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EXTENDED ABSTRACT 

Climate forecasting systems that group years on 
the basis of a climate forecasting index like the 
Southern Oscillation Index (SOI) or sea surface 
temperatures (SSTs) are quite simple to explain to 
industry personnel. Phase systems identify a subset 
of years (analogues) that have the same phase for a 
particular month. Industries can then investigate 
how the response of interest varied historically by 
the SOI or SST phase and self-validate the system. 
This is possible because industry members will 
remember the big wet and big dry years. Phase 
systems also allow industry personnel to visualise 
distributional shifts in rainfall and other responses 
(e.g. yield) between the different phases. These 
components spark a great deal of interest and 
enthusiasm at case study meetings. The simplicity 
of phase systems contributes to increased 
understanding of the forecasting approach, and 
highlights both the strengths and limitations 
associated with seasonal climate forecasting. 
Given that climate forecasts are not a perfect 
science, it is important that industries understand 
the risks and probability concepts so they can 
better integrate forecasts into a decision-making 
framework.  

The Australian sugar industry has predominantly 
used the five-phase SOI climate forecasting system 
as its benchmark in recent years. The purpose of 
this paper is to compare the performance of the 
benchmark system with other phase-based climate 
forecasting systems. Three-phase and nine-phase 
SST forecasting systems and a three-phase SOI 
system formed part of the investigation. An 
assessment is made across the sugarcane growing 
regions and across the calendar year, 
simultaneously. This is done for seven sugar 
growing regions that collectively produce 
approximately 90% of Australia's sugar. A 
methodology that enables a fair comparison of the 
systems is presented. This methodology caters for 
the different number of phases with each 
forecasting system. We consider three performance 
measures: P-values of (i) the Kruskal-Wallis (KW) 

test statistic, (ii) a linear error in probability space 
(LEPS) skill score and (iii) a relative operating 
characteric (ROC) skill score for above and below 
median rainfall. P-values are used to overcome 
obstacles associated with the different numbers of 
phases. This is important since, by chance alone, it 
is easier to get a higher or better categorical LEPS 
score for systems that have more phases. 

Results can vary with the performance measure. If 
ROC- and LEPS-based performance measures 
were preferred, then the three-phase SST system 
produced a higher number of significant results 
across the regions and three-month rolling periods. 
If performance measures that reflect the degree of 
distributional shifts or discriminatory ability 
between phases are preferred, then the five-phase 
SOI system produced the highest number of 
significant fields. Taking into consideration 
dependencies and auto-correlations associated with 
the response measurements across the calendar 
year and across coastal regions which essentially 
differ in latitudinal positioning, it is important to 
assess the likelihood that the number of significant 
fields could have occurred purely by chance.  

Whilst a methodology for comparing different 
phase systems, where the number of phases varies 
from system to system is presented, the dilemma 
as to which performance measures to base 
decisions remains. Users must carefully consider 
which performance measures are most appropriate 
for their investigation. 

1. INTRODUCTION 

Natural swings between wet and dry years pose 
many challenges for agricultural industries. Certain 
farming operations and planning activities are 
more suited to wet conditions, whilst alternative 
operations are more suited to dry conditions.  
Perfect knowledge of whether the season ahead 
was going to be wetter or drier than average would 
greatly assist decisions and operations that are 
impacted by climate. Unfortunately, there is no 
such crystal ball and perfect knowledge about the 
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climate to be experienced during the season ahead 
is unattainable. There are however, seasonal 
climate forecasts which provide probabilistic 
information on the likelihood that the season ahead 
will be wet, or will be dry. Once farmers and 
industry personnel have grasped the concepts of 
integrating probabilistic information about climate 
forecasting as part of a decision-making 
framework, then opportunities and benefits 
associated by better anticipating future climate 
conditions may be realised. 

There exists a diverse range of forecasting systems 
that provide probabilistic information about the 
future state of the climate. Climate forecasting 
systems based on phases simplify the process of 
communicating climate forecasting technologies to 
industry. Phase systems vary in the number of 
phases, analogue years (i.e., years with the same 
phase at a particular time) and the index from 
which the phases are derived. Some phase systems 
include the five-phase Southern Oscillation Index 
(SOI) (Stone and Auliciems, 1992), a three-phase 
SST system, the nine-phase SST system 
(Drosdowsky, 2002) and a three-phase SOI 
system. It is worthwhile noting that rigid 
definitions exist for defining phases for the nine-
phase SST system and the five phase SOI system, 
but definitions vary slightly in the research 
community regarding how phases in the three-
phase SST and three-phase SOI systems are 
constructed. 

The Australian sugar industry has paid attention to 
the five phase forecasting system (c.f. Everingham 
et al., 2002). The objective of this paper is to 
compare the forecasting performance of this 
system with three-phase SOI and SST systems and 
a nine-phase SST system. This paper outlines 
different investigations that were conducted in 
pursuit of identifying if one system might be more 
advantageous than another system from a 
statistical perspective. Whilst the assessment has 
focussed on sugarcane growing regions in 
Australia, the methodology is transferable to other 
industries.  

2.   RAINFALL DATA 

A rainfall index for each rolling three monthly 
calendar period was computed individually for 
each major sugarcane growing region along the 
eastern coast of Australia. The seven regions 
represented in this study were (from north to 
south)  Cairns (CNS), Mourilyan (MLN), Lucinda 
(LUC), Townsville (TVL), Mackay (MCK), 
Bundaberg (BUN) and north eastern New South 
Wales (NSW). The calendar or temporal periods 
were January to March (JFM), February to April 

(FMA), etc, through to December to February 
(DJF). Rainfall data from each region were 
obtained from the nearest high-quality official 
weather station to each of several mills in each 
region (Jones and Everingham, 2005). For each 
region and period, a principal component analysis 
was performed to provide a linearly-weighted 
rainfall index composed of mill rainfall data within 
each region. High (low) values of this regional 
rainfall index correspond to high (low) rainfall 
amounts across the mills. The index derived from 
the principal component analysis avoided the need 
to consider separate rainfall indices from the 
different weather stations within a region when a 
high proportion of variability was captured by the 
leading component.  

3.   CLIMATE FORECASTING SYSTEMS 

This section describes four phase based systems 
that satisfy the definition of reliability as described 
in Murphy (1993) and Potgieter et al., (2003).   

3.1     Three Phase SOI System 

The three-phase SOI system investigated here was 
based on monthly mean SOI values (available 
from http://www.longpaddock.qld.gov.au/Seasonal 
ClimateOutlook/SouthernOscillationIndex) to 
define monthly El Niño, La Niña and neutral 
phases. An El Niño phase for a particular month 
was defined if the previous six-month running 
average of SOI values was less than −5. A La Niña 
month was defined if the running average of SOI 
values was greater than +5. Neutral conditions 
were specified if the six-month running average of 
SOI values was between −5 and +5 (inclusively). 
As an example, the October 1998 phase would be 
La Niña if the average of the monthly SOI values 
between April 1998 and September 1998, 
inclusively was greater than +5. The chance of 
rainfall exceeding the median for a particular 
period and region was estimated using relative 
frequencies from historical data. For example, if 
there were 20 La Niña phases for a particular 
month, and 15 of those years resulted in an above 
median rainfall index for the period immediately 
following the phase month, the probability of 
receiving an above median rainfall index would 
have been 0.75. This stratified climatological 
approach that uses relative frequencies to estimate 
the probability of an above or below median 
rainfall index was applied to each forecasting 
system discussed in this paper. 

3.2     Three-Phase SST System 

The three-phase SST system investigated here was 
based on the Niño 3.4 region sea surface 
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temperature anomaly according to the dataset of 
Smith and Reynolds (2003) to define monthly El 
Niño, La Niña and neutral phases. An El Niño 
phase month was declared if the running average 
of SST anomalies for the previous three months 
was greater than +0.5°C. Conversely, a La Niña 
month was defined if the previous three month 
running average of SST anomalies was less than 
−0.5°C. Neutral conditions existed when the 
previous three month running average of SST 
anomalies was between −0.5°C and 0.5°C, 
inclusively. For example the October 1998 phase 
would have been La Niña if the average of the 
monthly SST anomalies between July 1998 and 
September 1998, inclusively was less than −0.5°C. 

3.3     Five-Phase SOI System 

The five-phase SOI system (Stone et al., 1992, 
Stone et al., 1996) is based on phases evident 
within the SOI which track the changes in the SOI 
on a month-to-month basis. The five phases are 
referred to as: consistently negative (CN), 
consistently positive (CP), rapidly falling (RF), 
rapidly rising (RR), and near zero (NZ). Each 
month is assigned one of these five phases.  

3.4     Nine Phase SOI System 

The nine-phase SST system (Drosdowsky, 2002) 
uses two different indices representing the first two 
rotated principal components from the Pacific and 
Indian Ocean SST anomaly patterns. The SST1 
index derives principally from the Pacific Ocean, 
while the SST2 index derives principally from the 
Indian Ocean. The phases were defined by placing 
every monthly value from each index into one of 
three equally likely terciles: cold SST, neutral SST 
and warm SST. The three terciles of SST 
anomalies for each index/time series were 
combined to give a three-by-three classification, 
resulting in the nine phases as shown in Table 1.  

 

Table 1.  Phases from the nine-phase SST system. 

Cold Normal Warm
Cold 1 2 3

Indian Normal 4 5 6
Warm 7 8 9

Pacific

 

3.   PERFORMANCE MEASURES 

3.1   The Kruskal-Wallis Test 

Demonstrating large shifts in rainfall distributional 
patterns is an important factor when dealing with 

industry. The Kruskal-Wallis (KW) test (Conover, 
1980), is a nonparametric alternative to a one-way 
analysis of variance that can assess the 
distributional shifts (Stone et al., 2000) of a 
forecast system. The null hypothesis states no 
difference in distributions between different 
treatments (phases). The test statistic, H, for the 
KW hypothesis test is given as 
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where n is the total number of cases (years), nk is 
the number of years from phase k and Rk is the sum 
of the ranked observations from phase k, where k 
varies from 1 to K with K being the total number 
of phases in the system. For example, K is equal to 
five if there are five phases. The test statistic H 
follows a Chi-Squared distribution based on K−1 
degrees of freedom. 

3.2   Linear Error in Probability Space Score 

Linear error in probability space, (LEPS) scores 
(Potts et al., 1996) range from −100% (worst 
possible score) to +100% (best possible score). A 
LEPS score for categorical forecasts was computed 
by multiplying the probability of belonging to each 
category with a series of weights (see Potts et al., 
1996) that are dependent on the category that 
eventuates. This was done for each forecast. The 
expected scores for each forecast were summed. A 
summed expected score that is positive is divided 
by the best set of scores that could be achieved 
from a perfect forecast system based on the 
observed data. For a negative score sum, the sum 
of expected scores is divided by the worst possible 
forecast system for the observed data. For 
example, if forecasting above or below median 
rainfall, LEPS scores close to zero would be 
produced if the forecast system continually gave a 
forecast close to climatology (i.e., 50% chance of 
above median rainfall). Higher, positive per-
centages of LEPS scores are preferred. 

3.3   Relative Operating Characteristic Score 

Relative operating characteristic (ROC) scores 
represent the area beneath a curve that graphs the 
hit-rate versus the false-alarm rate for a series of 
warning thresholds (Mason and Graham, 1999). 
ROC scores range from 0 (worst possible score) to 
1 (best possible score). A ROC score of 0.5 is 
produced from a forecasting system when the hit-
rate is equivalent to the false-alarm rate, thus 
scores above 0.5 are preferred. A ROC score is 
computed for above median rainfall forecasts, and 

576



another score is computed for below median 
rainfall forecasts.  

3.4   P-values and Null Distributions 

P-values provide a way to quantitatively compare 
the quality of forecast systems (Maia et al., 2007). 
We have computed P-values of the performance 
measures. P-values are appropriate because the 
null distribution of performance measures can be 
influenced by the number of phases and potentially 
the number of analogues. This is especially true for 
LEPS scores. The Kruskal-Wallis test 
automatically factors in the number of phases 
when computing the degrees of freedom of the 
test.  

P-values measure the probability of obtaining a 
performance measure more extreme than the one 
observed. In the case of the H-statistic, the P-value 
can easily be computed because the null 
distribution conforms to a Chi-squared distri-
bution. For the other performance measures, the 
null distribution has been computed by using 
permutation methods (Good, 1997) where the P-
value is the proportion of values in the null 
distribution greater than or equal to the actual 
performance measure. P-values close to zero (e.g., 
less than 0.1) are preferred since low values 
suggest any forecasting ability is unlikely a 
consequence of chance.  

3.     METHOD 

Figure 1 outlines the methodology implemented in 
this paper to compare the different forecasting 
approaches using the P-values of the selected 
performance measures. The first step involves 
computing the rainfall indices for each three- 
month rolling period of the calendar year for each 
location using the approach described in Section 2. 
This produces 84 (7×12) rainfall indices in total. 
The second step selects and computes the 
performance measure for each point on the 
regional by temporal field. Step 3 computes the P-
value for the selected performance measure for 
each of the 84 fields. It is important to recognise 
that the number of significant fields could be 
artificially inflated owing to dependencies in the 
field created by regional and temporal 
combinations. Using the approach of Wilks (1995, 
section 5.4.2) we have checked if the scores were 
artificially high by computing the global field 
significance. This involved counting the number of 
points in the 7×12 grid (or field) that had a P-value 
less than or equal to some specified value, e.g. 
α=0.10 (Step 4). The global significance was then  
computed (Step 5). Smaller values of the global 
significance indicate the observed number of 

significant fields is unlikely due to chance. If 
required, users may consider a stricter cut-off 
criterion. Once the global field significance has 
been computed the same routine is applied for the 
new performance measure (Step 6). 

4.     RESULTS AND DISCUSSION 

Figure 2 shows the distributional shifts in 
September to November rainfall indices at 
Mourilyan for phases from (a) the three-phase SST 
system and (b) the five-phase SOI system (P=0.00 
see Table 2).  The lower and upper edge of the 
boxes show the 25th and 75th percentiles 
respectively and the horizontal line in the box  
coincides with the median. Lines from the upper 
(lower) edge of the box extend to the largest 
(smallest) rainfall index that is not deemed to be 
extreme and the floating horizontal lines identify 
extreme cases that are more than 1.5 times the 
inter-quartile range (IQR) above(below) the 
upper(lower) edge of the box. Industry members 
concerned about rainfall interruptions to the 
harvest will note that higher September to 
November rainfall indices at Mourilyan occur 
more often when the August SST phase is in a La 
Niña state (Figure 3a) and/or the August SOI 
phase is consistently negative or rapidly rising 
(Figure 3b).  

Table 2 shows there were 48 P-values associated 
with the KW test statistic that were less than or 
equal to 0.10 for the five-phase SOI system. The 
number of significant fields for the remaining 
performance measures and forecasting systems is 
presented in Table 3. Also shown in Table 3 are 
the results which indicate if the number of 
significant fields satisfies global field significance. 
The small global P-values suggests that the 
number of significant fields is in most cases not 
overly inflated by field dependencies.  

The number of significant fields varies with 
performance measure and climate forecasting 
system. If ROC- and LEPS-based performance 
measures were preferred, then the three-phase SST 
system produced a higher number of significant 
results across the field. If performance measures 
that reflect the degree of distributional shifts 
between phases were preferred, then the five-phase 
SOI system produced the highest number of 
significant results closely followed by the three-
phase SST system. The nine-phase SST system 
produced the least number of significant results for 
all performance measures. 

Clearly the type of performance measure will 
influence the decision regarding the optimal 
climate forecasting approach, and so it is important 
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to consider the fundamental characteristics of the 
measures when making this judgement. We refer 
the reader to Potgieter et al. (2003) and Maia et al. 
(2007) for a more detailed discussion about this 
topic.  

5.   CONCLUDING REMARKS 

This paper outlined a process for assessing the 
climate-forecasting capability of different systems 
for a sugarcane-growing industry that spans the 
north eastern Australian coast. An overall assess-
ment was performed for seven sugarcane growing 
regions across twelve three-monthly calendar 
periods. The performance of the benchmark five-
phase SOI system could be considered sound if the 
performance measure was based on the KW or 
LEPS measures, but not if the decision was based 
on ROC performance measures. The three-phase 
SST system performed well across all performance 
measures whilst the nine-phase SST system 
performed least favourably. If it is important to 
perform well across a range of performance 
measures then this would raise the obvious 
question as to if the three-phase SST system might 
be more appropriate for the Australian sugar 
industry. Clearly, the advantages and 
disadvantages of changing forecasting systems 
would need to be carefully considered. 

Whilst this paper has recognised problematic 
issues that arise when comparing different 
forecasting systems based on a different number of 
phases, the challenge to identify a suitable 
performance measure is dependent on application.  
We have considered three performance measures 
which have been used for illustrative purposes. 
There exists a wide range of alternative 
performance measures in the literature. It is also 
worth noting that the number of significant fields 
has a sampling variability associated with it and 
confidence limits could be superimposed to reflect 
this variability.  

In this paper the field has been defined on the basis 
of latitudinal position and calendar period. We 
have not considered a longitudinal component 
because longitudinal variation of the locations in 
this study is relatively small compared to 
latitudinal variation. A field might more 
commonly consist of an arrangement of latitudinal 
and longitudinal coordinates. The approach 
outlined in this paper can easily cater for this 
modification as well as extensions to higher 
dimensional grids defined by a combination of 
latitude, longitude and calendar period as an 
example. The approach in this paper however is 
not suitable for assessing forecasting capability for 
targetted decisions which are specific to location, 

response and lead-time. In such circumstances we 
refer the reader to Maia et al. (2007) where the 
magnitude of the P-value can provide a mechanism 
for making this judgement. Caution should 
however be applied when testing highly specific 
circumstances so as to avoid pitfalls associated 
with so-called "peak-picking" that can be caused 
by jumping from one forecasting system to 
another. To contrast, in some instances, it can be 
appropriate to identify a statistically sound all year 
round industry wide forecasting system to 
facilitate large scale communication processes. 
With this goal in mind, a methodology to achieve 
this task was presented.  

We conclude by emphasizing that the comparisons 
performed in this paper have been based on 
identical time periods. This is important because 
owing to decadal and multidecadal climate vari-
ability, climate forecasting performance measures 
can be influenced by low frequency climate 
oscillations such as the interdecadal Pacific 
oscillation. We refer the reader to Power et al. 
(1999) for more details on this topic. 
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Table 2. Resultant P-values for the KW procedure 
for the field composed of 7 regions and 12 
temporal periods. Phases were generated by the 
five-phase SOI system.  
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JFM 0.09 0.00 0.25 0.04 0.17 0.05 0.07
FMA 0.41 0.51 0.70 0.44 0.62 0.72 0.72
MAM 0.49 0.68 0.86 0.05 0.26 0.64 0.02
AMJ 0.29 0.10 0.32 0.87 0.38 0.12 0.09
MJJ 0.26 0.17 0.58 0.96 0.82 0.61 0.07
JJA 0.18 0.22 0.85 0.20 0.74 0.18 0.10
JAS 0.45 0.54 0.01 0.00 0.02 0.00 0.76
ASO 0.01 0.01 0.00 0.01 0.00 0.07 0.67
SON 0.02 0.00 0.00 0.00 0.00 0.05 0.07
OND 0.00 0.00 0.00 0.00 0.00 0.03 0.16
NDJ 0.01 0.01 0.01 0.00 0.00 0.00 0.02
DJF 0.01 0.00 0.00 0.04 0.05 0.03 0.06
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Figure 1. Flowchart of research methodology 
applied to each forecasting system. 

 

Table 3. The number of significant fields in the 
7x12 grid and the associated global P-value for 
field significance.  

Measure Forecast 
system 

Number of  
Significant 
Fields 

Global  
P-value 

3-Phase SOI 38 0.000 

3-Phase SST 43 0.000 

5-Phase SOI 48 0.000 

KW 

9-Phase SST 30 0.000 

3-Phase SOI 33 0.000 

3-Phase SST 35 0.000 

5-Phase SOI 33 0.000 

LEPS 

9-Phase SST 28 0.000 

3-Phase SOI 23 0.001 

3-Phase SST 35 0.000 

5-Phase SOI 24 0.006 

ROCS 
(above) 

9-Phase SST 22 0.000 

3-Phase SOI 24 0.000 

3-Phase SST 33 0.000 

5-Phase SOI 15 0.038 

ROCS 
(below) 

9-Phase SST 9 0.002 

1. For the each region, compute the JFM, FMA, 
... , DJF rainfall indices. This will give 84 
indices in total (see Section 2). 

3. Compute the 84 Null-distributions and 
associated P-values (see Section 3.4). 

2. Select a performance measure and compute 
this measure for each point in the 7 × 12 grid. 

4. Specify a significance threshold, e.g. α = 
0.10. Count the number of fields in the 7 × 12 
grid that resulted in a P-value less than or 
equal to α. Call this value Nsig.fields. 

6. Return to Step 2 and select a different 
performance measure. Stop when all 
performance measures have been 
considered.  

5.    Check Nsig.fields is significant and not a         
.......consequence of rainfall dependencies.  
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Figure 2. Shifts in distributions for the September 
to November rainfall principal component index at 
Mourilyan based on (a) SST phases and (b) SOI 
phases at the end of August. 
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