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This paper is concerned with determining the stress-intensity factors due to disturbance

of a uniform flow of heat by an insulated half-plane crack in an elastic solid. The spatial
thermoelastic problem is formulated in terms of Papkovich-Neuber displacement poten-
tials and is solved by the application of Kontorovich-Lebedev integral transform and
certain singular solutions of Laplace equation in three dimensions. The analysis reveals
that four distinct displacement potentials are needed to satisfy the finite displacement
and inverse square root stress-singularity at the edge of the crack. Closed-form expres-
sions are obtained for the stress-intensity factors (ks and kg) and their variations along
the crack border are shown in curves.

Introduction

When an undisturbed heat flow with constant thermal gradient
is diverted round a sharp edge of an insulated crack or flaw, there
is local intensification of the temperature gradient accompanied by
singular thermal stress which may cause crack propagation result-
ing in serious damage to structural members. Since the critical
value of the intensity of the local stress field can be associated with
the fracture toughness of the material, it follows that by knowing
the stress-intensity factors as functions of the temperature gradi-

.ent, material properties, and flaw size, it is possible to predict a
critical temperature gradient which will not result in failure of the
material. Confining attention to three-dimensional cracks or
planes of discontinuities, the local intensity of the thermal stress
has been determined for the so-called “penny-shaped” crack [1]!
and the more general elliptical crack [2]. In case of the elliptical ge-
ometry, both factors kg and ks (associated with the edge sliding
and tearing modes of fracture [3}), are found to be operating, while
for the axially symmetric crack, the local stress field is controlled
by k2 only. A summary of the solutions to these and other closely
related crack problems is given in [4].

The objective of this investigation is to provide stress-intensity
factor solutions to the thermoelastic problem of a uniform flow of
heat disturbed by an insulated half-plane crack embedded in an
elastic solid. The solid is assumed to be isotropic and homogeneous
and the effects of both inertia and coupling between temperature
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Fig. 1

Semi-infinite plane crack

and strain fields are neglected. Fig. 1 shows a sketch of the crack.
In terms of the coordinates indicated, the crack occupies the region
x 0, |2| < = of the midplane y = 0. The general thermal stress
problem requires first finding the temperature, T'(x, y, 2), at every
point of the solid from Laplace equation in three dimensions

V2T(x,y,2) =0 (1)

and consequently the induced displacements from the Navier
equations of static equilibrium

V-Vu+ (1 —=20)V2u=2(1+ »)avT 2)

In equations (1) and (2), u designates the displacement vector, »
and « are, respectively, the Poisson’s ratio and the coefficient of
thermal expansion of the material of the solid, and V, V? are the
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usual del and Laplacian operators. Once the displacements are
known, the stresses can be computed in straightforward manner
from the Duhamel-Neumann stress-displacement relations.

The analysis shows that four distinct harmonic functions are re-
quired to satisfy the finite displacement and inverse square root
singularity conditions at the crack edge (r — 0). The state of the
disturbed temperature field and the associated stresses throughout
the solid is determined mainly in closed form. These are obtained
by employing the techniques of Fourier and Kontorovich-Lebedev
integral transforms and certain singular solutions of Laplace equa-
tion [5]. Explicit expressions for the stress-intensity factors are
found and their variations along the crack border are displayed
graphically. It should also be mentioned that the Green’s functions
due to concentrated normal and shear forces applied to the sur-
faces of the half-plane crack are treated in the works of Uflyand [5]
and Kassir and Sih [6].

Temperature Field

The disturbed temperature field at every point of the solid is ob-
tained from a solution of equation (1) in the region y = 0 subject to
the conditions

aT

ay

=—Qx,2z),y=0,0== (8a)

T=0,y=0,08=0 (3b)

in which @(x, z) is the specified temperature gradient. The desired
expression for the temperature is conveniently constructed by
employing a Fourier cosine transform in the variable z and a Kon-
torovich-Lebedev transform in the variable . Toward this end, let

( >1/2f f Al s1nh(0t) K (sr) cos (s2)dsdt (4)

t cosh (wt)
where K, (sr) is the modified Bessel function of the second kind of
imaginary order [7] and A(s, ) is an arbitrary function such that
equation (3b) is satisfied. Inserting (4) into (3a) and carrying out
the appropriate inversions, A (s, ¢} is determined as

93/2 . o
Als, ) ==, ¢ sinh (xt) J; Q*(r, $)Kin(sP)dr  (5a)

where

Q*(r,s) = f Q(r, z) cos (sz)dz (5b)
0

In order to establish the Green’s function for the temperature

field, suppose that there is a temperature gradient of magnitude

Qod(x + a)d(z) at the point r = a, §# = m, z = 0 of the crack surface,

then equations (5) yield

v3
o —= Qot sinh (wt)K;¢(as) (6)

A(s, t) =

Inserting equation (6) into (4) and performing the resulting inte-
grals [4], the temperature field is obtained

Qo <V2a(r-—x)>

T(r, 6, z)——t (7)

P
where p represents the dlstance of any point in y = 0 to the point r
=a,0=7,2z=0le.,

p = [(x +a)?+ y? + 22]1/2 (8)

Having obtained the temperature field, the induced displacements
and stresses in the solid can be found. This will be done in the next
section.

Thermal Stresses

The thermal displacements and stresses are governed by equa-
tions (2) where the temperature is known from equations (4) and
(5). Denoting the projections of the displacement vector in the di-
rections of the cylindrical coordinates by (ur, ug, u.), the Papko-

vich-Neuber potential representation of equations (2) gives the
displacement field

oF ] :
ur(r, 8,z) = 4(1 — v)(f1 cos 8 + fosin ) — — + sin § —(rQ) (9a)
ar
1LoF o
us(r, 8, 2) = 4(1 — v){(f2 cos f — f1 sin 8) — __(; + — (sm 99) (9b)
ra
aF .
u,(r, 0,2z) = 4(1 — v)fs — —+ r sin H—f (9¢)
az az
in which the following abbreviation has been introduced:
F = fo+ (rcos 8)f1 + (rsin 0)fs + 2f3 (10)

and f,(r, 8, 2), n = 0, 1, 2, 3, are space harmonic functions. The po-
tential Q(r, 6, 2) can be determined from a knowledge of the tem-
perature through the relation

6_9_ _ 1+ v
ay  2(1 —»)
The corresponding stress field is readily obtained from equations
(9) and (10) and the usual Duhamel-Neumann stress-displacement

relations in linear thermoelasticity [8]. In particular, the stresses
associated with the 8-plane are found as

9, F)
- —(1—2v) (cos H—fl + sinﬂ—fg>
2u ar ar

T(r, 8, 2) (11)

afy %o, #%fo
oz ar?  az?

2 '2
oﬁ) tz (a_fa + 2&)
90> a2 922

. 0 1220
—sinf (—- - ——-)
r

1 F) k)
2(1—u)—<cosoj—2—sinefl) +2
r af af

1 52
(cos Gl +s
r 26>

-9 a 82
I-ﬂ-’:"—-{- 2(1 - ») — (cosf)ﬁ—FsinB—fz) +-~—(Qsinf) (12b)
2u  ar a0 af araf
. oG 19
LR 2(1—u)——f§+—(9s1n0) (12¢)
2u 8z r o ozal

In equations (12), u designates the shear modulus of the solid and
the function G (r, 8, z) is defined by means of the relation

3
G =(1—2v){facos 6 — f1s1n0)—~-—}i9—0030—é
roor o
3 3
_eingX2_ 2
a8 rof

By virtue of the fact that the induced deformation is skew-sym-
metric with respect to the variable 6, the quantities u,, u,, oy are
odd in @ while uy, 4., and 7y, are even in the same variable. This
circumstance suggests that the problem can be formulated for the
upper half space y > 0 with appropriate boundary conditions pre-
scribed in the regions § = 0 and § = =. In view of these observa-
tions, the continuity of the solid outside the crack region implies

ur, 0,z) = (14a)
u, (r,0,2) = (14b)
ay(r,0,2) =0 (14c¢)

On the other Land, as the crack surface is assumed to be free from
mechanical loading, the following conditions must be satisfied in
the region § = «

ap(r, =, 2) =0 (15a)
Tor(r, m,2) =0 (15b)
Tﬂz(r- T, Z) =0 (15C)

These conditions need to be accompanied by the regularity re-
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quirements at infinity, namely, the vanishing of displacements and
stresses in that vicinity. Furthermore, near the crack border (r —
0) the displacements must be finite and the stresses are expected
to have the usual square root singularity r~1/2,

Making use of equations (9a), (9¢), and (12a) in conjunction
with (10), it is readily confirmed that the boundary conditions
given in equations (14) are satisfied by

folr, 0,2) = (16a)
f1(r, 0,2) = (16b) .
fs(r, O,z) =0 (16¢)
ﬁ(r 0,z) = (16d)

With reference to the region § = =, equations (15) when inserted in
the appropriate stress expressions yield the following relations:

F) 21 — )3 % 8%
Q-an 200 fz o2y o, 7o
or r o0z ar?  92?
1a%, a*fs %3
+=y, (—+——~) =0 (17a)
r af? ar? 922 (
oG  2(1—w)s aQ
SR __(Al_ = — (17b)
ar r a0 ar
G 2(1—v) g Q
— _L__”)ﬁ - 6_ (170)
az r 30 ez
in which G can be found from
1a 3 3
G=—(—onfy o 2N 2ol (18)
ra a0 r af
Further simplification may be achieved by setting
G=0,8=7 (19)
and as a consequence of (19) it follows that
aG oG
—=—=0,0=7 (20)
ar oz
By invoking the identities
s__s29__1o
ax ar’ ay r o
f=m
a2 a2 92
- (— + —) @1)
ay? ar? 922

in connection with equations (2), the relations (17) are trans-
formed into

8, 3 a 82 a2
SN Y SN I
ay ax oz ay?  abay
a2
20 g =n (220)
ay?
1 Q
h L 8, (22b)
3y 2(1 — ») ax
1 Q
?_lig:_-_—a—’e:ﬂ- (22¢)
ay 2(1 — ») a2
In a similar manner, equations (18) and (19) render
3 a
(1—2u)f2—ﬂ—ﬁ— ol =0,0=n (23)
& af ay

The mixed relations (166), (16¢), (22b), and (22c¢) provide the
necessary information for the evaluation of f; and f3. In these rela-
tions the derivatives of the thermoelastic potential are determined
from a knowledge of the temperature in the solid already treated
in the previous section. In particular, when a constant heat flux is
present at the point (a, =, 0) equations (7) and (11) yield

00, 08

ax az

(1+»alo [( 2a : )1/2
x—a—iz

2(1 — v)r2(x + a — iz)l. 24

% In (\/r+x+\/x~—a—i2) I (\m)] o

Vr+a+tiz P p

(Cont.)
The character of equations (16b), (16¢), (22b), (22¢), and (24)
suggests that the functions f1 and f3 can be expressed by?

1 ad a
B2)=———J| 22 e
filr, 0,2) 2(1 — u)[y ax (=+a) 0y]
4/2
+ 02 e (o) oo
1 aQ :1]
oo, 0.5) = = 5 [y2 =220 (26)

where C; is a constant introduced for convenience and Re desig-
nates the real part of an analytic function of the variable { defined
by

{=r4+a+tiz,i=v -1 (27)

In equation (25), the term associated with C; is a singular solution
of Laplace equation which satisfies conditions (16b) and (22b) and
conform to the usual regularity requirement at infinity. It has been
introduced to insure finiteness of displacements at the crack bor-
der (r — 0).

The next step in the analysis is to derive another set of relations
which govern the remaining potentials fo and fo. In order to
achieve this, it is expedient to add the term y(sf3/sz) (which van-
ishes in the region 8 = =) to both sides of equations (23), i.e.,

do_ih, oo

(1 — 2w)fe — =0,0=7 (28)
af 8z ay
Moreover, utilizing equations (16) and the identities
a la a2 2 g2
———-—~—=—<a—+a—>, =0 (29)
oy raff ay? ar? 922/
it is not difficult to verify that
] 3 E) 9, af:
—[(1-2u)f2—lg—£+y—f‘§‘—2£]=0, 9=0 (30)
ay ay  af 9z Yy

A glance at the quantity inside the bracket in equation (30) reveals
that it is harmonic. It follows that equations (28) and (30) suggest
the following relation involving the singular solution introduced in
(25)

ofo _ofr, ofs  ofs cos (0/2)
(1= 2)f sy ol *y o ay Co—0m Vr
A second relation between f and fs may be derived from equations
(16), (22a), and (29). The mathematical manipulation necessary
for obtaining the second relation is identical to that used by Kassir
and Sih [6] in analyzing the problem of the considered crack under
concentrated shear load parallel to the crack edge. Without going
into the details, it can be shown that

21— - o iy s o
ay

Rel[g(H] (3D

af ay 9z
+(1—2) fy <§—E+ﬁ)dy,y >0 (32)
ax

exists throughout the entire region y = 0 (see equation (22) of [6]).
Solving equations (31) and (32) simultaneously and utilizing equa-
tions (25) and (26) result in

cos (6/2)

f2= [(1—211)01"‘02] \/;

Re [g(D)]

2 The results in equations (25) and (26) can also be reached by applica-
tions of Fourier and Kontorovich-Lebedev integral transforms to equations
(16b), (16¢), {22b), and (22¢).
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— (1= 2w)C, f 78in OF2) p o1 (©)dy

1-2 Q Q
y)[Q+(x+a)——+yL+za—]
%3 (33q)

2(1 —»)
(Cont.)
and
afo T (1_ 2) 0, — 901 - ] cos (0/2)
. [(2 o +47) €1 =201 = 0y | ZE Re (0]
1 oe ¥ sin (6/2) , 1
(=20Cy J == Relg'Q))dy + 27
x {[(1 -2u)2+y-"—] [Q+ a2
ay ax
a9 oQ aQ a%Q
+y~—-+z-] +x [—~+y—~—-
ay oz ax oxay
2 2
- (x +a)~—g] +z [aQ+y3—9—-—zﬁ—g]], (33b)
ay? 6z ayaz 3y
where g'({) = (d/d{)g({) and Q is given in (24).

The remaining conditions to be satisfied are equations (16a) and
the requirement that the displacements are finite at r = 0. These
conditions are utilized to determine the function g({) as well as the
constants C; and Cq in equations (25) and (33). However, instead
of applying the condition in equation (16a), it is easier to subject
(33b) to the equivalent condition

(34)
az

Differentiating (336) with respect to z and then integrating in the

variable y between the limits y and «, making use of equation (24)

and the results

¥ cos (0/2) , 1 ¢ g'(t)dt
v LR v (350)
¥ sin (0/2) 1 g (t)dt
/l d = e— 2.

— ¢ ’ . - —-1/2
2y£g(t)dt(t $o+ 2x) dt] (35b)

m aQ (1+ PaQova
Q+ (x + -—+ e F R i L
) Y y BZ 2v9 (1 — v)w?
Vr+x—V2x -
X R 35
el\/2x—§’o il NV } (85¢)
it is found that condition (34) results in
= g'(t)dt »(1+ v)aQovVa
Ci1+C = - (36
G 2 s[x:o Vit - 401 — )7V )

where the variable {p is defined as
o=[{o—o=x+a+iz (37)

Equation (36) is a standard integral equation of Abel type whose
solution is [9]

gl=In{ (38)
provided that
v(l + va
vey+ Co = *% (39)

The final step in the analysis is to relate the constants Cy and Cs.
This may be done by imposing the regularity condition on the dis-
placements at the crack edge. Inserting the appropriate values of
the potentials in equations (9), making use of (24) and (38), ex-
panding asymtotically for small r and retaining the lowest order
terms, it is found that the displacements near the crack edge as-
sume the form

(%—z/)z?-%a ke e~y m2ia ks
2 EX JZEA Qo
Los
7/
/ -

Fig. 2 Variatlons of k> and k3 along crack border

sing
ur s In (a2 + 2%)[2(1 = »)C1 — Co}[3 — 4»
+ (7 —8v) cos 0] + 0% (40a)
[}
cos;
Up = ~— 4\/; ln (GZ + 22)[2(1 — I/)Cl -— CQ]
X [3 = 4v — (5 — 8v) cos 8] + O(r°) (40b)
u, = 0(r% (40¢)

Now, the finite displacements requirement at the crack edge gives

2(1 - V)Cl - Cg =0 (41)
and it follows from equation (39) that
1+ va
= - AL¥aQova (42a)
42 — p)(1 — v)2x2
1+ Va
= — AL Qv (42b)

22— )1 — v)x2

This, basically, completes the solution of the problem. The in-
duced displacements and stresses in the solid may be readily com-
puted from equations (9)-(12) when use is made of equations
(24)-(28), (33), (38), and (42). These quantities serve as the
Green’s functions for any distribution of heat flux applied to arbi-
trary regions of the crack surface.

Stress-Intensity Factors
The shear stresses across the surface § =
equations (12b) and (12¢) as

0 are computed from

_ EaQoVa (x + a)
Tor(r, 0,2) = G [etap e T (43a)
70:(r, 0,2) = FaQovaz +..... (43b)

(2 — )e2Vx [(x + a)? + 22

where E is Young’s modulus of the material, £ = 2u(1 + »), and
the nonsingular terms have been neglected. Equations (43) may be
expressed in the standard form

Tor(r, 0,2) =

9 (44a)

k3
0 (44b)
V' 2x
in which the stress-intensity factors, k2 and k3, associated with the
edge-sliding and tearing modes of crack extension, respectively,

702(r, 0, 2) =

are given in terms of the nondimensional parameter 29 = z/a by
way of the relations
VIE 1
y = 2B (45a)
2- V)7I’2\/_ 14 2,2
VIE
ho = 2Ee 20 (45b)

2 - y)wg\/al + 242

Fig. 2 shows the variation of equationé (45) with zq,.
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The formulas in equations (45) can be used to generate results
for any distribution of heat flux applied to arbitrary regions of the
crack surface. As an example, suppose that the heat flux is applied
to a rectangular region, —a < x <0,y =0, |2| < b, of the crack sur-
face, Fig. 1, then double integrations performed on equations (45)
yield the stress-intensity factors

_ 292 EaQo
3(2 — p)x?

[(|z| + b)*2H, (

2

w5
|z] + &

— sgn(lz| — b)||2] — b|*2H, (——“~>] (46a)

flz] — 8l
_V2EaQo
- 3(2 — v)w?

()

ks [a3/2 In (a?+ (2| + b)2) — (2| + b)¥/2H,

—sgn (|2] — b) <¢13/2 In[a?+]||2] — 5|3

= ll2| ~ b|*H, <~Jl-—) > ] (46b)

12| -8l
in which the functions H; and Hj are given by
1 1 2%
Hils) = s¥2 tan~1 = 4 9512 — [tan—l < 23)
s V2 1-s
1++v2+s
n(EE]
vits /) 4
3 Vs
‘H =9¢3/2 - — ¢ —~1< )
R L v

+ 3 i (1 + V2 +s
S N S L
V2 V1+s2
and the signum function, sgn (2), is +1, 0, or —1 depending on
whether the argument, z, is positive, zero, or negative, respectively.
Other solutions can be generated in a similar manner.

) (47b)

Conclusion

The linear thermoelastic problem of a uniform heat flow dis-
turbed by an insulated semi-infinite plane crack embedded in a
three-dimensional elastic solid has been formulated and solved.
The method of analysis involves the application of the technique
of Fourier-Kontorovich-Lebedev Integral transforms and certain
singular solutions of Laplace equation. The Green’s functions for
the distribution of the temperature field as well as the induced dis-
placements and stresses in the solid are derived mainly in closed
form. These results are useful in examining theories of brittle frac-
ture for crack propagation caused by passage of steady-state heat
in solids.
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