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ABSTRACT 

 
In this paper, the chatter phenomenon is investigated through a 
single degree of freedom model of the milling process. In this 
regard, the non-linear equation of motion obtained from 
modeling of the milling process, which is a time-periodic 
delay differential equation, is simulated, and by changing the 
parameters: spindle speed and depth of cut, and assuming 
constant quantities for other parameters of the system the 
stable and instable points for the system are gained according 
to these two parameters by numerical method. In the end, the 
stability chart for this system is plotted and the approximate 
boundaries between the stability and instability regions are 
obtained numerically. 

 
  Key words: Modelling, Simulation, machine tool chatter, 
regenerative effect    

1 INTRODUCTION 
 

Industrial Competition augmentation in today’s developed 
technology has driven the manufacturers’ attention to increase 
speed and accuracy in manufacturing more than the past. 
Machining Operations are one of the most widely used 
manufacturing processes [1, 2]. One of the most important 
problems in this field is the vibration occurrence and 
controlling it in machining. In every machine tool design, it is 
attempted to reduce its undesirable effects of vibration 
including noise, poor surface finish, reduced dimensional 
accuracy, and shortened machine tool life as much as 
possible[2,3]. One of the most prevalent vibrations in 
machining is a phenomenon called chatter. Chatter can be 
simply described as the self-excited, large amplitude periodic 
relative vibration between the tool and the work-piece.[3,10] 
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The history of machine tool chatter goes back almost 100 
years, when Taylor described machine tool chatter as “the 
most obscure and delicate of all problems facing the 
machinist” in ASME conference in 1907 [4].  After the 
extensive work of Tlusty et al [5], Tobias [3] and Merrit [6] 
the so-called regenerative effect has become the most 
commonly accepted explanation for machine tool chatter [7]. 
In fact, the phase difference between the waves produced by 
the vibration between the tool and the work-piece, caused by 
any external or internal perturbation, and the waves on the 
work-piece surface cut during the previous revolution, results 
in the chip thickness variation at the tool’s edge. This leads to 
the cutting force variation that excites the structure and the 
regenerative effect occurs [10]. Additionally, two other 
mechanisms for machine tool chatter has been recognized: 
mode coupling and velocity dependent effect.[10] However, 
between these three mechanisms, the regenerative effect is the 
most important and influential one and is mostly considered. 
[10] 
 The necessity for preventing chatter and the control of it 
justifies the significance of its dynamic investigation and 
analysis. According to analysis of dynamic process of chatter 
and predicting the conditions of chatter occurrence, several 
analytical and numerical methods have been presented [9,10]. 
Predictive models for machining operations can provide 
favorable circumstances to ameliorate the process efficiencies 
and dimensional precision. Dynamic machining models give 
the manufacturers the opportunity to predict regions of stable 
and unstable cutting for a large combination of process 
parameters. This permits these models to be used in place of 
costly trial and error for process optimization [11]. 
For mathematical description of a system that regenerative 
effect plays roll in it, delay differential equations (DDEs) are 
used. The DDE describes a system where the present rate of 
f correspondence, Email: m_moghad@encs.concordia.ca. 
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change of state depends on a past value of the state. This effect 
is exerted by the term having the delay. [10, 12] 
In the case of milling, the direction of the cutting force is 
changing with the tool rotation, and as each tooth enters and 
leaves the work-piece, the cutting process confronts with 
interruption. As a result, the equation of motion should be a 
DDE with a time periodic coefficient [11]. The amount of the 
time delay should be equal to the activity time of one tooth. 
Beside this, numerous types of nonlinearities can affect the 
dynamic behavior of milling processes. These nonlinearities 
can be regenerative or arisen from the intermittent nature of 
the cut itself. They evidence that many milling vibrations may 
actually be chaotic and new schemes controlling chaotic 
vibrations might be applicable. These kinds of vibrations can 
arise simultaneously with more familiar dynamic phenomena 
such as chatter. [10] 
In this paper the dynamic instability and chatter phenomenon 
have been studied in a single degree of freedom mechanical 
model of the milling process. For this purpose, the time-
periodic delay differential equation of motion obtained from 
modeling of the milling process, which is non-linear, is 
simulated. 
As the objective of this paper is simple qualitative 
investigation of chatter and regenerative effect, in the next 
chapters, the equation of motion extracted from the 
mechanical model is numerically simulated and with 
utilization of the results, a picture of the system behavior in 
stability and instability regions including chatter arising areas 
has been obtained. 

 

2. MODELLING 
 

The detailed mechanical model of the milling process is 
shown in Fig.1. [7, 9] The mass of the tool (m), the damping 
coefficient c and the spring stiffness k can be determined by 
the modal analysis of the machine tool. x is the displacement 
of the centre of the tool relative to the work-piece. As the 
structure is supposed to be flexible only in the x direction, the 
model is single degree of freedom. When the structure is 
flexible mostly in one direction while it is likely to be rigid in 
the orthogonal direction, this kind of model is appropriate. [7] 

 
 

 
 
 

 
 
 
 

 

 
Fig.1. Regenerative mechanical model for milling [7] 

 
 
By assuming the prescribed feed motion uniform with a 
constant speed v of the work-piece, according to Newton’s 
law, the equation of motion is: 

)()()( txctkxFtxm x &&& −−−=             (2.1) 
 

loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: 
The cutting force  can be calculated by determination of its 
components acting on an active tooth (number j): 

xF

The tangential component of the cutting force can be 
approximated by: 

Fx
jjt fKwF )sin( ϕ=                   (2.2) 

Where K is the cutting coefficient, w is the depth of cut; f is 
the feed per tooth and jϕ  refers to the angular position of the 

tool. is a small constant. is a typical value. Fx 8.0=Fx
The normal component of the cutting force acting on the jth 
tooth is usually estimated as: 

jtjn FF 3.0=                        (2.3) 
 

 
 

Fig.2. Cutting force components [7] 
 
The x component of the cutting force is shown in Fig.2 is: 

)sincos)(( jjnjjtjjx FFtgF ϕϕ +=       (2.4) 

)(tg j acts as a switching function. It is equal to one of the 
jth tooth is active, and is zero if it is not. 

If the spindle speed is given in r.p.m, the tooth path 
period will be 

)(Ω
Ω= z/60τ  (s) where z is the number of the 

teeth [7]. The feed is equal to the difference of the present and 
the delayed position of the tool, plus the distance covered by 
the work piece relative to the tool in the time of each activity: 

    ττ vtxtxf +−−= )()(                 (2.5) 

The angular position of each tool is θϕ jtj +Ω=  where 

z/2πθ = . [7, 9] 
As a result, the x component of the cutting force acting on 

the tool is given by the sum of  for all j: jxF
Fx

x vtxtxtwqF ))()()(( ττ +−−=       (2.6) 
Where 

                   (2.7) )(sin)([)(
1

θjttgKtq Fx
z

j
j +Ω= ∑

=

( )])sin(3.0)cos( θθ jtjt +Ω++Ω [7, 9] 
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However, there are short moments that the tool leaves the 
work piece. When it happens, the chip thickness that is here 
equal to feed becomes negative, which is something that 
physically does not exist. At this point the cutting force 
becomes zero and the regenerative effect is ‘switched off’. 
The free tool outside the work-piece begins a simple 
oscillating motion that is damped, and the tool will soon return 
to the work-piece. This is an important nonlinear part of the 
cutting force variation. [10] 

To consider this effect here, the nonlinear equation of 
motion has been presented in two conditions as follows: 

If    ττ vtxtx +−− )()( > 0 , 
=++ )()()( tkxtxctxm &&&                           (2.8) 

Fxvtxtxtwq ))()()(( ττ +−−−  
If    0)()( ≤+−− ττ vtxtx  

                       0)()()( =++ tkxtxctxm &&&
 

As it can be seen, this equation is not continuous. In the 
next chapter the stability of the equation (2.8) is investigated 
by numerical simulation through different points. 

 
The nonlinear equation (2.6) represents the motion of the 

machine tool relative to workspace. For theoretical stability 
analysis of the system the equation is linearized about the 
unperturbed motion and after obtaining a linear time periodic 
equation for perturbation, the stability of this equation has 
been investigated through different frequencies by Insperger, 
Stépán, Mann and Bayly [7].The theoretical approach is not 
the objective of this paper, however the linearization proposed 
in reference [7] is briefly outlined below: 

We can consider the tool motion in the form of: 
                        )()()( ttxtx p ξ+=                            (2.9) 

Where )()( τ+= txtx pp is a τ periodic motion which is 

the ideal motion with no self-excited motion arising. )(tξ is 
the perturbation. Substituting equation (2.9) in (2.6): 

=+++++ )()()()()()( tktctmtkxtxctxm ppp ξξξ &&&&&&

 
                         (2.10) Fxttvtwq ))()()(( τξξτ −−+−

In the ideal case the perturbation doesn’t exist ( 0)( ≡tξ ) 

and the tool moves according to .For this case 
one can write this ordinary differential equation: 

)()( txtx p=

)()()()()( tqvwtkxtxctxm Fx
ppp τ−=++ &&&       (2.11) 

For linear stability analysis, the variational system of equation 
(2.6) is determined about the combined linear periodical 
motion .Expanding the nonlinear term in equation 

(2.10) into Taylor series with respect to 

)(txp

)(tξ  and neglecting 
the higher order terms, gives the equation: 

=+++++ )()()()()()( tktctmtkxtxctxm ppp ξξξ &&&&&&  
FFF xx

F
x ttvtqvwxtqvw ))()()(()()()( 1 τξξτττ −−+−− −  

(2.12) 
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Using equation (2.11) and (2.12) a linear periodic equation is 
obtained for perturbation: 

))()()(()()()()( 1 τξξτξξξ −−−=++ − tttqvwtktctm Fx&&&  
(2.13) 

When this equation loses stability or resonance occurs in 
equation (2.11) Chatter arises.  
 

3 SIMULATIONS AND INSPECTION OF THE 
RESULTS  

 
As mentioned in the previous chapter, in order to inquire the 
stability of them system the equation (2.8) has been 
numerically simulated. For this numerical simulation, the 
following amounts have been used for the system parameters: 

,/13.18,/102.2,586.2 6 mNscmNkkgm =×==

8.0,/109.1 19 =×= +
F

x xmNK
F    [7] 

 
      In the calculations, the tool is assumed to have four teeth 
and the work-piece width, as shown in Fig.3, is exactly chosen 
in a way that every time two teeth will be active. In the 
computer program it has been supposed that the origin of the 
time corresponds to the start of the second tooth activity; i.e. 
when t≤0 <τ ,  and are equal to one, though 

and are zero. At the time

)(1 tg )(2 tg
)(3 tg )(4 tg τ , the first tooth leaves 

the work-piece, while the third tooth enters it. Consequently, 
in this situation changes to zero but  become one. 
Thus, this procedure continues. 

)(1 tg )(3 tg

According to the amounts mentioned for the parameters m, c, 
k, K and z and application of the initial conditions 

smvx /2.0)0(,0)0( ==  the calculations have been 
performed for different amounts of spindle speed )(Ω and the 
depth of cut , and for each case the diagram of total 
displacement with respect to time, and the relevant 
phase diagram have been plotted. 

)(w
))(( tx

 
 

            
 

Tool

Work-piece

          Fig.3. The situation of the teeth and the work-piece 
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In every plotted diagram, there is a transient state which is 
affected by the initial conditions and lasts only for a short 
time. Since the rate of the system behavior changes in this 
state is great, the pertinent section in the phase diagram 
appears as thinly scattered trajectories. 
After termination of this state, the rate of the variations in the 
system function becomes small and the system behavior tends 
to an attractor specified in the phase diagram by very close 
trajectories forming a dense region. 
Now, regarding to the initial conditions applied for solving the 
equation, the obtained diagrams are investigated: 
The diagrams can be generally divided into two groups. It is 
observed that the vibration amplitude in some of the diagrams 
(except in the transient state) is low, while in other diagrams 
the amplitude has a clear difference with the first group,  
sometimes with a divergence,  that it is much higher  and even 
sometimes it reaches to millimeters. So, it can be concluded 
that in the latter group chatter has occurred. 
Here, the border of 0.5 mm is determined between the stability 
and instability, which is practically reasonable. In the cases 
that the vibration amplitude is approximately in this extent, it 
can be said that the point is located in the environs of the 
stability and instability borders. 
As an example, in the case of that 
refers to a stable point, after finish of the transient state which 
is affected by the initial conditions, the vibration amplitude 
decreases and a kind of convergence can be observed in the 
displacement diagram. Relevantly, in the phase diagram the 
outsider trajectories of the diagram that belong to the higher 
amplitude vibration, as they correspond to the transient state, 
appear sparse. 

mprmmw ..3100,2 =Ω=

 
 

             (a) 

                (b) 
 
Fig.4. (a) The displacement diagram and (b) the corresponding 

phase diagram of the case:  mprmmw ..3100,2 =Ω=
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But after the expiration of the transient state, as the system 
behavior variations become small, the trajectories get very 
close to each other. Consequently, the central part of the 
diagram that refers to lower amplitude vibration is shown as 
dense trajectories that form an attractor. 
 
When the amplitude of vibration is great and the system faces 
instability, the situation is converse. The case of 

mprmmw ..3400,2 =Ω=  is an example.  
 
 
 

                             (a) 

                   (b) 
 

Fig.5. (a) The displacement diagram and (b) the corresponding 
phase diagram of the case: mprmmw ..3400,2 =Ω=  

 
In this group of diagrams, in the transient state the vibration 
amplitude is comparatively small. But it rapidly increases until 
it gets to a state that the changes of the system behavior 
become small. As a result, in the displacement diagram a kind 
of divergence appears. Pertinently, in the phase diagram the 
central region appears as sparse trajectories, but the dense 
appearing attractors locates in the outsider region.  
Evidently, these characteristics are qualitative. As an example, 
the length of the transient state is not the same in all the 
diagrams. 
As another example, in some of the diagrams, such as those 
corresponding to the case  it can be 
seen that in the displacement and the phase diagram, there is 
no obvious distinction between the transient state and the 
attractor. Only in the transient state the maximum amplitude 
increases gradually.  

mprmmw ..3300,2 =Ω=

Also, as it appears in the displacement diagram, the rate of the 
amplitude variation neither in the transient state nor after that 
is small. However, the system follows a common pattern 
periodically.  
4 Copyright © 2007 by ASME 
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It is evident that the result is a large area of the attractor in the 
phase diagram, because it covers a wide range of amplitudes. 
 

 

           (a) 

             (b) 
 

Fig.6. (a) The displacement diagram and (b) the corresponding 
phase diagram of the case:  mprmmw ..3300,2 =Ω=

 
 

More over, separate from general behavior of the system, there 
are some insignificant convergences or divergences in some of 
the displacement diagrams, which cause small changes in the 
corresponding phase diagrams. 
It can be shown that the system behavior after the transient 
state is dependent from the initial conditions applied to the 
system. In other words, by applying any initial conditions, the 
same attractor will be reached. 
Here, initial conditions for different cases have been changed, 
and expectedly the attractor in the new results coincides to the 
previous ones. It is evident that there is a unique attractor that 
is independent from the initial conditions. As an example, for 
the case , the Initial conditions once 
have been changed from to 

 and and once 
to which the phase diagrams 
are shown in Fig.7 (a) and (b) respectively. As it can be seen 
the attractors are the same, but behavior of the system in the 
transient state changes. 

mprmmw ..3400,2 =Ω=
smvx /2.0)0(,0)0( ==

,001.0)0( mx = smv /25.0)0( =
,001.0)0( mx = smv /5.1)0( =

Beside this, by plotting the power spectrum for the diagrams 
the existence of one dominant frequency for the system 
vibration can be shown, which is higher than other 
frequencies. This concludes that the pattern of the system 
behavior is quasi-periodic. 
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           (a) 

                    (b) 
 

Fig.7.Phase diagram for the case 
mprmmw ..3400,2 =Ω= ,with the initial conditions of 

(a): smvmx /25.)0(,001.0)0( ==  and 
                         (b): smvmx /5.1)0(,001.0)0( ==  
 
Here, the power spectrum has been plotted for two previous 
diagrams which are shown in Fig.8 (a) and (b).  

 
 

                     (a) 

                    (b) 
      
      Fig 8.(a). Power spectrum related to Fig 7.(a) 

      Fig 8.(b). Power spectrum related to Fig 7.(b) 
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As discussed in section 2, the nonlinear equation of motion is 
presented as a conditional equation (2.8). Otherwise, there will 
be large amplitude vibrations in the results that in fact never 
happen in reality. The condition stated in equation (2.8) omits 
these unreal situations from the results, and make them more 
realistic. As an example, the displacement diagram of the 
case  without considering the 
conditions has been plotted, in Fig.9. As it can be seen, the 
vibration amplitude is much higher than the previously 
investigated diagrams, which is not practical. Since much 
earlier than the vibration amplitude raises this high, the tool 
will loose its contact with the work piece. 

mprmmw ..3400,2 =Ω=

 
 

     
 

Fig.9. The displacement diagram for the case      
 without the conditional 

consideration 
mprmmw ..3400,2 =Ω=

 
Based on the obtained results, the stability chart of this 
mechanical system with the specified parameters can be 
approximately plotted numerically. This chart is in the form of 
a lobe diagram, in which depth of cut has been drawn with 
respect to spindle speed. By finding the stability and 
instability borders, the whole area of the diagram can be 
divided into two stable and unstable sections. The stability 
chart plotted for this system is shown in Fig.10. 
 

4 CONCLUDING REMARKS 
 

In this paper, in order to study the chatter phenomenon, 
according to single degree of freedom model of milling 
process, the nonlinear equation of motion of the machine tool 
relative to the work piece has been simulated numerically, and 
the calculations have been performed for different amounts of 
spindle speed and the depth of cut. 
 Each situation can present a point in the spindle speed-depth 
of cut diagram. (The stability chart) By determining the stable 
and unstable points and passing a curve through the border 
points, the approximate stability chart for the system can be 
obtained. In Figure 10 the stability chart of the system with the 
parameters mentioned in part 3 has been plotted between 2000 
and 8000 r.p.m. 

 The unstable points have been concentrated in finite areas 
which form an unstable region. 

It is apparent that in every spindle speed, increasing the 
depth of cut increases the vibration amplitude, While the 
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increase of spindle speed in a constant depth of cut, does not 
always leads to vibration amplitude increase. 

 As this method can show the system behavior in each 
point, it can be used for the approximate function prediction of 
a system with specific parameters. 
 
 

The stability chart for the System
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Fig.10. The stability chart for the system 
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