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Stress-Intensity Factors for an 
Insulated Half-Plane Crack 
This paper is concerned with determining the stress-intensity factors due to disturbance 
of a uniform flow of heat by an insulated half-plane crack in an elastic solid. The spatial 
thermoelastic problem is formulated in terms of Papkovich-Neuber displacement poten
tials and is solved by the application of Kontorovich-Lebedev integral transform and 
certain singular solutions of Laplace equation in three dimensions. The analysis reveals 
that four distinct displacement potentials are needed to satisfy the finite displacement 
and inverse square root stress-singularity at the edge of the crack. Closed-form expres
sions are obtained for the stress-intensity factors (k% and k&) and their variations along 
the crack border are shown in curves. 

In troduc t ion 

When an undisturbed heat flow with constant thermal gradient 
is diverted round a sharp edge of an insulated crack or flaw, there 
is local intensification of the temperature gradient accompanied by 
singular thermal stress which may cause crack propagation result
ing in serious damage to structural members. Since the critical 
value of the intensity of the local stress field can be associated with 
the fracture toughness of the material, it follows that by knowing 
the stress-intensity factors as functions of the temperature gradi-

. ent, material properties, and flaw size, it is possible to predict a 
critical temperature gradient which will not result in failure of the 
material. Confining attention to three-dimensional cracks or 
planes of discontinuities, the local intensity of the thermal stress 
has been determined for the so-called "penny-shaped" crack [l]1 

and the more general elliptical crack [2]. In case of the elliptical ge
ometry, both factors k^ and k% (associated with the edge sliding 
and tearing modes of fracture [3]), are found to be operating, while 
for the axially symmetric crack, the local stress field is controlled 
by ki only. A summary of the solutions to these and other closely 
related crack problems is given in [4]. 

The objective of this investigation is to provide stress-intensity 
factor solutions to the thermoelastic problem of a uniform flow of 
heat disturbed by an insulated half-plane crack embedded in an 
elastic solid. The solid is assumed to be isotropic and homogeneous 
and the effects of both inertia and coupling between temperature 

1 Numbers in brackets designate References at end of paper. 
Contributed by the.Applied Mechanics Division for publication in the 

JOURNAL OF APPLIED MECHANICS. 
Discussion on this paper should be addressed to the Editorial Depart

ment, ASME, United Engineering Center, 345 East 47th Street, New York, 
N. Y. 10017, and will be accepted until June 1,1976. Readers who need-more 
time to prepare a Discussion should request an extension of the deadline 
from the Editorial Department. Manuscript received by ASME Applied Me
chanics Division, March, 1975. Paper No. 76-APM-D. 

Scribed Heat Flux 

Fig. 1 Semi-infinite plane c rack 

and strain fields are neglected. Fig. 1 shows a sketch of the crack. 
In terms of the coordinates indicated, the crack occupies the region 
x < 0, \z\ < °° of the midplane y = 0. The general thermal stress 
problem requires first finding the temperature, T(x, y, z), at every 
point of the solid from Laplace equation in three dimensions 

V2T(x,y, z) = 0 (1) 

and consequently the induced displacements from the Navier 
equations of static equilibrium 

V • Vu + (1 - 2j.)V2u = 2(1 + v)ctVT (2) 

In equations (1) and (2), u designates the displacement vector, v 
and a are, respectively, the Poisson's ratio and the coefficient of 
thermal expansion of the material of the solid, and V, V2 are the 
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usua l del and Lap lac ian opera to r s . Once t h e d i sp l acemen t s are 

known, t h e s tresses can be c o m p u t e d in s t ra igh t forward m a n n e r 

from t h e D u h a m e l - N e u m a n n s t r ess -d i sp lacement re la t ions . 

T h e analysis shows t h a t four d i s t inc t h a r m o n i c funct ions are re

qu i r ed to satisfy t h e finite d i sp l acemen t a n d inverse squa re roo t 

s ingular i ty condi t ions a t t h e crack edge (r —«• 0). T h e s t a t e of t h e 

d i s tu rbed t e m p e r a t u r e field and t h e associa ted s t resses t h r o u g h o u t 

t h e solid is d e t e r m i n e d main ly in closed form. T h e s e are ob t a ined 

by employing t h e t echn iques of Four ie r and Kon to rov i ch -Lebedev 

in tegra l t r ans fo rms a n d cer ta in s ingular solut ions of Lap lace equa 

t ion [5]. Expl ic i t express ions . for t h e s t ress - in tens i ty factors are 

found a n d the i r va r ia t ions along t h e crack borde r are d i sp layed 

graphical ly . I t should also be m e n t i o n e d t h a t t h e Green ' s funct ions 

d u e to concen t ra t ed n o r m a l and shear forces appl ied to t h e sur

faces of t h e half -plane crack are t r e a t e d in t h e works of Uf lyand [5] 

and Kass i r a n d Sih [6]. 

T e m p e r a t u r e F i e l d 

T h e d i s tu rbed t e m p e r a t u r e field a t every po in t of t h e solid is ob

ta ined from a solut ion of equa t ion (1) in t h e region y 3= 0 subject t o 

t h e condi t ions 

aT 
— = -Q(x, z), y = 0,tf = ir 
ay 

T = 0,y = 0, 0 = 0 

(3a) 

(36) 

in which Q(x, z) is t h e specified t e m p e r a t u r e g rad ien t . T h e des i red 

express ion for t h e t e m p e r a t u r e is convenient ly cons t ruc ted by 

employing a Four ier cosine t r ans fo rm in t h e var iable z a n d a K o n 

torov ich-Lebedev t r ans fo rm in t h e var iable r. T o w a r d th i s end, l e t 

\7T/ J o J o 
Ms.t) 

s inh (6t) 

t cosh (irt) 
Ku(sr) cos (sz)dsdt (4) 

where Ku (sr) is t h e modif ied Bessel funct ion of t h e second k ind of 

imaginary order [7] a n d A(s, t) is an a rb i t r a ry funct ion such t h a t 

equa t ion (3b) is satisfied. Inse r t ing (4) in to (3a) a n d carrying ou t 

t h e a p p r o p r i a t e inversions, A(s, t) is d e t e r m i n e d as 

23/2 - , „ 
A(s, t) = —rt s i n h ( i r t ) J Q*(r,s)Kit(sr)dr (5a) 

7T5'2 J O 

where 

Q*(r,s)= f Q(r,z) cos (sz)dz (56) 

In order t o es tabl i sh t h e Green ' s funct ion for t h e t e m p e r a t u r e 

field, suppose t h a t t h e r e is a t e m p e r a t u r e g rad i en t of m a g n i t u d e 

Qo&(x + a)<5(z) a t t h e p o i n t r = a, 8 = ir, Z = 0 of t h e crack surface, 

t h e n equa t ions (5) yield 

V2 
A(s- *) = " ^ Qo* s inh (irt)Kit(as) (6) 

Inse r t ing equa t ion (6) in to (4) and per forming t h e resul t ing in te 

grals [4], t h e t e m p e r a t u r e field is ob t a ined 

_Qa_ _ , /V2a(r-xh 
T(r, e,z) = - 7 ^ t a n - ' 1 -

ir2p \ p 
(7) 

where p r ep resen t s t h e d i s t ance of a n y po in t in y > 0 t o t h e p o i n t r 

= a, 8 = 7r, 2 = 0, i.e., 

p = [(x + a ) 2 + y2 + z2] 211/2 (8) 

Having ob ta ined t h e t e m p e r a t u r e field, t h e induced d i sp l acemen t s 

and s tresses in the solid can be found. T h i s will be d o n e in t h e n e x t 

sect ion. 

T h e r m a l S t r e s s e s 

T h e t h e r m a l d i sp lacement s a n d s t resses are governed by equa

t ions (2) where the t e m p e r a t u r e is known from equa t ions (4) and 

(5). Deno t ing the project ions of t h e d i sp l acemen t vector in t h e di 

rec t ions of t h e cylindrical coord ina tes by (ur, uo, uz), t h e P a p k o -

v ich -Neuber po ten t i a l r ep re sen t a t i on of equa t ions (2) gives t h e 

d i sp l acemen t field 

aF a 
ur(r, 8, z) = 4(1 - v)(h cos 8 + f2 s in 8) + sin 8 — (rfi) 

ar ar 

1 aF a 
uo(r, 8, z) = 4(1 - v)(h cos 8 - / i sin 8) + — (sin 00) 

r a8 a8 

aF an 
uz(r, 8, z) = 4(1 - v)h + r sin 8— 

oz az 

in which t h e following abbrev ia t ion has been in t roduced : 

F = /o + (r cos 0) / i + (r sin 8)f2 + zf3 

a n d fn(r, 6, z), n = 0, 1, 2, 3 , a re space h a r m o n i c funct ions . T h e po 

ten t i a l fi(r, 8, z) can be d e t e r m i n e d from a knowledge of t h e tern 

p e r a t u r e t h r o u g h t h e re la t ion 

an (1 + v)g 

ay ~ 2(1 - v) 
T(r, 8, z) 

(9a) 

(96) 

(9c) 

(10) 

( I D 

T h e cor responding s t ress field is readi ly o b t a i n e d from equa t ions 

(9) and (10) a n d t h e usua l D u h a m e l - N e u m a n n s t r e s s -d i sp lacement 

re la t ions in l inear the rmoe las t i c i ty [8]. In par t i cu la r , t h e s t resses 

associated wi th t h e 0-plane are found as 

2p. 
• = - ( ! • 

+ 2(1 

2u) / c o s 0 — + s i n 0 — ) 
\ ar ar I 

— K) - I cos 0 sm8 — I + 2x 1 1 
r \ a8 ad/ az ar2 az2 

1 / <52/i s 2 M /a2f3 a 2 M 
- - ( cos 0 - ~ + sin 0 -4 f ) + z M f + - ^ ) 

r \ a82 a821 \ ar2 az21 

1 ( r ) (12a) 
\ar r a62/ 

TQr 

2p. 

aG 
2(1 -„)-(• 

afi of-
cos 0 1- sin 0 

30 30 / araO 
(Q sin 8) (126) 

TO, aG 13/0 32 

— = — + 2(1 - 1/) - — + (Q s in 0) 
2p az r 30 azaO 

(12c) 

In equa t ions (12), p. des igna tes t h e shear m o d u l u s of t h e solid a n d 

t h e funct ion G(r, 8, z) is def ined by m e a n s of t h e re la t ion 

G = ( l - 2v)(h cos 0 - / i s in 0) • 
l f / o _ 

r ar 
cos 0 — 

30 

afi 

30 

za/3 

r 30 
(13) 

By v i r tue of t h e fact t h a t t h e induced de fo rmat ion is skew-sym

met r i c wi th r e spec t to t h e var iable 0, t h e q u a n t i t i e s ur, u2, an are 

odd in 0 while uo, Tnr, a n d rgz are even in t h e same var iable . T h i s 

c i rcumstance suggests t h a t t h e p rob lem can be fo rmula ted for t h e 

u p p e r half space y > 0 wi th a p p r o p r i a t e b o u n d a r y cond i t ions p re 

scr ibed in t h e regions 0 = 0 and 0 = ir. In view of t he se observa

t ions , t h e con t inu i ty of t h e solid ou t s ide t h e crack region impl ies 

ur(r, 0, z) = 0 

uz(r, 0, z) = 0 

(T0(r, 0, z) = 0 

(14a) 

(146) 

(14c) 

O n t h e o the r h a n d , as t h e crack surface is a s sumed t o be free from 

mechan ica l loading, t h e following condi t ions m u s t be sat isf ied in 

t h e region 8 = IT 

ad(r, -K, z) = 0 

Tf)r(r, IT, z) = 0 

T,fe(r, ir, z) = 0 

(15a) 

(156) 

(15c) 

T h e s e condi t ions need t o be accompan ied by t h e regular i ty re-
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quirements at infinity, namely, the vanishing of displacements and 
stresses in that vicinity. Furthermore, near the crack border (r —• 
0) the displacements must be finite and the stresses are expected 
to have the usual square root singularity r~1/2. 

Making use of equations (9a), (9c), and (12a) in conjunction 
with (10), it is readily confirmed that the boundary conditions 
given in equations (14) are satisfied by 

fo(r, 0, z) = 0 

h(r, 0, z) = 0 

/3(r, 0,z) = 0 

a/2, 

ad 
(r, 0, z) = 0 

(16a) 

(166) 

(16c) 

With reference to the region 8 = ir, equations (15) when inserted in 
the appropriate stress expressions yield the following relations: 

,, n ^ 3 / i 2 ^ - "> af2 , „ ah , a2/o , a2/0 

(1 — Iv) 1- Iv 1 — H 
ar r ad az ar2 az2 

l a 2 / , / a % 
H — + z I \-

r a92 \ar2 

aG 2(1 - v)af1 ail 

ar r ad ar 
aG 2(1 - i/) a/3 afl 

az r ad az 

in which G can be found from 

G = - (1 - 2i))/2 h — , 

fH 

fl = w 

(17a) 

(17ft) 

(17c) 

(18) 

Further simplification may be achieved by setting 

G = 0, 6 = w 

and as a consequence of (19) it follows that 

aG__a_G_ 

ar az 

By invoking the identities 

a a a l a 

ax ar' ay r ad 

0 , 0 = TT 

(19) 

(20) 

az 

ay2 

i a2 a2 \ 

Var2 az2] 

0 = it 

(21) 

in connection with equations (2), the relations (17) are trans
formed into 

2(1 
a/2 , a/i a/a 

•K) — - ( 1 - 2 K ) — + 2 „ — • 
ay a* az 

a2/o a2/t 

ay2 a0ay 

a2/3 

ay2 
= 0, 0: 

a/i 

ay 

a/3 

ay 

1 afl 

2(1 - 1/) ax 

1 afl 

2(1 - v) az 

In a similar manner, equations (18) and (19) render 

n „ . , a/0 a/i a/3 
(1 - 2»)/2 z — = 

ay ad ay 
0,0 = 

(22a) 

(226) 

(22c) 

(23) 

The mixed relations (166), (16c), (226), and (22c) provide the 
necessary information for the evaluation of /1 and /3 . In these rela
tions the derivatives of the thermoelastic potential are determined 
from a knowledge of the temperature in the solid already treated 
in the previous section. In particular, when a constant heat flux is 
present at the point (a, ir, 0) equations (7) and (11) yield 

afl afl (1 + v)ctQ0 [ I la \\ 1_ j — = / 1 
ax az 2(1 — V)TV2(X + a — iz)L\x — a — iz) 

, 1/2 
(24) 

Xln 
/Vr + x + V i 

Vr + a + / 

2\ _y 

1 P 
tan" 

, /V2a(r-x) 
\ D )] (24) 

(Cont.) 
The character of equations (166), (16c), (226), (22c), and (24) 
suggests that the functions /1 and / 3 can be expressed by2 

h(r,B,z)--
2 ( 1 - J . ) L ax 

h(r, 6, z) = 

r afl , afl"l 
\y- (x + a) — I ay J 

+ C 1 S ^ R . b ( f l ] ( 2 6 ) 
Vr 

afll 

2(1 - v) 

T afl a f l l 
y z — 

L az ay J 
(26) 

where C\ is a constant introduced for convenience and Re desig
nates the real part of an analytic function of the variable f defined 
by 

f = r + a + iz, I • -1 (27) 

In equation (25), the term associated with C\ is a singular solution 
of Laplace equation which satisfies conditions (166) and (226) and 
conform to the usual regularity requirement at infinity. It has been 
introduced to insure finiteness of displacements at the crack bor
der (r — 0). 

The next step in the analysis is to derive another set of relations 
which govern the remaining potentials /o and fi. In order to 
achieve this, it is expedient to add the term y(dfz/az) (which van
ishes in the region 6 = T) to both sides of equations (23), i.e., 

(1 - 2j/)/2 - + y z — = 
ay ad az ay 

0,1 

Moreover, utilizing equations (16) and the identities 

_a__ l_a_ £_ 

ay r ad' ay2 

it is not difficult to verify that 

— (1 - 2v)/2 - + y 
ay L ay ad az 

I a2 a 2 \ 

-fc+a?)' d = 0 

(28) 

(29) 

ay J 
8 = 0 (30) 

A glance at the quantity inside the bracket in equation (30) reveals 
that it is harmonic. It follows that equations (28) and (30) suggest 
the following relation involving the singular solution introduced in 
(25) 

(1 - 2*)/2 -
a/o af\ , a/3 if 3 

ay 

a/i a/3 a/3 cos (61/2) 
• — + y z — = c 2 -p— Re bj(f)] 

afl az ay 
V~r 

(31) 

A second relation between /o and / 2 may be derived from equations 
(16), (22a), and (29). The mathematical manipulation necessary 
for obtaining the second relation is identical to that used by Kassir 
and Sih [6] in analyzing the problem of the considered crack under 
concentrated shear load parallel to the crack edge. Without going 
into the details, it can be shown that 

nn . , a/o a/, a/3 a/3 
2(1 - i/)/2 = — + z y — 

ay ad ay az 

+ ( l - 2 „ ) Cy (— + —)dy,y>0 
J™ \ax az I 

(32) 

exists throughout the entire region y > 0 (see equation (22) of [6]). 
Solving equation's (31) and (32) simultaneously and utilizing equa
tions (25) and (26) result in 

/ 2 = [ ( l - 2 , ) C 1 - C 2 ] ^ ^ R e [ g ( r ) ] 
V r 

2 The results in equations (25) and (26) can also be reached by applica
tions of Fourier and Kontorovich-Lebedev integral transforms to equations 
(166), (16c), (22b), and (22c). 
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• (1 - 2«)C1 

. (1 - 2„) 

y sin (8/2) 

. v7 
Re fe'(tt]dy 

2(1 

^ ) T aft aft aft l 
ft + (* + a) — + y — + z — M ay azJ ( 3 3 o ) 

(Cont.) 
a n d 

ay 
= [ / i - 4v + iA d - 2(1 - ,)C21 

cos (9/2) 

v 7 

*y sin (9/2) 

-(1-2")2ClX VF 
x|[u-*) ' + y£][ 

Re [g'U)]dy + 

Re [g(n] 

1 

2(1-7) 

all an 
+ y f- z — 

ay az 

ail 
a+ (x + a) — 

ax 

"aft a2fl 
• + y 

.ax ax ay ] • • [ ! 
a201 TaO a2Q a2ft~|] / ,% 

-(x + a)—-\+z\— + y z — - , (336) 
ayzJ L az ayaz ay^JJ 

where g'(t) = (d/df)#(f) and S3 is given in (24). 
The remaining conditions to be satisfied are equations (16a) and 

the requirement that the displacements are finite at r = 0. These 
conditions are utilized to determine the function g(f) as well as the 
constants C1 and C2 in equations (25) and (33). However, instead 
of applying the condition in equation (16a), it is easier to subject 
(336) to the equivalent condition 

£/o. 
dz 

: 0, fl = 0 (34) 

Differentiating (336) with respect to z and then integrating in the 
variable y between the limits y and «, making use of equation (24) 
and the results 

X 
X y , py sin (0/2) 

y cos (8/2) 1 •!g'(t)dt 

Vr 2\/2 I . / . . - v / t ^To 

- 2 y f V ( £ ) — ( f - f o + 2 x ) - 1 ' ' 2 d J 
J - di 

(1 + <')«Qov'a aft aft ail 
fi+fcc + a) — + y — + z — = - _ 

ax ay az 2V2 (1 - e)ir2 

X R e : l n 
I Vr + x - V I S fol 

(35a) 

(356) 

(35c) 
[y/2x - f0 I V 7 T 7 + V2x - ft I 

it is found that condition (34) results in 

/ n , n\ f ~ S'(t)dt i;(l + lOaQoVa 
(11C1 + C2) I , - = - ; = -

Jfo V t - f0 4(1 - eVVfo 
where the variable fo is defined as 

fo = [f]»=o = x + a + iz 

Equation (36) is a standard integral equation of Abel type whose 
solution is [9] 

(36) 

(37) 

g(f) = In f 

provided that 

= ! + C 2 = -
K(1 + j')a(JoV/a 

(38) 

(39) 
4(1 - v)2ir2 

The final step in the analysis is to relate the constants C\ and C2. 
This may be done by imposing the regularity condition on the dis
placements at the crack edge. Inserting the appropriate values of 
the potentials in equations (9), making use of (24) and (38), ex
panding asymtotically for small r and retaining the lowest order 
terms, it is found that the displacements near the crack edge as
sume the form 

fa--z/>-r2-/a k3 

z 3 

a = 3 / a -

Fig. 2 Variations of k2 and k3 along crack border 

8 
s i n -

ur = —7= In (a2 + zz)[2(l - v)d - C2][3 - 4* 
Wr 

+ (7 - 81/) cos 8] + 0(r°) (40a) 

cos -

u(l = ~\n (a2 + z2)[2(l - , ) d - C2] 
4 v r 

X [3 - Av - (5 - 8K) COS 8] + 0(r°) (406) 

uz = 0(/°) (40c) 

Now, the finite displacements requirement at the crack edge gives 

2(1 - »)d ~ d = 0 (41) 

and it follows from equation (39) that 

v(l + v)aQQ\/a 
Ci = -

C 2 = - -

4(2 - „)(1 - „ ) V 

K(1 + c)«Qov/a 

(42a) 

(426) 
2(2 - i/)(l - oK2 

This, basically, completes the solution of the problem. The in
duced displacements and stresses in the solid may be readily com
puted from equations (9)-(12) when use is made of equations 
(24)-(26), (33), (38), and (42). These quantities serve as the 
Green's functions for any distribution of heat flux applied to arbi
trary regions of the crack surface. 

S t r e s s - I n t e n s i t y F a c t o r s 
The shear stresses across the surface 0 = 0 are computed from 

equations (126) and (12c) as 

EaQ0\/a (x + a) 
Ttlrir, 0, z) = 

Tte(r, 0, z) = 

(2 - V)-K2VX~ [(x + a ) 2 + z2] 

EaQoVaz 

(43a) 

(436) 
(2 - „)TT2V^ [(x + a)2 + z2] 

where E is Young's modulus of the material, E = 2^(1 + v), and 
the nonsingular terms have been neglected. Equations (43) may be 
expressed in the standard form 

Tfo-O-, 0 , 2 ) = - — + 0 ( X ° ) 
V 2 j 

T,,z(r, 0 , z ) = — = + 0(x°) 
\ / 2 l 

(44a) 

(44b) 

in which the stress-intensity factors, fe2 and ks, associated with the 
edge-sliding and tearing modes of crack extension, respectively, 
are given in terms of the nondimensional parameter zo = z/a by 
way of the relations 

V2EaQa 1 
fe2 = 

(2 - vh2\^ 1 + z2 

V2EaQo z0 

(2 - J<)irlVa" 1 + z0
2 

Fig. 2 shows the variation of equations (45) with ZQ. 

(45a) 

(456) 
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The formulas in equations (45) can be used to generate results 
for any distribution of heat flux applied to arbitrary regions of the 
crack surface. As an example, suppose that the heat flux is applied 
to a rectangular region, —a < x < 0, y = 0, \z\ < b, of the crack sur
face, Fig. 1, then double integrations performed on equations (45) 
yield the stress-intensity factors 

ki = 
3(2-

• sgn(|2| - b)\\z\ - b|s/* f f l ( j - p ; — ) ] (46a) 

V2EaQ0 

3 ( 2 -

\\z\ + b) 

k3 = n / o
2 £ " Q ° 2 \a3'* In <a2 + (\z\ + b)2> - (\z\ + b)*'W2 

3(2 — V)TT* L 

- s g n ( | z | -b) / a 3 / 2 l n [ a 2 + |M - b\2} 

-||z|-6|3/^([iA)>] ^ 
in which the functions Hi and Hi are given by 

/ / ! (« ) = s 3 / 2 t a n - l _ + 2 s 1/2 
s 

1 r , /VZs\ 

, / l + V2s + s \ 1 , 
+ ln(^7TT^)J (47a) 

V 2 \ l - s / 

3 / l + \ / 2 ^ + s\ 

%/2 "V v T T T 2 / 
(476) 

and the signum function, sgn (z), is +1 , 0, or —1 depending on 
whether the argument, z, is positive, zero, or negative, respectively. 
Other solutions can be generated in a similar manner. 

Conclusion 
The linear thermoelastic problem of a uniform heat flow dis

turbed by an insulated semi-infinite plane crack embedded in a 
three-dimensional elastic solid has been formulated and solved. 
The method of analysis involves the application of the technique 
of Fourier-Kontorovich-Lebedev Integral transforms and certain 
singular solutions of Laplace equation. The Green's functions for 
the distribution of the temperature field as well as the induced dis
placements and stresses in the solid are derived mainly in closed 
form. These results are useful in examining theories of brittle frac
ture for crack propagation caused by passage of steady-state heat 
in solids. 
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