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Abstract

We present an iterative distributed version of Han’s parallel method for convex opti-

mization that can be used for distributed model predictive control (DMPC) of industrial

processes described by dynamically coupled linear systems. The underlying decompo-

sition technique relies on Fenchel’s duality and allows subproblems to be solved using

local communications only. We investigate two techniques aimed at improving the

convergence rate of the iterative approach and illustrate the results using a numeri-

cal example. We conclude by discussing open issues of the proposed method and by

providing an outlook on research in the field.

Keywords: distributed optimization, dual decomposition methods, decentralized and

cooperative control, distributed model predictive control

1. Introduction

Nowadays, Model Predictive Control (MPC) is widely used for controlling indus-

trial processes [1], and it also has been studied thoroughly by the scientific community

[2, 3, 4]. MPC can naturally handle operational constraints and, moreover, it is de-

signed for multi-input multi-output systems, both of which contributed to the popular-

ity of MPC. Another advantage of MPC is that it relies on optimization techniques to

solve the control problem. Hence, improvements in optimization techniques can help

to broaden the applications of MPC for more complex problems.

When considering a control problem for a large-scale networked system (such as

complex manufacturing or infrastructure processes), using MPC in a centralized fash-

ion may be considered impractical and unsuitable due to the computational burden

and the requirement of global communications across the network. It is also inflexible

against changes of network structure and the limitation of information exchange be-

tween different authorities who might be in control of a local subsystem. In order to

deal with these limitations, Distributed MPC (DMPC) has been proposed for control

of such large-scale systems, by decomposing the overall system into small subsystems

[5, 6]. The subsystems then employ distinct MPC controllers that only solve local con-

trol problems, use local information from neighboring subsystems, and collaborate to

achieve globally attractive solutions.
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DMPC is an emerging topic for scientific research. The open issues of DMPC have

recently been discussed in [7, 8]. Several DMPC methods were proposed for different

problem setups. For systems with decoupled dynamics, a DMPC scheme for multiple

vehicles with coupled cost functions was proposed in [9], utilizing predicted trajecto-

ries of the neighbors in each subsystem’s optimization. A DMPC scheme with a suffi-

cient stability test for dynamically decoupled systems was presented in [10], in which

each subsystem optimizes also over the behaviors of its neighbors. In [11], Richards

and How proposed a robust DMPC method for decoupled systems with coupled con-

straints, based on constraint tightening and a serial solution approach. For systems with

coupled dynamics and decoupled constraints, a DMPC scheme has been developed in

[12] based on a Jacobi algorithm that deals with the primal problem, using a convex

combination of new and old solutions. In [13], the neighboring subsystem states are

treated as bounded contracting disturbances, and each subsystem solves a min-max

problem. A partitioning-based algorithm was proposed in [14, 15], with sufficient con-

ditions for the a posteriori stability analysis. In [16], Li et al. proposed an algorithm

with stability conditions in which subproblems are solved in parallel in order to get a

Nash equilibrium. Several DMPC algorithms based on decomposing of the global op-

timization problems were proposed in [17, 18, 19]. Other recent work on applications

of DMPC is reported in [20, 21, 22].

In this paper, we present a decomposition scheme based on Han’s parallel method

[23, 24], aiming to solve the centralized optimization problem of MPC in a distributed

way. This approach results in two distributed algorithms that are applicable to DMPC

of large-scale industrial processes. The main ideas of our algorithms are to find a

distributed update method that is equivalent to Han’s method (which relies on global

communications), and to improve the convergence speed of the algorithm [25]. We

will demonstrate the application of our methods in a simulated water network control

problem. The open issues of the proposed scheme will be discussed to formulate future

research directions.

The paper is organized as follows. The MPC problem is formulated and the under-

lying optimization problem is stated in Section 2. In Section 3, we summarize Han’s

parallel method for convex programs [24] as the starting point for our approach. In

Section 4, we present two distributed MPC schemes that exploit the structure of the

optimization problem for local communications. The first DMPC scheme uses a dis-

tributed iterative algorithm that we prove to be equivalent to Han’s algorithm. As a

consequence of this equivalence, the proposed DMPC scheme achieves the global op-

timum upon convergence and thus inherits feasibility and stability properties from its

centralized MPC counterpart. The second DMPC scheme is an improved algorithm

that aims to speed up the convergence of the distributed approach. In Section 5, we

illustrate the application of the new DMPC schemes in an example system involving

irrigation canals. In Section 6, we discuss the open issues of Han’s method and other

dual decomposition techniques for DMPC that motivate directions for future research.

Section 7 concludes the paper.
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2. MPC problem formulation

2.1. Subsystems and their neighborhood

Consider a plant consisting of M dynamically coupled subsystems. The dynamics

of each subsystem are assumed linear and to be influenced directly by only a small

number of other subsystems. Moreover, each subsystem i is assumed to have local

linear coupled constraints involving only variables from a small number of other sub-

systems.

Based on the couplings, we define the ‘neighborhood’ of subsystem i, denoted

as N i, as the set including i and the indices of subsystems that have either a direct

dynamical coupling or a constraint coupling with subsystem i.

2.2. Coupled subsystem model

We assume that each subsystem can be represented by a discrete-time, linear time-

invariant model of the form1:

xi
k+1 =

∑

j∈N i

Ai jx
j

k
+ Bi ju

j

k
, (1)

where xi
k
∈ Rni

and ui
k
∈ Rmi

are the states and control inputs of the i-th subsystem at

time step k, respectively.

2.3. Linear coupled constraints

Each subsystem i is assumed to have local linear coupled constraints involving only

variables within its neighborhoodN i. Within one prediction period, all constraints that

subsystem i is involved in can be written in the following form

∑

j∈N i

N−1
∑

k=0

D
i j

k
x

j

k
+ E

i j

k
u

j

k
= ceq (2)

∑

j∈N i

N−1
∑

k=0

D̄
i j

k
x

j

k
+ Ē

i j

k
u

j

k
≤ c̄ineq (3)

in which N is the prediction horizon, ceq and c̄ineq are column vectors, and D
i j

k
, E

i j

k
, D̄

i j

k
,

and Ē
i j

k
are matrices with appropriate dimensions.

2.4. First MPC problem

We will formulate the centralized MPC problem for systems of the form (1) using

a terminal point constraint approach that imposes constraints to zero out all terminal

states. Under the conditions that a feasible solution of the centralized MPC problem

exists, and that the point with zero states and inputs is in the relative interior of the

1This system description is chosen for simplicity of exposition and our framework can be easily extended

to consider output signals with appropriate observability assumptions.
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constraint set, this MPC scheme ensures feasibility and stability, as shown in [3] and

[26]. However, the algorithm proposed in this paper will also work with any other

centralized MPC approach that does not require a terminal point constraint, provided

that the subsystems have local stabilizing terminal controllers. We will further assume

without loss of generality that the initial time is zero.

The optimization variable of the centralized MPC problem is constructed as a

stacked vector of predicted subsystem control inputs and states over the prediction

horizon:

x =
[(

u1
0

)T
, . . . ,

(

uM
0

)T
, . . . ,

(

u1
N−1

)T
, . . . ,

(

uM
N−1

)T
,

(

x1
1

)T
, . . . ,

(

xM
1

)T
, . . . ,

(

x1
N

)T
, . . . ,

(

xM
N

)T ]T
(4)

Recall that ni and mi denote the numbers of states and inputs of subsystem i. The

number of optimization variables for the centralized problem is thus:

nx = N

M
∑

i=1

mi
+ N

M
∑

i=1

ni (5)

The cost function of the centralized MPC problem is assumed to be decoupled and

convex quadratic:

J =

M
∑

i=1

N−1
∑

k=0

(

(

ui
k

)T
Riu

i
k +

(

xi
k+1

)T
Qix

i
k+1

)

(6)

with positive definite weights Ri,Qi. This cost function can be rewritten using the

decision variable x as

J = xT Hx (7)

in which the Hessian H is an appropriate block-diagonal, positive definite matrix.

Remark 2.1. The positive definiteness assumption on Qi and Ri and the choice of the

centralized variable as described in (4) without eliminating state variables will help to

compute the inverse of the Hessian easily, by allowing simple inversion of each block

on the diagonal of the Hessian.

The centralized MPC problem, named (P), is defined as: the minimization of (6),

subject to (1) for i = 1, . . . ,M, k = 0, . . . ,N − 1, (2) and (3) for i = 1, . . . ,M, as well as

xi
N
= 0 for i = 1, . . . ,M.

We can rewrite problem (P) in a compact form as

min
x

xT Hx (8)

s.t. aT
l x = bl, l = 1, . . . , neq

aT
l x ≤ bl, l = neq + 1, . . . , s

with s = neq + nineq. The algorithms to be described in the next sections will focus on

how to solve this optimization problem.
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3. Han’s parallel method for convex programs

Han’s algorithm [24] is a method to decompose the Fenchel’s dual problem [27].

Fenchel’s duality theorem aims at minimizing a difference f (x)−g(x), where f is a con-

vex function and g is a concave function. A special case of this problem is minimizing

f over a constraint set C, where g is a penalty function for violating the constraint. In

Han’s problem, the set C is the intersection of local constraint sets, and the dual vari-

ables are iteratively projected onto the local constraint sets. As a consequence, the sum

of the dual variables converges to the minimizer of the Fenchel’s dual problem [24]. In

this section, we summarize the main elements of Han’s parallel method, followed by a

simplified version for the case of definite quadratic programming.

3.1. Han’s algorithm for general convex problems

The class of optimization problems tackled by Han’s algorithm is the following:

min
x

q(x) (9)

s.t. x ∈ C , C1 ∩ · · · ∩Cs

where C1, · · · ,Cs are closed convex sets and C , ∅, and where q(x) is uniformly

convex2 and differentiable on R
nx .

A problem of type (9) can be solved by Han’s algorithm. In the following algorithm

we will describe Han’s method, which is an iterative procedure. We use p as iteration

counter of the algorithm, and the superscript (p) for variables that are computed at

iteration p.

Algorithm 3.1. Han’s algorithm for convex programs

Let α be a sufficiently large number3 and define y(0)
= y

(0)

1
= · · · = y

(0)
s = 0, with

y(0), y
(0)

l
∈ Rnx , l = 1, . . . , s, and x(0)

= ∇q∗
(

y(0)
)

with q∗ being the conjugate function4

of q. For p = 1, 2, . . . , we perform the following computations:

1) For l = 1, . . . , s, find z
(p)

l
that solves

min
z

1

2

∥

∥

∥

∥

z + αy
(p−1)

l
− x(p−1)

∥

∥

∥

∥

2

2
(10)

s.t. z ∈ Cl

2A function q(x) is uniformly convex (or strongly convex) on a set S if there is a constant ρ > 0 such that

for any x1, x2 ∈ S and for any λ ∈ (0, 1):

q(λx1 + (1 − λ)x2) ≤ λq(x1) + (1 − λ)q(x2) − ρλ(1 − λ)‖x1 − x2‖
2.

3α is a design parameter that has to be sufficiently large. With α ≥ s/ρ Han’s method will converge [24].

For positive definite QPs we can choose ρ as one half of the smallest eigenvalue of the Hessian matrix.
4The conjugate function of a function q(x), x ∈ R

nx is defined by: q∗(y) = supx∈Rnx

(

yT x − q(x)
)

. The

conjugate function q∗ is always convex [28].
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2) Assign

y
(p)

l
= y

(p−1)

l
+ (1/α)

(

z
(p)

l
− x(p−1)

)

(11)

3) Set y(p)
= y

(p)

1
+ · · · + y

(p)
s

4) Compute

x(p)
= ∇q∗

(

y(p)
)

(12)

In [24], Han and Lou also showed that Algorithm 3.1 converges to the global opti-

mum if the conditions on q and C mentioned after (9) are satisfied.

Remark 3.2. Han’s method essentially solves the dual problem of (9), so that y(p)

converges to the solution of the Fenchel’s dual problem:

min
y

(

q∗(y) − δ∗(y|C)
)

(13)

in which δ(x|C) is the indicator function, which is 0 if x ∈ C and ∞ otherwise. The

conjugate function of δ(x|C) is δ∗(y|C) = supx∈C yT x. According to Fenchel’s duality

theorem [27], the minimum of the convex problem f (x) − g(x), where f is a convex

function on R
nx and g is a concave function on R

nx , equals the maximum of the concave

problem g∗(y) − f ∗(y), or equivalently the minimum of f ∗(y) − g∗(y). In this situation

f ≡ q and g ≡ δ. A value y(p̄) achieved when Algorithm 3.1 converges is an optimizer

of (13), hence x(p̄)
= ∇q∗

(

y(p̄)
)

is the solution of (9).

3.2. Han’s algorithm for definite quadratic programs

In case the optimization problem has a positive definite cost function and linear

constraints as in (9), the optimization problem (10) and the derivative of conjugate

function (12) have analytical solutions, and then Han’s method becomes simpler. In

the following we show how the analytical solutions of (10) and (12) can be obtained

when applying Algorithm 3.1 to the problem (8).

Remark 3.3. The result of simplifying Han’s method in this section is slightly different

from the original one described in [24], so as to correct the minor mistakes we found

in that paper.

As in (9), each constraint x ∈ Cl is implicitly expressed by a scalar linear equality

or inequality constraint. So (10) takes one of the following two forms:

min
z

1

2
‖z + αy

(p−1)

l
− x(p−1)‖

2

2
(14)

s.t. aT
l z = bl

or

min
z

1

2
‖z + αy

(p−1)

l
− x(p−1)‖

2

2
(15)

s.t. aT
l z ≤ bl

Let us first consider (15):
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• If aT
l

(

x(p−1) − αy
(p−1)

l

)

≤ bl, then z
(p)

l
= x(p−1) − αy

(p−1)

l
is the solution of (15).

Substituting this z
(p)

l
into (11), leads to the following update of y

(p)

l
:

y
(p)

l
= y

(p−1)

l
+ (1/α)

(

x(p−1) − αy
(p−1)

l
− x(p−1)

)

⇒ y
(p)

l
= 0 (16)

• If aT
l

(

x(p−1) − αy
(p−1)

l

)

> bl, then the constraint is active. The optimization prob-

lem (15) aims to find the point in the half-space aT
l

z ≤ bl that minimizes its

distance to the point x(p−1) − αy
(p−1)

l
(which is outside that half-space). The so-

lution is the projection of the point x(p−1) − αy
(p−1)

l
on the hyperplane aT

l
z = bl,

which is given by the following formula:

z
(p)

l
= x(p−1) − αy

(p−1)

l
−

aT
l

(

x(p−1) − αyl

)

− bl

aT
l

al

al (17)

Substituting this z
(p)

l
into (11), leads to:

y
(p)

l
= y

(p−1)

l
+

1

α

















−αy
(p−1)

l
−

aT
l

(

x(p−1) − αy
(p−1)

l

)

− bl

aT
l

al

al

















= −
aT

l

(

x(p−1) − αy
(p−1)

l

)

− bl

αaT
l

al

al (18)

Then defining γ
(p)

l
= aT

l

(

x(p−1) − αy
(p−1)

l

)

− bl yields

y
(p)

l
= −

γ
(p)

l

αaT
l

al

al (19)

If we define

γ
(p)

l
= max{aT

l

(

x(p−1) − αy
(p−1)

l

)

− bl, 0} (20)

then we can use the update formula (19) for both cases.

Similarly, for the minimization under equality constraint (14), we define

γ
(p)

l
= aT

l

(

x(p−1) − αy
(p−1)

l

)

− bl (21)

and the update formula (19) gives the result of (11).

Now we consider step 4) of Algorithm 3.1. As shown in [28], the function q(x) =

xT Hx with H being a positive definite matrix, is uniformly convex on R
nx and has the

conjugate function:

q∗(y) =
1

2
yT H−1y (22)

⇒ ∇q∗(y) = H−1y (23)

7



Consequently, in Han’s algorithm for the definite quadratic program (8), it is not

necessary to compute z(p), and y(p) can be eliminated using (19). We are now ready to

describe the simplified Han’s algorithm for problem (8), with the choice α = s/ρ (cf.

footnote 3).

Algorithm 3.4. Han’s algorithm for definite quadratic programs

For each l = 1, . . . , s, compute

cl =
−1

αaT
l

al

H−1al (24)

Initialize γ
(0)

1
= · · · = γ

(0)
s = 0 and x(0)

= 0. For p = 1, 2, . . . , perform the following

computations:

1) For each l corresponding to an equality constraint (l = 1, . . . , neq), compute

γ
(p)

l
= aT

l
x(p−1)

+ γ
(p−1)

l
− bl.

For each l corresponding to an inequality constraint (l = neq+1, . . . , s), compute

γ
(p)

l
= max{aT

l
x(p−1)

+ γ
(p−1)

l
− bl, 0};

2) Set

x(p)
=

s
∑

l=1

γ
(p)

l
cl (25)

Note that Han’s method splits up the computation into s parallel subproblems,

where s is the number of constraints. However, although Algorithm 3.4 is simpler

than the original form in Algorithm 3.1, it still requires a global update scheme and the

parallel problems still operate with the full-sized decision vector. Implementing the

scheme in a DMPC system, where the goal is to reduce the size of local computations

and to rely on local communication between subsystems only, is not straightforward.

In the following section, we will exploit the structure of the problem (8), resulting in a

distributed algorithm that does not require global communications.

4. Distributed version of Han’s method for the MPC problem

4.1. Distributed version of Han’s method with common step size

The main idea behind the distributed version of Han’s method is illustrated in Fig-

ures 1(a) and 1(b), with a simple system consisting of 4 subsystems and the coupling

matrix that shows how subsystems are coupled via their variables (boxes on the same

row indicate the variables that are coupled in one constraint). In Han’s method using

global variables, a subsystem has to communicate with all other subsystems in order

to compute the updates of the global variables. For the distributed version of Han’s

method, each subsystem i only communicates with the other subsystems of which the

8



1 2 3 4

(a)

1 2 3 4

(b)

Figure 1: Illustration of communication links with (a) the centralized coordination version and (b) the dis-

tributed coordination version of Han’s algorithm for an example 4-subsystem problem. In (a), an update for

a global variable requires the 2nd subsystem to communicate with all the others. In (b), the 2nd subsystem

only cares about its local variable, therefore it should only communicate with the 1st subsystem.

variables are necessary for computing the updates of its local variables, i.e., the sub-

systems in its neighborhood N i.

For the algorithm presented in this section, we use M local controllers attached

to M subsystems. Each controller i then computes γ
(p)

l
with regards to a small set of

constraints indexed by l ∈ Li, where Li is a set of indices5 of several constraints that

involve subsystem i. Subsequently, it performs a local update for its own variables, such

that the parallel local update scheme will be equivalent to the global update scheme in

Algorithm 3.4.

4.1.1. Initialization of the algorithm

Store invariant parameters

The parameter α is chosen as in Algorithm 3.4 and stored in the memory of all local

controllers.

We also compute s invariant values cl as in (24), in which each cl corresponds to

one constraint of (8). Note that H is block-diagonal, H−1 can be computed easily by

inverting each block of H and has the same block structure as H. Hence cl is as sparse

as the corresponding al. We can see that cl can be computed locally by a local controller

with a priori knowledge of the parameter al and the weighting blocks on the diagonal

of H that correspond to the non-zero elements of al.

We assume that each local controller i knows its local dynamics, and the input and

state weights of its neighbors in the cost function. Then each local controller i can

compute the cl values associated with its dynamic equality constraints.

Assign responsibility of each local controller

Each local controller is in charge of updating the variables of its subsystem. More-

over, we also assign to each local controller the responsibility of updating some inter-

mediate variables that relate to several equality or inequality constraints in which its

5The choice of Li will be described in the next section.
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subsystem’s states or inputs appear. The control designer has to assign each of the s

scalar constraints to one of the M local controllers6 such that the following require-

ments are satisfied:

• Each constraint is taken care of by one and only one local controller (even for a

coupled constraint, there will be only one controller that is responsible).

• A local controller can only be in charge of constraints that involve its own vari-

ables.

Let Li denote the set of indices l that local controller i is in charge of7. We also

define LN i as the set of indices l corresponding to the constraints that are taken care of

by subsystem i or by any neighbor of i:

LN i =

⋃

j∈N i

L j (26)

If a local controller i is in charge of the constraints indexed by l ∈ Li, then it com-

putes locally cl using (24) and exchanges these values with its neighbors. Then each

local controller i stores {cl}l∈L
N i

in its memory throughout the optimization process.

4.1.2. Iterative procedure

The distributed algorithm consists of an iterative procedure running within each

sampling interval. At each iteration, four steps are executed: two steps are communi-

cations between each local controller and its direct neighbors, and two are computation

steps that are performed locally by the controllers in parallel. Since feasibility is only

guaranteed upon convergence of Han’s algorithm, we assume that the sampling time

used is large enough such that the algorithm can converge within one sampling inter-

val. This assumption will be used in Proposition 4.7, and its restrictiveness will be

discussed in Section 6.

In this algorithm description, p is used to denote the iteration step. Values of vari-

ables obtained at iteration p are denoted with superscript (p).

Definition 4.1 (Index matrix of subsystems). In order to present the algorithm com-

pactly, we introduce the index matrix of subsystems: each subsystem i is assigned a

square diagonal matrix Ii ∈ R
nx×nx , with an entry on the diagonal being 1 if it corre-

sponds to the position of a variable of subsystem i in the vector x, and 0 otherwise. In

short, Ii is a selection matrix such that the multiplication Iix only retains the variables

ui
0
, . . . , ui

N−1
, xi

1
, . . . , xi

N
of subsystem i in its nonzero entries.

From Definition 4.1 it follows that:

M
∑

i=1

I
i
= I (27)

6Note that s, the total number of constraints, is often much larger than M.
7Note that this partitioning is not unique and has to be created according to a procedure that is performed

in the initialization phase.
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Definition 4.2 (Self-image). We denote with x(p)|i ∈ R
nx the vector that has the same

size as x, containing u
i,(p)

0
, . . . , u

i,(p)

N−1
, x

i,(p)

1
, . . . , x

i,(p)

N
(i.e. the values of i’s variables com-

puted at iteration p) at the right positions, and zeros for the other entries. This vector

is called the self-image of x(p) made by subsystem i.

Using the index matrix notation, the relation between x(p)|i and x(p) is:

x(p)|i
= I

ix(p) (28)

Definition 4.3 (Neighborhood image). Extending the concept of self-image, we de-

note with x(p)|N i

the neighborhood image of subsystem i made from x. At step p of the

iteration, subsystem i constructs x(p)|N i

by putting the values of its neighbors’ variables

and its own variables into the right positions, and filling in zeros for the remaining

slots of x. The neighborhood image x(p)|N i

satisfies the following relations:

x(p)|N i

=

∑

j∈N i

x(p)| j (29)

x(p)|N i

=



















∑

j∈N i

I
j



















x(p) (30)

By definition, we also have the following relation between the self-image and the

neighborhood image made by the same subsystem:

x(p)|i
= I

ix(p)|N i

(31)

Using the notation described above, we now describe the subtasks that each con-

troller will use in the distributed algorithm.

• Communications with the neighbors

Each controller i communicates only with its neighbors j ∈ N i to get updated

values of their variables and sends its updated variables to them. The data that

each subsystem i transmits to its neighbor j ∈ N i consists of the self-image

x(p)|i and the intermediate variables γ
(p)

l
, l ∈ Li, which are maintained locally by

subsystem i.

• Update intermediate variables γl

When the local controller i updates γl corresponding to each constraint l ∈ Li

under its responsibility, it computes in the following manner:

– If constraint l is an equality constraint (l ∈ {1, . . . , neq}), then

γ
(p)

l
= aT

l x(p−1)|N i

+ γ
(p−1)

l
− bl (32)

– If constraint l is an inequality constraint (l ∈ {neq + 1, . . . , s}), then

γ
(p)

l
= max{aT

l x(p−1)|N i

+ γ
(p−1)

l
− bl, 0} (33)
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• Update main variables

Local controller i uses all γ
(p)

l
values that it has (by communications and those

computed by itself) to compute an ‘assumed neighborhood image’ x
(p)|N i

assumed
. Note

that x
(p)|N i

assumed
has the same structure as the neighborhood image x(p−1)|N i

. How-

ever, it is not the exact update of the neighborhood image. Indeed, x
(p)|N i

assumed
is used

only for constructing the new self-image by selecting the variables of subsystem

i in x
(p)|N i

assumed
:

x(p)|i
= I

ix
(p)|N i

assumed
(34)

which contains u
i,(p)

0
, . . . , u

i,(p)

N−1
, x

i,(p)

1
, . . . , x

i,(p)

N
.

• Check the local termination criteria

For each local controller, there are local termination criteria. The local termi-

nation criteria also aim to keep a subsystem informed when other subsystems

terminate. Hence when one set of local termination criteria is satisfied, the ter-

mination criteria for all subsystems are also satisfied. Each controller checks

the local termination criteria using local communications only8. When all local

controllers have converged, the algorithm stops and the local control actions are

implemented.

In the following, we will describe the new method using the distributed algorithm.

Algorithm 4.4. Distributed algorithm for definite quadratic programs

Initialize with p = 0, u
i,(0)

k
= 0, x

i,(0)

k+1
= 0,∀i, k = 0, . . . ,N − 1 (this means x(0)|i

=

0,∀i, implying x(0)
= 0), and γ

(0)

l
= 0, l = 1, . . . , s

Next, for p = 1, 2, . . . , the following steps are executed:

1) Communications to get the updated main variables

Each controller i gets updated values of x(p−1)| j from its neighbors j ∈ N i, where

only non-zero elements need to be transmitted9.

Then controller i constructs the neighborhood image x(p−1)|N i

using formula (29).

2) Update intermediate variables γl in parallel

Each local controller i updates γl for each l ∈ Li, using (32) or (33).

3) Communications to get the updated intermediate variables

Each local controller i gets γ
(p)

l
, l ∈ LN i that are updated by controllers in the

neighborhood of i.

8Checking the termination criteria in a distributed fashion requires a dedicated logic scheme, several

schemes were described in [29, Chapter 8].
9Since x(p−1)|i only has a few non-zero elements, which are u

i,(p−1)

0
, . . . , u

i,(p−1)

N−1
, x

i,(p−1)

1
, . . . , x

i,(p−1)

N
, only

these values need to be transmitted by controller i to reduce communications.
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4) Update main variables in parallel

Each local controller i computes an assumed neighborhood image of x:

x
(p)|N i

assumed
=

∑

l∈L
N i

γ
(p)

l
cl (35)

Then controller i constructs the new self-image, using (34).

5) Check the local termination criteria in parallel

Each local controller checks the local termination criteria. If local termination

criteria are satisfied, the algorithm stops, otherwise go to step 1) to start a new

iteration.

eqn

L i
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i
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i
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=
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+
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∈
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N∈controller j i

assumed

assumed

( )

( )

=
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|
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Figure 2: Computation and communication flow-chart of controller i in each iteration of Algorithm 4.4.

Controller i only needs to communicate with its neighbor j ∈ N i.

In Algorithm 4.4, the activities of one local controller can be demonstrated by the

diagram in Figure 2. The diagram clearly shows that in the distributed algorithm, each

local controller i only communicates with its neighbors j ∈ N i, enabling implementa-

tion of the method in a distributed setting. The properties of the distributed algorithm

will be discussed in the following subsections.
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4.1.3. Proof of equivalence to Han’s algorithm using a global update scheme

In Algorithm 3.4, at step 2), the centralized variable x(p) is updated via a global

update scheme. In Algorithm 4.4, by the local update scheme we obtain x(p)|i for

i = 1, . . . ,M. The equivalence of these two algorithms is stated in the following propo-

sition:

Proposition 4.5. Applying Algorithms 3.4 and 4.4 to the same problem (8) with the

same parameter α, at any iteration p, the following statements hold:

a) γ
(p)

l
are the same in Algorithms 3.4 and 4.4, for all l ∈ {1, . . . , s}.

b) x(p)
=
∑M

i=1 x(p)|i, in which x(p) is calculated in Algorithm 3.4 while x(p)|i, i =

1, . . . ,M are calculated in Algorithm 4.4.

Hence, Algorithm 3.4 and Algorithm 4.4 are equivalent.

Proof: The proposition will be proved by induction.

It is clear that properties a) and b) hold for p = 0.

Now consider iteration p, and assume that the properties a) and b) hold for all

iterations before iteration p.

First, we prove property a). For any l and i such that l ∈ Li, we have:

aT
l x(p−1)

= aT
l

M
∑

j=1

I
jx(p−1)| j (36)

= aT
l



















∑

j∈N i

I
jx(p−1)| j

+

∑

j<N i

I
jx(p−1)| j



















Due to the definition of neighborhood, a subsystem outside N i does not have any cou-

pled constraints with subsystem i. Therefore, aT
l

∑

j<N i I
jx(p−1)| j

= 0, which - in com-

bination with (29) - leads to:

aT
l x(p−1)

= aT
l

∑

j∈N i

I
jx(p−1)| j

= aT
l x(p−1)|N i

(37)

Equation (37) then guarantees that γ
(p)

l
computed at step 1) of Algorithm 3.4 and at

step 2) of Algorithm 4.4 are the same.

Now consider property b), where the main argument is the following: The same set

of γ
(p)

l
and cl are used for updating i’s variables in x

(p)|N i

assumed
(at step 4 of Algorithm 4.4)

and in x(p) (at step 2 of Algorithm 3.4). Thus each vector of local update x(p)|i, which

contains values of i’s variables selected from x
(p)|N i

assumed
, is a part of the centralized update

x(p).

More specifically, we can express the formula of x(p)|i computed in Algorithm 4.4

as

x(p)|i
= I

ix
(p)|N i

assumed
= I

i
∑

l∈L
N i

γ
(p)

l
cl

⇒

M
∑

i=1

x(p)|i
=

M
∑

i=1

I
i
∑

l∈L
N i

γ
(p)

l
cl (38)
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Note that in the following equations, x(p) refers to the update of the decision vari-

able computed by (25) in Algorithm 3.4, which we can express as

x(p)
=

M
∑

i=1

I
ix(p)
=

M
∑

i=1

I
i

s
∑

l=1

γ
(p)

l
cl (39)

in which the first equality is due to the relation (27), the second equality is from (25).

Recall that cl has the same structure as al, and if l < LN i then al and cl do not have

any non-zero values at the positions associated with variables of subsystem i. Therefore

I
i

s
∑

l=1

γ
(p)

l
cl = I

i



















∑

l<L
N i

γ
(p)

l
cl +

∑

l∈L
N i

γ
(p)

l
cl



















= I
i
∑

l∈L
N i

γ
(p)

l
cl (40)

This equality shows that (39) and (38) are equivalent, thus proving the equality in

property b): x(p)
=
∑M

i=1 x(p)|i. �

The equivalence of Algorithms 3.4 and 4.4 implies that problem (8) can be solved

using Algorithm 4.4. This allows us to implement a DMPC scheme using Algo-

rithm 4.4 that does not need global communications.

4.1.4. Properties of the distributed MPC controller

Convergence, feasibility, and stability properties of the DMPC scheme using Algo-

rithm 4.4 are established by the following propositions:

Proposition 4.6. Assume that (P) has a feasible solution. Then Algorithm 4.4 asymp-

totically converges to the centralized solution of (P) at each sampling step.

Proof: In [24] it is shown that Han’s method is guaranteed to converge to the cen-

tralized solution of the convex quadratic program (8) under the conditions that q(x)

is uniformly convex and differentiable on R
nx and (8) has a feasible solution. Due to

the positive definiteness of Qi and Ri, and the assumption that (P) has a feasible so-

lution, such conditions hold for the quadratic problem (8). Moreover, Algorithm 4.4

is equivalent to Han’s method for the problem (8). Hence, the distributed scheme in

Algorithm 4.4 converges to the centralized solution of (8), which is the same as (P). �

Proposition 4.7. Assume that at every sampling step, Algorithm 4.4 asymptotically

converges. Then the DMPC scheme is recursively feasible and stable.

Proof: By letting Algorithm 4.4 converge at every sampling step, the centralized

solution of (P) is obtained. Recursive feasibility and stability is guaranteed as a conse-

quence of centralized MPC with a terminal point constraint, as shown in [3] and [26].

�

It is also worth to address the conservativeness of the MPC formulation using the

terminal point constraint xN = 0, which would reduce the domain of attraction of MPC.

However, this issue is not related to Han’s method. In fact, the distributed Han’s method

is able to handle optimization problems of other MPC formulations, given that the cost

function has a sparse coupling structure. Note that finding other MPC formulations

with a sparse coupling structure is not straightforward, we will discuss this problem in

Section 6.
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4.2. Distributed version of Han’s method with scaled step size

A disadvantage of Han’s method (and its distributed version) is the slow conver-

gence rate, due to the fact that it is essentially a projection method to solve the dual

problem of (8). Moreover, Han’s (distributed) method uses zeros as the initial guess,

which prevents warm starting of the algorithm by choosing an initial guess that is close

to the optimizer. Therefore, we need to modify the method to achieve a better conver-

gence rate.

In this section, we present two modifications of the distributed version of Han’s

method:

• Scaling of the step sizes related to dual variables by using heterogeneous αl for

the update of each l-th dual variable instead of the same α for all dual variables.

• Use of nonzero initial guesses, which allows taking the current MPC solution as

the start for the next sample step.

Note that the modified distributed algorithm is then not equivalent to the central-

ized algorithm anymore. There is no convergence proof for the modified distributed

algorithm yet; this will be discussed in Section 6.

In order to implement the above modifications, the improved distributed version

of Han’s method is initialized similarly to the distributed algorithm in Section 4.1.1,

except for the following procedures:

1. Pre-computed invariant parameters

Each subsystem i computes and stores the following parameters throughout the

control scheme:

• For each l ∈ Li: αl =
(

kα
)

lα0, where kα is the scaling vector. αl acts as local

step size regarding the l-th dual variable, and therefore kα should be chosen

such that the convergence rates of all s dual variables are improved. The

method to choose kα will be discussed in Remark 4.9.

• For each l ∈ Li: c̄l =
−1

aT
l

al
H−1al. We can see that c̄l can be computed

locally by a local controller with a priori knowledge of the parameter al

and the weighting blocks on the diagonal of H that correspond to the non-

zero elements of al.

2. MPC step

At the beginning of the MPC step, the current states of all subsystems are mea-

sured. The sequences of predicted states and inputs generated in the previous

MPC step are shifted forward one step, then we add zero states and zero inputs

to the end of the shifted sequences. The new sequences are then used as the ini-

tial guess for solving the optimization problem in the current MPC step10. The

initial guess for each subsystem can be defined locally. For subsystem i, denote

the initial guess as x(0)|i. At the first MPC step, we have x(0)|i
= 0,∀i.

10The idea of using previously predicted states and inputs for initialization is a popular technique in MPC

[4]. Especially with Han’s method, whose convergence rate is slow, an initial guess that is close to the

optimal solution will be very helpful to reduce the number of iterations.
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The current state is plugged into the MPC problem, then we get an optimization

problem of the form (8). This problem will be solved by the following modified

distributed algorithm of Han’s method.

Algorithm 4.8. Improved distributed algorithm for the MPC optimization problem

Initialize with p = 0. Each subsystem i uses the initial guess as x(0)|i.

Next, for p = 1, 2, . . . , the following steps are executed:

1) See step 1 of Algorithm 4.4.

2) See step 2 of Algorithm 4.4, except that for p = 1, each subsystem i computes the

initial intermediate variables by11:

γ
(1)

l
= aT

l

(

x(0)|N i

−
αl

s
Hx(0)|N i

)

− bl, l ∈ Li, l ≤ neq (41)

γ
(1)

l
= max

{

aT
l

(

x(0)|N i

−
αl

s
Hx(0)|N i

)

− bl, 0

}

, l ∈ Li, l > neq (42)

3) See step 3 of Algorithm 4.4.

4) See step 4 of Algorithm 4.4 but with a different formula to update the assumed

neighborhood image for each i:

x
(p)|N i

assumed
=

∑

l∈L
N i

1

αl

γ
(p)

l
c̄l (43)

5) See step 5 of Algorithm 4.4.

When the iterative procedure finishes, each subsystem applies the first input u
i,(p)

0
,

then waits for the next state measurement to start a new MPC step.

Remark 4.9. The main improvement of Algorithm 4.8 over Algorithm 4.4 is the im-

proved convergence speed, which heavily depends on a good choice of the scaling

vector kα. We have observed that the convergence rate of some dual variables under

the responsibility of a subsystem i will affect the convergence rate of dual variables

under the responsibility of its neighbors in N i. Therefore the choice of scaling vec-

tor should focus on improving the convergence rate of dual variables that appear to

converge more slowly. In our case, we rely on the Hessian to find the scaling vector.

Specifically, for each subsystem i, let h̄i denote the average weight of its variables (i.e.

average of entries related to i’s states and inputs in the diagonal of the Hessian). We

then choose the scaling factor
(

kα
)

l = 1/h̄i, for all l ∈ Li. We also multiply the scaling

11The intermediate variables are constructed following the formulas (20)–(21) with replacing the common

α by αl for each l ∈ {1, . . . , s}, where we implicitly use y
(0)

l
=

1
s
y(0),∀l ∈ {1, . . . , s} and y(0)

= Hx(0).

Also note that since al only involves neighboring subsystems and H is block-diagonal, the computation

aT
l

(

x(0) −
αl
s

Hx(0)
)

only uses values from neighboring subsystems, similarly to the argument for (37).
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vector kα with a factor θ ∈ (0, 1) for enlarging the step sizes of all dual variables. In

the first MPC step, we start tuning with θ ≃ 1 and gradually reduce θ until it causes the

algorithm to diverge, then we stop and choose the smallest θ such that the algorithm

still converges.

The choice of the scaling vector depends on the structure of the centralized opti-

mization problem, thus we only need to choose it once in the first MPC step. Then for

the next MPC steps, we can re-use the same scaling vector.

The efficiency of Algorithm 4.8 will be demonstrated in the example of irrigation

canal control, which is presented in the next section.

5. Application of Han’s method for distributed MPC in canal systems

5.1. The example canal system

The novel DMPC approach is applicable to a wide range of large-scale systems

which could be modeled in the LTI form as described in Section 2. In this section, we

demonstrate its application in an example control problem, where the objective is to

regulate the water flows in a system of irrigation canals. Irrigation canals are large-scale

systems, consisting of many interacting components, and spanning vast geographical

areas. For the most efficient and safe operation of these canals, maintaining the levels

of the water flows close to pre-specified reference values is crucial, both under normal

operating conditions as well as in extreme situations. Manipulation of the water flows

in irrigation canals is typically done using devices such as pumps and gates.

The example irrigation canal to be considered is a 4-reach canal system as illus-

trated in Figure 3. In this system, water flows from an upstream reservoir through the

reaches, under the control of 4 gates and a pump at the end of the canal system that

discharges water.

The control design is based on the master-slave control paradigm, in which the

master controllers compute the flows through the gates, while each slave controller

uses the local control actuators to guarantee the flow set by the master controller [30].

We will use the new DMPC method to design the master controllers.

5.2. Modeling the canal

The canal system is divided into 4 subsystems, each of which corresponds to a

reach and also includes the local controller at the upstream gate of the reach. The 4th

subsystem has one more controller, corresponding to the pump at its downstream end.

We use a simplified model for each subsystem as illustrated in Figure 4, and then

obtain the overall model by connecting the subsystem models. A subsystem is approx-

imately modeled by a reservoir with upstream in-flow and downstream out-flow.

The discrete-time model of reach i is represented by:

hi
k+1 − hi

k =
Ts

Ai
s

[(

Qi
in

)

k
−
(

Qi
out

)

k

]

(44)

where superscript i represents the subsystem index, subscript k is for the time index, Ts

is the sampling time, h is the downstream water level of the reach, As is the water sur-

face (i.e. the volume of reservoir = h ·As), Qin and Qout are the in-flow and the out-flow
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reach 1

reach 2

reach 3

reach 4

gate 1

gate 2

gate 3

gate 4

pump

upstream

reservoir

Figure 3: The example canal system

of the canal which are measured at the upstream and downstream ends, respectively.

Denote the flow passing i-th gate by qi, and the flow passing the pump by p4. Due to

the mass conservation law, we have Qi
out = Qi+1

in
= qi+1, for i = 1, 2, 3, and Q4

out = p4.

h

A s

out
QQ in

Figure 4: Model of a reach

In order to derive local dynamics, we choose input and state vectors of subsystem i

as

xi
k = hi

k

ui
k =























qi
k

, i = 1, 2, 3
[

qi
k

pi
k

]

, i = 4

The dynamics of each subsystem can be represented by a discrete-time, linear time-
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invariant model of the form (1) with the state-space matrices:

Aii
= 1 , i = 1, . . . , 4; Ai j

= 0 , i , j

Bii
= Ts/A

i
s , i = 1, 2, 3; B44

=

[

Ts/A
4
s −Ts/A

4
s

]

Bi(i+1)
= −Ts/A

i
s , i = 1, 2; B34

=

[

−Ts/A
4
s 0

]

Bi j
= 0 , i = 1, 2, 3, j < {i, i + 1}.

5.3. Simulation results

DMPC methods are applied to the regulation problem of the simulated canal sys-

tem described in previous subsections using sampling time Ts = 240s, with a perturbed

initial state. We use the distributed Han’s method with and without the modifications

described in Section 4, and compare the results. Figure 5 shows the convergence of the

distributed solutions to the centralized solution for the problem. Starting from the same

initial guess in the first MPC step, i.e. all variables are initialized with zeros, the dis-

tributed algorithm with modifications achieves a better convergence rate, allowing the

distributed optimization to converge within an acceptable number of iterations. Similar

results were also achieved for the next MPC steps, when we simulate the closed-loop

MPC and let the distributed solutions converge to the centralized solution at every step,

with maximally 100 iterations per step.
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Figure 5: Comparison of convergence rates of two distributed versions of Han’s method for the first sampling

time step (k=1)

6. Discussion and outlook on future research

Two distributed versions of Han’s method have been described in Section 4, fol-

lowed by a short demonstration of their usage in Section 5. Although these algorithms
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help to implement Han’s method in a distributed setting for MPC, there are still some

theoretical issues that need to be addressed.

Firstly, the proposed distributed algorithms deal with quadratic programs only.

Although many MPC problems for linear time-invariant systems are formulated as

quadratic programs, there are other variants that use different objective functions, and

nonlinear MPC would also yield more complicated optimization problems than quadratic

programs. With such problems, we might not be able to implement Han’s parallel

method in a distributed fashion. This issue motivates the research on other decomposi-

tion methods that can handle more general problems, e.g. convex problems with linear

or decoupled nonlinear constraints.

As noted in Section 4.1, the MPC formulation in this paper employs the terminal

constraint xN = 0, which is a conservative approach. In case we want to use less

conservative MPC, e.g. MPC with a terminal constraint set and a terminal controller,

we need to find a separable terminal penalty function and local terminal constraint sets.

However, to the authors’ best knowledge, there is still no distributed scheme available

to construct local terminal constraint sets and local terminal controllers (and also the

terminal penalty matrix that is solution of the Riccati equation), other than assuming

them to be completely decoupled. Therefore, although distributed Han’s method can

also be applied to any uniformly convex QP problem with sparse coupling structure, it

requires further research on MPC formulations that have such optimization problems.

In general, Han’s method has a slow convergence rate due to its iterative projection

nature, which is inherited by Algorithm 4.4. Since the feasibility and stability proper-

ties are derived upon convergence of the algorithm within each sampling step, we need

to speed up the convergence of this method. The distributed version of Han’s method

with scaling can improve the convergence rate significantly, as illustrated in Section 5.

However, its proof of convergence is still lacking. We observe that in setups that are

more complicated, the proposed method to choose the scaling vector does not always

work well (sometimes after several sample steps, the algorithm does not converge any-

more). Due to the requirement not to have global communications, it is difficult to

adjust the scaling vector during the iteration to reach convergence. Therefore speeding

up Han’s method while providing a proof for convergence is still an open issue, and

we may use a coordinator at a higher level of hierarchy that has global communication

capabilities to tackle this issue.

Another issue is due to the formulation of the optimization problem for MPC, where

we keep both inputs and states as variables of the centralized optimization problem and

do not eliminate the states using the dynamic model equations. This formulation is

advantageous in distributed MPC because the Hessian will then keep a block diag-

onal structure, and the neighborhood of each subsystem will only contains its direct

neighbors (the neighborhood would be greatly extended if we eliminate the states in

the optimization problem). However, using states as variables requires considering the

dynamical equations as equality constraints of the optimization problem, and the exis-

tence of equality constraints typically requires an exact solution in order to guarantee

feasibility. Since Han’s method converges asymptotically, we may not be able to get

the exact optimal multipliers in real-time, and then the corresponding primal iterates

would not be guaranteed to be feasible. In general, most dual decomposition methods

do not provide primal feasible solutions before reaching the dual optimal solutions, so
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this feasibility issue also applies to other dual decomposition methods.

In future research, we will also study dual decomposition methods that can provide

primal feasible solutions in a finite number of iterations. In order to tackle the convex

problem, we intend to make use of the subgradient schemes proposed in [31] and [32],

which extend the traditional primal recovery schemes for linear programs [33, 34].

With this approach, the standard proof for MPC stability, which is based on optimality,

will not be obtained. Therefore, we need to prove stability of suboptimal MPC, which

can be based on the theorems proposed in [35], i.e. showing the reduction of the cost

function (acting as a Lyapunov function) associated with the feasible solution. We

intend to use the bounds of suboptimality of the subgradient iterations to show the

decreasing property of the cost function. Finding such bounds that are suitable for

proving suboptimal MPC stability is still an open question.

7. Conclusions

A decomposition approach based on Fenchel’s duality and Han’s parallel method

has been developed in this paper, resulting in two distributed algorithms that are appli-

cable to DMPC. The first distributed algorithm generates updates that are equivalent

with those computed globally by Han’s method for definite quadratic problems, and

therefore it has the same convergence property as Han’s method. Moreover, feasibility

and stability of DMPC are achieved upon convergence of the iterations. The second

distributed algorithm aims to improve the convergence speed by using scaled step sizes

and nonzero initial guess. The new methods have been applied to an example irri-

gation canal network, demonstrating their applicability for water network and other

large-scale networked systems. We have also summarized open issues of using Han’s

method and other dual decomposition methods for MPC, including the topics of dis-

tributed formulation, convergence rate, primal feasibility, and stability of MPC. These

issues were used to recommend future research directions.
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