memory. A repli-

cated organization for the ontology sub-society has been chosen

since ontologies shared by users should be quite stable and most of

the queries will need the whole ontology to apply inference algo-

rithms.

The agents belonging to the user dedicated sub-society are con-

cerned with the interface, the monitoring, the assistance and the ad-

aptation to the user. Moreover, they have to maintain the user pro-

file repository and distribute information about user profile to the

agents needing it.

Finally the agents belonging to the interconnection dedicated sub-

society are in charge of the matchmaking of the other agents based

upon their respective needs.

5 Agentcities

Agentcities is a network of FIPA compliant agent platforms that

constitute a distributed environment to demonstrate the potential of

autonomous agents. It started on the second half of 2001 as a re-

search project funded by the European Commission (Agentcities,

2001).

One of the aims of the project is the development of a network ar-

chitecture to allow the integration of platforms based on different

technologies and models. It provides basic white pages and yellow

pages services to allow the dynamic discovery of the hosted agents

and the services they offer.

An important outcome is the exploitation of the capability of agent-

based applications to adapt to rapidly evolving environments. This

is particularly appropriate to dynamic societies where agents act as

buyers and sellers negotiating their goods and services, and com-

posing simple services offered by different providers into new

compound services.

To allow the integration of different applications and technologies

in open environments, high level communication technologies are

needed. The project largely relies on semantic languages, ontolo-

gies and protocols in compliance with the FIPA standards.

5.1 Network

The Agentcities network grows around a backbone of 14 agent plat-

forms, mostly hosted in Europe. These platforms are deployed as a

testbed, hosting the services and the prototype applications devel-

oped during the lifetime of the project. The backbone is an im-

portant resource for other organizations, even external to the pro-

ject, that can connect their own agent-based services, making the

network really open and continuously evolving.

Figure 5. The Agentcities backbone.

Currently, the Agentcities network counts 160 registered platforms,

among which 80 have shown activities in the last few weeks. The

platforms are based on more than a dozen of heterogeneous tech-

nologies, including Zeus (Nwana et al., 1998), FIPA-OS (Poslad et

al., 1999), Comtec (Comptec, 1999), AAP (AAP, 1999), Opal

(Purvis et al., 2002). More than 2/3 of them are based on JADE and

its derived technologies, as LEAP (LEAP, 2000) and BlueJADE

(BlueJADE, 2001)

5.2 Service Composition

The main rationale for using agents is their ability to adapt to rapid-

ly evolving environments and yet being able to achieve their goals.

In many cases, this can only be accomplished by collaborating with

other agents and leveraging on the services provided by cooperating

agents. This is particularly true when the desired goal is the crea-

tion of a new service to be provided to the community, as this sce-

nario often calls for the composition of a number of simple services

that are required to create the desired compound service.

The Event Organizer is an agent-based prototype application show-

ing the results that can be achieved using the services provided by

the Agentcities project. It allows a conference chair to organize an

event, booking all needed venues and arranging all needed services,

and then sell the tickets for the new event.

Using the web interface of the Event Organizer, its user can list a

set of needed services, fixing desired constraints on each individual

service and among different services. The global goal is then split

into sub-goals, assigned to skilled solver agents.

The Event Organizer uses the marketplace infrastructure deployed

on the Agentcities network to search for relevant venues. These are

matched against cross-service constraints and, if found, a proper

solution is proposed to the user as a list of services that allow the

arrangement of the event. These services are then negotiated on the

marketplace with their providers and a list of contracts is returned

to the user. Finally, when the new event is successfully organized,

the tickets for it can be sold, once again using the marketplace in-

frastructure.

The process requires the cooperation of a number of partners. Each

of them can exploit the directory services to dynamically discover

the location of the others. The Event Organizer directly interacts

with a Trade House to search for venues and negotiate selected ser-

vices. Other agent-based applications, as the Venue Finder and the

SME Access, are responsible to offer goods on the Trade House

and to negotiate them on behalf of their users. A Banking Service

takes care of managing the banking accounts of the involved part-

ners, securing all requests against tampering and eavesdropping. An

Auction House is used to create auctions and sell the tickets of the

new event.

The interesting part of the game is that these tickets are available

for other agent-based applications. In fact an Evening Organizer,

that helps its user to arrange an evening out, for example booking a

restaurant and buying the tickets for a concert, can discover the new

event and bid for some tickets on the Auction House.

6 Conclusions

In this chapter, we presented JADE (Java Agent DEvelopment

framework), a software framework to aid the development of agent

applications in compliance with the FIPA2000 specifications for

interoperable intelligent multi-agent systems.

JADE is written in Java language and comprises various Java pack-

ages, giving application programmers both ready-made pieces of

functionality and abstract interfaces for custom, application de-

pendent tasks. Java was the chosen programming language because

of its many attractive features, which are particularly geared to-

wards object-oriented programming in distributed heterogeneous

environments.

Starting from the FIPA assumption that only the external behaviour

of system components should be specified, leaving the implementa-

tion details and internal architectures to agent developers, we pro-

duced a very general but primitive agent model that can serve as a

useful basis to implement, for example, reactive or BDI architec-

tures. In addition, the behaviour abstraction of our agent model

permits an easy integration of external software. For example, we

created a JessBehaviour that makes it possible to use JESS (Fried-

man-Hill, 1998) as agent reasoning engine. In comparison to the

agent development tools introduced in the previous section, JADE

offers a more efficient implementation and a more general agent

model. Such an agent model is more “primitive” than the agent

models offered, for example, by RETSINA (Sycara et al., 1996),

however, the overhead given by such sophisticated agent models

might not be justified for agents that have to perform some simple

tasks. In addition, sophisticated agent models such as BDI and reac-

tive architectures, as previously mentioned, can be implemented on

top of our “primitive” agents model.

JADE is not the only FIPA-compliant software development sys-

tem: different systems have been realized or are under development

(see, for example AAP (AAP, 1999), ASL (Kerr et al., 1998), Bee-

gent (Kawamura et al., 1999), Comtec (Comtec, 1999), FIPA-OS

(Poslad, 1999), Opal (Purvis et al., 2002), Zeus (Nwana et al.,

1998)). However, JADE seems the most appreciate and used; in

fact, in agent platforms network that involved more than 160 nodes

more than 2/3 are realized on the top of JADE or on the top of de-

rived platforms, i.e., BlueJADE (BlueJADE, 2001) and LEAP

(LEAP, 2000).

Acknowledgments

Thanks to all the people that contributed to development of JADE

and to all the partners of the EC projects introduced in the paper.

This work is partially supported by TILAB, Torino and by the Eu-

ropean Commission through the contracts IST-1999-12217 -

CoMMA - Corporate Memory Management through Agents and

IST-1999-10211 – LEAP – Lightweight Extensible Agent Platform

and IST-2000-28385 - Agentcities.RTD.

References

AAP (1999), AAP Project Home Page”, available at

http://sf.us.agentcities.net/aap.

Agentcities, (2001), “Agentcities Project Home Page”, available at

http://www.agentcities.org.

Bellifemine, F., Poggi, A., Rimassa, G. (2001), “Developing multi

agent systems with a FIPA-compliant agent framework”, Soft-

ware Practice & Experience, 31:103-128.

BlueJADE, (2001), “BlueJADE Project Home Page”, available at

https://sourceforge.net/projects/bluejade.

CoMMA, (2000), “CoMMA Project Home Page”, available at

http://www.ii.atosgroup.com/sophia/comma/HomePage.htm.

Comtec (1999), “Comtec Project Home Page”, available at

http://ias.comtec.co.jp/ap.

FIPA, (1997), “FIPA Organization Home Page”, available at

http://www.fipa.org.

http://sf.us.agentcities.net/aap
http://www.agentcities.org/
https://sourceforge.net/projects/bluejade
http://www.ii.atosgroup.com/sophia/comma/HomePage.htm
http://ias.comtec.co.jp/ap
http://www.fipa.org/

Gandon, F., Poggi, A., Rimassa, G., and Turci, P. (2002), “Multi-

Agents Corporate Memory Management System,” Applied Arti-

ficial Intelligence, 9-10 (22): pp. 699-720.

Friedman-Hill, E.J., (1998), “Java Expert System Shell, available at

http://herzberg.ca.sandia.gov/jess.

JADE, (1999), “JADE Project Home Page”, available at

http://jade.cselt.it.

Kawamura, T., Yoshioka, N., Hasegawa, T., Ohsuga, A., Honiden,

S., (1999), “Bee-gent: Bonding and Encapsulation Enhancement

Agent Framework for Development of Distributed Systems”, in

Proc. of the 6th Asia-Pacific Software Engineering Conference.

Karamcheti, V., Plevyak, J., Chien, A., (1996), “Runtime Mecha-

nisms for Efficient Dynamic Multithreading”, Journal of Parallel

and Distributed Computing, 37:21-40.

Kerr, D., O'Sullivan, D., Evans, R., Richardson, R., Somers, F.,

(1998), “Experiences using Intelligent Agent Technologies as a

Unifying Approach to Network and Service Management”, in

Proc. of IS&N 98, Antwerp, Belgium.

LEAP, (2000), “LEAP Project Home Page”, available at

http://leap.crm-paris.com.

Milojicic, D., Breugst, M., Busse, I., Campbell, J., Covaci, S.,

Friedman, B., Kosaka, K., Lange, D., Ono, K., Oshima, M.,

Tham, C., Virdhagriswaran, S., White J. (1998), “MASIF - The

OMG Mobile Agent System Interoperability Facility”, in K.

Rothermel and F. Hohl, Eds. Proc. 2nd Int. Workshop Mobile

Agents, pp. 50-67, Springer.

http://herzberg.ca.sandia.gov/jess
http://jade.cselt.it/
http://leap.crm-paris.com/

Nwana, H.S., Ndumu, D.T., Lee, L.C., (1998), “ZEUS: An ad-

vanced Tool-Kit for Engineering Distributed Multi-Agent Sys-

tems”, in Proc of PAAM98, pp. 377-391, London, U.K.

Patil, R.S., Fikes, R.E., Patel-Scheneider, P.F., McKay, D., Finin,

T., Gruber, T., Neches, R., (1992), “The DARPA knowledge

sharing effort: progress report”, in: Proc. Third Conf. on Princi-

ples of Knowledge Representation and Reasoning, pp 103-114.

Cambridge, MA.

Poslad, S., Buckle, P. and Hadingham, R. (1999), “The FIPA-OS

Agent Platform: Open Source for Open Standards”, available at

http://fipa-os.sourceforge.net.

Purvis, M., Cranefield, S., Nowostawski, M., Ward, R., Carter, D.,

and Oliveira, M.A., (2002), "Agentcities Interaction Using the

Opal Platform", in Proc. of the Workshop – Agentcities: Re-

search in Large-Scale Open Agents Environments, AAMAS

2002, Bologna, Italy.

Somacher, M., Tomaiuolo, M., Turci, P. (2002), “Goal Delegation

in Multiagent System”, Proceedings of the AIIA 2002, Siena, It-

aly.

Sun Microsystems, (2000), “Java 2 Platform Micro Edition (J2ME)

Technology for Creating Mobile Devices”, available at

http://java.sun.com.

Sycara, K., Pannu, A., Williamson, M., Zeng, D., (1996), “Distrib-

uted Intelligent Agents”, IEEE Expert, 11(6):36-46.

http://fipa-os.sourceforge.net/
http://java.sun.com/

